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a b s t r a c t

How large an antichain can we find inside a given downset in the
Boolean lattice B(n)? Sperner’s theorem asserts that the largest
antichain in the whole of B(n) has size

( n
⌊n/2⌋

)
; what happens for

general downsets?
Our main results are a Dilworth-type decomposition theorem

for downsets, and a new proof of a result of Engel and Leck that
determines the largest possible antichain size over all downsets
of a given size. We also prove some related results, such as deter-
mining the maximum size of an antichain inside the downset that
we conjecture minimizes this quantity among downsets of a given
size.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The width w(X) of a finite partially ordered set X is the maximum size of an antichain in X . By
Sperner’s theorem [10], the width of the Boolean lattice B(n), the set of subsets of [n] = {1, 2, . . . , n},
ordered by containment, is themaximumsize of a level, namely

( n
⌊n/2⌋

)
. In this paper, we are interested

in the relationship between the width and size of a downset D of B(n), meaning a family of sets such
that if X ∈ D and Y ⊆ X then Y ∈ D.

One of our aims is to determine, for n fixed, the maximum width of a downset of a given size (see
Section 2). This turns out to be given by the initial segment of that size of a slightly nonstandard (total)
order on B(n) (see Theorem 3). This was proved by Engel and Leck [5]. Our proof is rather different,
being based on compressions.

On the other hand, tominimize the width of a downset in B(n) of given size d, we have a conjecture
that the initial segment of B(n) of size d under the binary order realizes the minimum width (see
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Conjecture 8). This conjecture has been made independently by Goldwasser [6]. We work out the
width of this downset (with an argument that is perhaps more involved that it ought to be — see
Proposition 9). Here we are motivated by a beautiful 35-year-old conjecture of Daykin and Frankl [3]
for convex subsets C of B(n). Recall that C is convex in B(n) if whenever X, Y ∈ C with X ⊆ Z ⊆ Y then
also Z ∈ C.

Conjecture 1. (Daykin and Frankl [3]) For any nonempty convex subset C of B(n),

w(C)
|C|

≥

( n
⌊n/2⌋

)
2n .

We verify this when C is an initial segment of the binary order (see Theorem 7). Thus, Conjecture 1
specialized to downsets would follow from Conjecture 8.

Still concerning convex subsets C of B(n), Dilworth’s theorem [4] says that any convex set (indeed,
any partially ordered set) has a partition into w(C)-many chains. In the case of convex subsets, we
could ask for much more, namely, that the chains are skipless, meaning that they skip no levels of
B(n) (in other words, successive elements of a chain increase in size by exactly 1). We show that this
indeed the case (Theorem 10). As an application, we determine precisely when adding an element to
a downset of B(n) increases its width (Proposition 11).

We also consider a related problem. If we have a given number of r-sets, and we wish to minimize
the size of the downset they generate, then by the Kruskal–Katona theorem [8,9], cf. [1]we should take
an initial segment of [n](r) (the family of all r-sets from [n]) under the colexicographic order. Thus, the
size of the downset is independent of n. Now, if we insteadwished tomaximize the size of the downset,
then this is not a sensible question, aswewould just take somedisjoint r-sets. However, this is in some
sense cheating, because the downset generated has much larger antichains that the original family of
r-sets.

So a more natural question is as follows. Call a family of r-sets top-heavy or simply heavy if there is
no larger antichain in the downset it generates. And now the questionwould be: amongheavy families
of r-sets of given size, which one generates the largest downset? Here we are allowing n to vary. We
make a conjecture on this value, and give some (rather weak) bounds.

The paper is organized as follows. In Section 2, we find the maximumwidth of a downset of given
size in B(n). Section 3 contains our results and conjectures on the minimization problem and its
relation to the Daykin–Frankl conjecture. In Section 4 we prove that every convex subset of B(n) has
a partition into width-many skipless chains. This result is then applied in Section 5 to describe when
the addition of a single new element increases the width of a downset in B(n). Finally, in Section 6 we
consider the problem about heavy families described above.

Combinatorial terms and notation are standard — see e.g. Bollobás [1] for these and further
background.

2. The maximumwidth of a downset

Among all downsets of B(n) of given cardinality, which one maximizes the width? The answer is
that we should take initial segments of some ordering, but interestingly it is not one of the ‘standard’
orderings on B(n).

Recall that in the binary ordering on B(n) we have A < B if max(A△B) ∈ B, and that in the simplicial
ordering on B(n) we have A < B if either |A| < |B| or else |A| = |B| and min(A△B) ∈ A. Thus in
the binary ordering we ‘go up in subcubes’, and also the restriction to a level is the colex order, while
in the simplicial ordering we ‘go up in levels’, with the restriction to a level being the lex ordering.
These are the standard two orderings on B(n): for example, initial segments of the simplicial ordering
solve the vertex-isoperimetric problem while initial segments of the binary ordering solve the edge-
isoperimetric problem (see e.g. [1] for details).

In contrast, here we need a modification of the simplicial ordering. Let us define the level-colex
ordering on B(n) by setting A < B if either |A| < |B| or else |A| = |B| and max(A△B) ∈ B. In other
words, we go up in levels, but in each level we use colex instead of lex. Our aim is to give a direct proof
of a lovely result of Engel and Leck [5] that, among downsets of a given size, initial segments of the
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level-colex order maximize the width. The point is that, if we are going to take a downset with say all
sets of size less than k and also some k-sets, then we want those k-sets to have small shadow — so by
the Kruskal–Katona theorem [8,9], cf. [1] we should take those k-sets to be an initial segment of the
colex order. Interestingly, we know of no other problem for which this level-colex ordering provides
the extremal examples.

Part of the difficulty in proving this result arises from the fact that, in an initial segment of the
level-colex ordering, the set of maximal elements may not form a maximum-sized antichain. The
maximal elements do often achieve the width (for example, when we have all sets of size at most k
for k ≤ (n+1)/2), but not always (for example, when our initial segment has size 1 greater than this).
We also mention in passing that if one wished to prove the result only for certain sizes (namely when
our initial segment consists of all sets of size at most k) then other methods are available.

Ourmethod is based on the use of ‘codimension-1 compressions’, whichwere originally introduced
in [2]. We need a small amount of notation. It is slightly more convenient to view B(n) explicitly as a
power set — we will write P(X) for the power set of a set X . For a set systemA on [n] (i.e.A ⊆ B(n)),
and 1 ≤ i ≤ n, the i-sections of A are the set systems on [n] − {i} given by

Ai− = {A ∈ P([n] − {i}) : A ∈ A},

Ai+ = {A ∈ P([n] − {i}) : A ∪ {i} ∈ A}.

We can define the level-colex ordering on P(X) whenever X is (totally) ordered — again, A
precedes B if either |A| < |B| or else |A| = |B| and max(A△B) ∈ B. It is easy to see that if A is an
initial segment of the level-colex order on B(n) then both Ai− and Ai+ are initial segments of the
level-colex order on P([n] − {i}).

For anyA ⊆ B(n) and 1 ≤ i ≤ n, we define a system Ci(A) ⊆ B(n), the i-compression ofA, by giving
its i-sections: Ci(A)i+ is the set of the first |Ai+| elements in the level-colex order on P([n] − {i}), and
similarly for Ci(A)i−. In other words, Ci ‘compresses’ each i-section ofA into the level-colex order. We
say thatA is i-compressed if Ci(A) = A. Thus for example an initial segment of the level-colex order on
B(n) is i-compressed for every i. Note that the i-compression of a downset is again a downset (because
any two initial segments of an ordering are nested, in the sense that one is a subset of the other).

A natural question to ask iswhether a set system that is i-compressed for all i is necessarily an initial
segment of the level-colex order. But in fact it is easy to see that this is not the case. For example, for
n = 3 we may take the set system {∅, {1}, {2}, {1, 2}}. However, and this is one the key properties of
this kind of compression, it turns out that this is essentially the unique such example.

Lemma 2. Let A ⊆ B(n) be i-compressed for all i. Then either A is an initial segment of the level-colex
order on B(n), or else n is odd (say n = 2r + 1) and

A = [n](≤r)
− {{r + 2, r + 3, . . . , n}} ∪ {{1, 2, . . . , r + 1}},

or else n is even (say n = 2r) and

A = [n](<r)
∪ {A ∈ [n](r) : n /∈ A} − {{r, r + 1, . . . , n − 1}} ∪ {{1, 2, . . . , r − 2, r − 1, n}}.

Proof. Suppose that A is not an initial segment of the level-colex order on B(n). Then there are sets
A, B ∈ B(n) with A ∈ A, B /∈ A, and B < A in the level-colex order. For any i, we cannot have i ∈ A, B
or i /∈ A, B, since A is i-compressed. It follows that A = Bc .

Thus, for any A ∈ A, there is at most one B < A such that B /∈ A, namely Ac , and similarly, for any
B /∈ A, there is at most one A > B such that A ∈ A. Taking A to be the last set in A, and B to be the
first set not in A, it follows immediately that A = {C ∈ B(n) : C ≤ A} − {B}, with B the immediate
predecessor of A and B = Ac . However, by the definition of the level-colex order, this can only happen
in one case: if n is odd, say n = 2r + 1, then B must be the final r-set in colex, and if n is even, say
n = 2r , then Bmust be the final r-set in colex that does not contain n. □

We are now ready to prove that initial segments of the level-colex order maximize the width.

Theorem 3. Let A be a downset in B(n), and let I be the set of the first |A| elements in the level-colex
order on B(n). Then w(A) ≤ w(I).
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It turns out to be easier to deal with maximal elements instead of general antichains. So, for a
downset A, let us write m(A) for the number of maximal elements of A. Because any antichain (in
some downset) is the set of maximal elements of the downset it generates, Theorem 3 will follow
immediately from the following.

Theorem 4. Let A be a downset in B(n), and let I be the set of the first |A| elements in the level-colex
order on B(n). Then m(A) ≤ m(I).

Proof. We proceed by induction on n. As the result is trivial for n = 1, we turn to the induction step.
We first wish to show that for any A ∈ B(n), and any 1 ≤ i ≤ n, we have m(A) ≤ m(Ci(A)), in other
words that an i-compression does not decrease the number of maximal elements.

For convenience, write B for Ci(A). Now, the maximal elements of A consist of the maximal
elements of Ai+ together with those maximal elements of Ai− that do not belong to Ai+. (Recall that
Ai+ and Ai− are subsets of B(n − 1).) And similarly for B.

By the induction hypothesis, we have m(Bi+) ≥ m(Ai+) and m(Bi−) ≥ m(Ai−). Also, the maximal
elements of an initial segment of the simplicial ordering form a final segment of that initial segment
— this is because the lower shadowof a colex initial segment is again a colex initial segment. It follows
that, if we consider the two initial segments Bi+ and Bi−, we must have that either every element of
Bi− −Bi+ is a maximal element of Bi−, or every maximal element of Bi− misses Bi+. In either case, we
see that the set of maximal elements of Bi− that do not belong to Bi+ is at least as large as the set of
maximal elements of Ai− that do not belong to Ai+. This establishes our claim.

Define a sequence of set systems A0,A1, . . . as follows. Set A0 = A. Having defined A0, . . . ,Ak,
if Ak is i-compressed for all i then stop the sequence with Ak. Otherwise, there is an i for which Ak is
not i-compressed. Set Ak+1 = Ci(Ak), and continue inductively.

This sequence has to end in some Al, because, loosely speaking, if an operator Ci moves a set then
it moves it to a set which is earlier in the level-colex order on B(n). The set system A′

= Al satisfies
|A′

| = |A| andm(A′) ≥ m(A), and is i-compressed for every i. It follows by Lemma 2 that either A′ is
an initial segment of the level-colex order on B(n), or else n is odd (say n = 2r + 1) and

A = [n](≤r)
− {{r + 2, r + 3, . . . , n}} ∪ {{1, 2, . . . , r + 1}},

or else n is even (say n = 2r) and

A = [n](<r)
∪ {A ∈ [n](r) : n /∈ A} − {{r, r + 1, . . . , n − 1}} ∪ {{1, 2, . . . , r − 2, r − 1, n}}.

Thus, to complete the proof, it remains only to observe that in the latter two cases we have m(A′)
≤ m(I). □

3. The minimumwidth of a downset

In this section, let <b denote the binary order on B(n): as noted above, for A, B ⊆ [n], A <b B if
max A∆B ∈ B. As above, we tend to refer to the restriction of the binary order to a level as the colex
order on that level. We refer to a downset of B(n) that is an initial segment of the binary order as a
binary downset.

Recall that B(n) has a symmetric chain decomposition (SCD), that is, a partition into skipless chains
whoseminimum A andmaximum B satisfy |A|+|B| = n. There aremany constructions of SCDs ofB(n)
— we use one due to Greene and Kleitman [7] that we now outline. It is useful to regard members of
B(n) as both subsets of [n] and binary sequences indexed by [n].

Given a binary n-sequence, scan from left to right. When a 0 is scanned, it is temporarily unpaired.
When a 1 is scanned, it is paired to the rightmost unpaired 0 and both are now paired, or else
there are none and the 1 is unpaired. Given a set A, we move up its chain in the Greene–Kleitman
SCD by successively replacing unpaired 0’s by 1’s, from left to right. We move down the chain by
replacing unpaired 1’s with 0’s, right to left. Here is an example of the procedure. Begin with the set
A = {1, 2, 6, 8, 9} in B(10). The pairing procedure results in

110 0 01 01 1 0
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Fig. 1. Chains and special points in the proof of (A).

with unpaired 1’s in positions 1 and2, andunpaired 0’s in positions 3 and10. Here are the predecessors
and the successors of A in its chain with altered entries underlined:

A :1100010110 1110010111
1000010110 1110010110
0000010110 A :1100010110

We refer to the minimum elements of the symmetric chains in the Greene–Kleitman SCD C as special
points. These are exactly the subsets of [n] with no unpaired 1’s. Thus, from above, B = {6, 8, 9} is a
special point in B(10).

Given a binary downset D of B(n), let s(D) denote the number of special points in D. Since D is a
downset, s(D) is the number of symmetric chains in C that intersect D.

Lemma 5. For every binary downset D we have w(D) = s(D).

Proof. First observe that w(D) ≤ s(D) because s(D) is the number of C ∈ C which intersect D and

{C ∩ D | C ∈ C, C ∩ D ̸= ∅}

is a partition of D by chains.
To prove the reverse inequality, we first verify the following statement.
(A). For each special point A ∈ D, say the minimum element of C ∈ C, let φ(A) be a special point of

maximum cardinality in D such that A ≤b φ(A). Then there exists A′
∈ C ∩ D such that |A′

| = |φ(A)|
and A ≤b A′

≤b φ(A). See Fig. 1.
Since A ≤b A, |A| ≤ |φ(A)|. Let B = φ(A) and |B| − |A| = r . For r = 0 then A = A′ verifies (A); thus

we assume r > 0. Then A <b B, which implies that t = max A∆B ∈ B. Representing subsets of [n] as
binary sequences, we see that B has r more 1’s than 0’s than A in positions in the interval [1, t].

In the Greene–Kleitman pairing, for a subset of [n], each 1 is paired with the rightmost unpaired 0
to its left during the left-to-right pairing process. Since A and B are minimal members of chains in C,
all 1’s in A and B are paired. Suppose A has s 1’s in the interval [1, t − 1]. Then, according to B,

t − 1 = 2(s + r − 1) + 1 + v,

where v is the number of unpaired 0’s in B in [1, t − 1] and the summand 1 counts the 0 with which
the 1 in position t of B is paired. According to A,

t − 1 = 2s + w,

where w is the number of unpaired 0’s in A in [1, t − 1]. Since r ≥ 1 and v ≥ 0,

2s + w = 2r + 2s + v − 1 ≥ 2s + r + v,
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which implies that w ≥ r . We obtain A′
∈ C from A by switching r unpaired 0’s to 1’s, from left to

right, in the interval [1, t − 1] in A. Thus max A′∆B = t , which means that A′ <b B and, therefore,
A′

∈ D. This completes the proof of (A).
We now claim that the set of all these A′ provide the antichain required.
(B). The set W = {A′

: A ∈ D and is a special point} is an antichain in B(n).
Since |W| = s(D), verifying (B) proves the lemma.
Let A and B be special points with A <b B inD. Suppose that A′

⊂ B′. Then |A′
| < |B′

| and |B′
| = |C |

for some special point C inD such that B ≤b C . Then A <b C , so |A′
| ≥ |C | (by themaximality of |φ(A)|),

a contradiction. Now suppose B′
⊂ A′. By (A), there is a special point D ∈ D such that |A′

| = |D| and
A′

≤b D. Since |D| > |B′
|, we know that D <b B, so A′

≤b D <b B ≤b B′, which contradicts B′
⊂ A′.

This proves (B) and completes the proof of the lemma. □

If we think of building the binary downsets in B(n) sequentially by listing the subsets of [n] in the
binary order, then the preceding argument shows at which steps the width of the downsets increase.
For all A ∈ P(n) let [∅, A) = {B ∈ P(n) : B <b A} and [∅, A] = [∅, A) ∪ {A}. Of course, both [∅, A) and
[∅, A] are downsets in B(n).

Proposition 6. For all A ⊆ [n] we have w([∅, A]) = w([∅, A)) + 1 if and only if A is a special point.

Proof. By Lemma 5 the width of a binary downset in B(n), is the number of chains in C that intersect
the downset, or thenumber of special points in thedownset. Thus, ifwe list the subsets of [n] according
to the binary order <b, the width of the downsets (so enumerated) in B(n) increases exactly when a
special point is added. □

Conjecture 1, specialized to downsets D, is that w(D)/|D| is minimized for D = B(n). This is true
for binary downsets, as we now show.

Theorem 7. For all nonempty binary downsets D of B(n) we have

w(D)/|D| ≥ w(B(n))/|B(n)|.

Proof. For any positive integer d, let d = 2k1 + 2k2 + · · · + 2ks , k1 > k2 > · · · > ks, be the binary
representation of d. Our calculations are easier to display if we use the reciprocal, that is, cardinality
over width. So for any binary downsetD of B(n), set α(D) = |D|/w(D). We show that α(D) ≤ α(B(n)).

Let us proceed by induction on s. If s = 1 then d = 2k1 and α(D) = α(B(k1)) ≤ α(B(n)), which
follows from the fact that α(B(k)) = |B(k)|/w(B(k)) = 2k/

( k
⌊k/2⌋

)
is nondecreasing as a function of k.

For s ≥ 2, the binary downset C(d) of size d has the following partition into intervals of B(n):
C(d) =

⨆s
i=1 Bi where

Bi = [{k1 + 1, k2 + 1, . . . , ki−1 + 1}, [ki] ∪ {k1 + 1, k2 + 1, . . . , ki−1 + 1}] ∼= B(ki). (1)

Note that C(d − 2ks ) =
⨆s−1

i=1 Bi and that

C(d + 2ks ) = C(d)
⨆

[{k1 + 1, k2 + 1, . . . , ks + 1}, [ks] ∪ {k1 + 1, k2 + 1, . . . , ks + 1}].

Observe that C(d + 2ks ) − C(d) is an interval isomorphic to Bs via the map X ↦→ X − {ks + 1}.
In the Greene–Kleitman SCD C of B(n), the minimum elements of the members of C, the special

points, are exactly those sets with no unpaired 1’s in the pairing scheme. This implies that if X is a
special point then every Y ⊆ X is also a special point. Thus, if X ∈ C(d + 2ks ) − C(d) is special then so
is X − {ks + 1} ∈ Bs. Therefore,

s(C(d + 2ks )) − s(C(d)) ≤ s(C(d)) − s(C(d − 2ks )),

from which it follows that
s(C(d + 2ks )) + s(C(d − 2ks ))

s(C(d))
≤ 2. (2)
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By Lemma 5, α(D) = |D|/s(D). If

α(C(d)) ≥ α(C(d + 2ks )) and α(C(d)) ≥ α(C(d − 2ks )) (3)

and at least one inequality is strict then, using the fact that |C(d ± 2ks )| = d ± 2ks , we obtain the
inequalities

s(C(d + 2ks ))
s(C(d))

≥ 1 +
2ks

d
and

s(C(d − 2ks ))
s(C(d))

≥ 1 −
2ks

d

with at least one inequality strict. Add these inequalities, one strict, to contradict (2). We now negate
(3) with one inequality made strict and find that at least one of the following holds:

α(C(d)) < α(C(d − 2ks )), (4)

α(C(d)) < α(C(d + 2ks )), or (5)

α(C(d)) = α(C(d − 2ks )) = α(C(d + 2ks )). (6)

To complete the proof, suppose that d is maximum among positive integers less than 2n with s
1’s in their binary representations such that α(C(d)) > α(B(n)). If (4) or (6) holds then the induction
hypothesis for integers with s−1 1’s in their binary expansion is contradicted. So assume (5) holds. Of
course, d < d+2ks ≤ 2n. If ks−1 = ks +1 then d+2ks has at most s−1 1’s in its binary representation,
so α(C(d)) > α(B(n)) and (5) contradict the induction hypothesis. If ks−1 > ks + 1 then d + 2ks has s
1’s and we invoke the maximality of d:

α(C(d + 2ks )) ≤ α(B(n)) < α(C(d)),

contradicting (5). Thus, there is no such d, completing the proof by induction. □

As noted, this establishes Conjecture 1 for the collection of binary downsets. The conjecture for all
downsets would follow from this.

Conjecture 8. Among all d-element downsets in B(n), the binary d-element downset C(d) has minimum
width.

We now describe the width of C(d). Goldwasser [6] has independently made Conjecture 8 and
proved Proposition 9. As usual, if s < 0 then

(k
s

)
= 0.

Proposition 9. Given a positive integer d with binary representation d = 2k1 + 2k2 + · · · + 2kr with
k1 > k2 > · · · > kr ≥ 0 we have

w(C(d)) =

r∑
i=1

(
ki
si

)
where s1 = ⌈k1/2⌉ and si = min(⌈ki/2⌉, si−1 − 1), i = 2, 3, . . . , r.

Proof. Wemay assume that n = k1 + 1. Let Ki = {k1 + 1, k2 + 1, . . . , ki−1 + 1} and use the notation
from the proof of Theorem 7. Define A by

A =

r⋃
i=1

(
[ki]
si

)
∪ Ki. (7)

That is, A consists of the union of the sith levels of the Boolean intervals Bi for all i = 1, 2, . . . , r for
which si ≥ 0 (see (1)). Then A is an antichain of size

∑r
i=1

(ki
si

)
. To see that A realizes w(C(d)), by

Lemma 5, it is enough to prove the following.

Claim. Given a Greene–Kleitman symmetric chain C of B(n) that has its minimum in Bi, C intersects level
si of Bi; consequently, si ≥ 0.
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Fig. 2. A convex subset of B(3) of width 2 that intersects 3 chains.

Suppose that C has minimum element A. If |A| ≤ si + i − 1 then |A ∩ [ki]| ≤ si ≤ ⌈ki/2⌉. Then
successors of A in C are obtained by adding elements from [ki] (that is, switching unmatched 0’s to
1’s in positions 1 to ki in the binary representations of C’s sets) until at least ⌈ki/2⌉ elements from [ki]
are present. This implies that there is an element of C that intersects level si of Bi. With d fixed, we
proceed by induction on i to prove that: for all j ≥ i, if a Greene–Kleitman chain C has minimum A in
interval Bj then |A| ≤ si + i − 1.

For i = 1, every Greene–Kleitman chain C has minimum A with |A| ≤ ⌊n/2⌋. Since k1 = n − 1,
⌊n/2⌋ = ⌈k1/2⌉ = s1.

Let i > 1. If si = si−1 −1 then |A| ≤ si−1 + i−2 = si + i−1 by the induction hypothesis. Therefore,
we assume that si = ⌈ki/2⌉ and that a Greene–Kleitman chain C has minimum A in interval Bj, j ≥ i.
If j = i then since A is the minimum of C, there are no unmatched 1’s in the binary representation of
A. Thus, there are no unmatched 1’s in A ∩ [ki]. Then |A ∩ [ki]| ≤ ⌈ki/2⌉, so |A| ≤ si + i − 1. Assume
j > i. Then A is the minimum of a Greene–Kleitman chain so A ∩ [ki + 1] ≤ ⌊(ki + 1)/2⌋, to avoid
unmatched 1’s in the binary representation of A in positions 1 through ki +1. Since Kj ⊆ A ⊆ Kj ∪[kj],
and A−[ki +1] = {k1 +1, k2 +1, . . . , ki−1 +1}, |A| ≤ ⌊(ki +1)/2⌋+ i−1 = ⌈ki/2⌉+ i−1 = si + i−1.

This completes the induction argument. □

4. Dilworth partitions of convex sets

We are interested in the properties of convex families in B(n), in particular, those that might allow
us to understand the relationship between width and size. A natural step (underscored by the results
in Section 3) is to consider partitions of convex families by width-many chains.

Given elements x < y in a partially ordered set X , y covers x (or x is a lower cover of y or y is an
upper cover of x) if x ≤ z ≤ y in X implies z = x or z = y; denote this by x ≺ y. A chain C in X is
skipless if x ≺ y in C implies x ≺ y in X . A partition of X into a family of chains is a Dilworth partition if
there are w(X) chains in the family. For brevity, call a Dilworth partition of X into skipless chains an
SD-partition of X .

Theorem 10. Every convex subset of B(n) has an SD-partition.

Although it seems reasonable that convex sets should have SD-partitions, our current proof is a bit
involved. Note that it is not possible to restrict an arbitrary SD-partition of B(n) to a convex subset
C to obtain an SD-partition of C. Of course, the restriction will provide a partition of C into skipless
chains. However the number of chains may exceed w(C): the 4-element set highlighted in B3 in Fig. 2
has width 2 but intersects 3 chains in the partition of B3 given by the dashed-line chains.
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Fig. 3. Searching for an alternating path terminating in an Xodd .

Proof. Let C be a convex subset of B(n) and let w = w(C). Proceed by induction on |C|. For |C| = 1,
the result is obvious. Induction allows us to assume the following properties. Recall that a partially
ordered set P is connected if for all x, y ∈ P there exist z0, z1, . . . , zk ∈ P with x = z0, y = zk, and zi−1
is comparable to zi for i = 1, 2, . . . , k.

(1) C is connected.
Otherwise, C = C1 ∪ C2 for disjoint sets C1 and C2 with no comparabilities between their elements.

Thus w(C) = w(C1) + w(C2) and the union of SD partitions of C1 and C2 is an SD partition of C.
(2) If A is an antichain in C with |A| = w then A = min(C), the set of minimal elements of C, or

A = max(C), the set of maximal elements of C.
This follows from the familiar induction proof of Dilworth’s chain decomposition theorem. If A is

an antichain in C with |A| = w and is not contained in either min(C) or max(C) then

C∗
= {X ∈ C | A ⊆ X for some A ∈ A} and C∗ = {X ∈ C | X ⊆ A for some A ∈ A}

are both proper subsets of C and so, by induction, have SD-partitions. Since w(C∗) = w = w(C∗), the
chains in the partition of C∗ (C∗) each havemaximum element (respectively, minimum element) inA.
Thus, we have an SD-partition of C.

(3)We have |min(C)| = w = |max(C)|.
If |min(C)| < w then w(C − {X}) = w − 1 for any X ∈ max(C), so we can add the singleton {X} to

a (w − 1)-element SD-partition of C − {X} to obtain an SD-partition of C.
(4) There do not exist X ∈ min(C) and Y ∈ max(C) with X ≺ Y .
If such a covering pair exists, we can create an SD-partition of C from one for C−{X, Y } by including

the covering chain {X, Y }.
It is convenient to use Lk to denote the set of k-element subsets of [n], that is, the kth level of B(n),

k = 0, 1, . . . , n.
(5) There exist 1 ≤ r < t ≤ n−1 such that min(C) = C∩Lr , max(C) = C∩Lt and for all r < s < t ,

|C ∩ Ls| = w − 1.
To prove (5), we begin with a maximal element X ∈ C of maximum cardinality in C, say |X | = k.

By induction and noting w(C −{X}) = w (by (1) and (3)), we have an SD-partition C of C −{X} with w
chains. For S ∈ C, let C(S) ∈ C be the skipless chain containing S. We construct two families of subsets
in the bipartite graph B defined by set containment on the parts C ∩ Lk−1 and C ∩ Lk.

Let N1 be the set of lower covers of X0 in C, that is, the neighborhood N(X0) of X0 in B. For any
X1 ∈ N1, if X1 = max(C(X1)) then replace C(X1) by C(X1) ∪ {X0} to obtain an SD-partition of C. Thus,
we may assume that for all X1 ∈ N1, X1 ≺ max(C(X1)). Let

A2 = {max(C(X1)) | X1 ∈ N1}.

Let N3 = N(A2) − N1. Given X3 ∈ N3, with X3 ≺ X2 = max(C(X1)) for X1 ∈ N1, if X3 = max(C(X3))
then replace C(X1) and C(X3) by (C(X1) − {X2}) ∪ {X0} and C(X3) ∪ {X2} in C to obtain an SD-partition
of C. Thus, we may assume that X3 ≺ max(C(X3)) and let

A4 = {max(C(X3)) | X3 ∈ N3}.

Suppose we have constructed the subsets A2,A4, . . . ,A2i of C ∩ Lk, and N1,N3, . . . ,N2i−1 of
C ∩ Lk−1. Let N2i+1 = N(A2i) − (N1 ∪ N3 ∪ · · · ∪ N2i−1), if this is nonempty, else we stop (see
Fig. 3). If nonempty, let X2i+1 ∈ N2i+1 with a path {X0, X1, . . . , X2i} in B such that X2j = max(C(X2j−1)),
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X2j+1 ∈ N2j+1, X2j+1 ≺ X2j, j = 1, 2, . . . i, and X1 ∈ N1. If X2i+1 = max(C(X2i+1)) then

(C(X1) − {X2}) ∪ {X0}, (C(X3) − {X4}) ∪ {X2}, . . . , C(X2i+1) ∪ {X2i}

replaces the obvious chains in C to provide an SD-partition of C. Thus, we may assume that X2i+1 ≺

max(C(X2i+1)) and

A2i+2 = {max(C(X2i+1)) | X2i+1 ∈ N2i+1}

is nonempty. Consequently, this construction terminates with A2k for some k.
Let A =

⋃k
i=1 A2i and let N =

⋃k
i=1 N2i−1. Then N = N(A) since the definition of the Ni’s gives

N2i−1 ⊆ N(A) and, as N2k+1 = ∅, N(A) ⊆ N . The map X ↦→ max(C(X)) is a bijection of N2i−1 to A2i
for i = 1, 2, . . . , k. Therefore, |A| = |N(A)|.

Suppose that there exists Y ∈ max(C)− (A∪{X0}). By induction, there is an SD-partition of C−{Y }

into w chains by (3). Each member X2i of A ∪ {X0} is in such a chain, which requires that a lower
cover of X2i, a member of N(A), is in the same chain or {X2i} is itself a chain in the SD-partition. Since
|N(A)| = |A|, there must be a singleton chain. This contradicts (3). Therefore, max(C) = A ∪ X0.

We have shown that max(C) = C ∩ Lt (replacing k by t), |max(C)| = w. The set of lower covers
of the maximals is C ∩ Lt−1. This set has size w − 1 since |C ∩ Lt−1| ≤ w − 1 by (3) and were
|C ∩ Lt−1| ≤ w−2 wewould apply induction to C−{X} for any X ∈ max(C) to obtain an SD-partition
into w chains. This partition would have a chain consisting of a single maximal of C − {X}, but this
contradicts |min(C − {X})| = w. Dually, min(C) = C ∩Lr (r ≤ t − 2 by (4)). The set of upper covers of
the minimals is C ∩Lr+1 and has size w − 1. Consider C − {U, V }, where U ∈ min(C) and V ∈ max(C).
This is a convex set with width w − 1 and so has a partition into w − 1 skipless chains. Thus, for all
r < s < t , |C ∩ Ls| = w − 1. This completes the proof of (5).

With (5), we construct a 3-level convex subset, say T , of B(n), say contained in Lk−1 ∪ Lk ∪ Lk+1,
that has a partition into w − 1 3-element chains, say Ci ⊂ Bi ⊂ Ai, i = 1, 2, . . . , w − 1. We finish the
proof by showing that a 3-level convex subset of width w − 1 and size 3(w − 1) does not exist in the
Boolean lattice.

For each X ∈ T let d+(X) (d−(X)) denote the number of upper (respectively, lower) covers of X in
T . For any Bi, Bi ≺ Aj if and only if Aj = Bi ∪ {t}. Then Ci has upper covers Bi and Ci ∪ {t}, so at least
one more than Bi. Thus, d+(Bi) < d+(Ci) for each i. Dually, d−(Bi) < d−(Ai) for each i. Without loss of
generality,

∑
d+(Ci) ≤

∑
d−(Ai). Then∑

d+(Bi) <
∑

d+(Ci) ≤

∑
d−(Ai),

which contradicts the fact that
∑

d+(Bi) =
∑

d−(Ai). □

5. Width and general downsets

Each initial segment of the elements of B(n) listed in the binary order is a downset with respect
to the containment order on B(n). Proposition 6 characterizes the positions in the binary list at which
the width of the induced downset increases. We can provide an analogous description for general
downsets using SD-partitions, introduced for convex subsets in Section 4. First, we use alternating
paths to give a level-by-level description of SD-partitions.

LetD be a downset inB(n) that intersects levels 0, 1, . . . , l and let Gi be the bipartite graph induced
by D on the parts D ∩ Li−1 and D ∩ Li, i = 1, 2, . . . , l (where as in the preceding section we denote
level i by Li). Let C be an SD-partition of D. We claim first that each matching

Mi = {{X, Y }|X, Y ∈ Gi and belong to the same chain in C}

is a maximum sized matching in Gi. If not, there is an alternating path {X1, Y1, . . . , Xr , Yr} in Gi such
that {Xj, Yj}, j = 1, 2, . . . , r , belong to a maximum-sized matching and

{Yj, Xj+1} ∈ Mi, j = 1, 2, . . . , r − 1.

Then there are r+1 chains in C containing {X1}, {Y1, X2}, . . . , {Yr−1, Xr}, {Yr} that can be replaced by r
chains containing {X1, Y1}, . . . , {Xr , Yr}. This gives a partition ofD into fewer thanw(D)-many chains,
a contradiction.
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On the other hand, let Mi be a maximum-sized matching in Gi, i = 1, 2, . . . , l, and let M be a
graph with vertex set D and edge set E(M) = ∪

l
i=1Mi. As a graph, the connected components of M

are just paths. As an ordered set M provides a partition of D into skipless chains. By the preceding
paragraph, the number e(M) of edges in M is the same as the number in an SD-partition of D. Thus,
|E(M)| = |D| − w(D) since the number of components of an SD-partition, regarded as a graph, is the
number of chains in a Dilworth partition ofD, the width ofD. It follows that the number of connected
components of M is w(D) and that M is an SD-partition of D.

Alternating paths allow us to prove something along the lines of Proposition 6 for arbitrary
downsets. Let D be a downset in B(n) and let C be an SD-partition of D. Suppose that Y ∈ B(n) − D
with |Y | = k and that D′

= D ∪ {Y } is also a downset. Let Gk be the bipartite graph induced by D′ on
parts D′

∩ Lk−1 and D′
∩ Lk and letM be the matching in Gk consisting of the edges of C in Gk.

A path {Y , X1, Y1, X2, Y2, . . . , Xr , Yr , Xr+1} in Gk such that each {Xi, Yi} ∈ M and Xr+1 is the
maximum element of its chain in C is called augmenting.

Proposition 11. With the preceding notation, w(D) = w(D′) if and only if there is an augmenting path
in Gk.

Proof. Given an augmenting path {Y , X1, Y1, X2, Y2, . . . , Xr , Yr , Xr+1} in Gk, the r + 1 skipless chains
in an SD-partition of D each containing one of

{X1, Y1}, {X2, Y2}, . . . , {Xr , Yr} and {Xr+1}

can be replaced by r + 1 skipless chains each containing one of

{X1, Y }, {X2, Y1}, . . . , {Xr , Yr−1} and {Xr+1, Yr}

to create an SD-partition of the same size for D′.
To prove the converse, we assume that w(D) = w(D′) and that there is no augmenting path in

Gk. We have an SD-partition C of D; let C′ be an SD-partition of D′. We consider alternating paths in
Gk using only edges from the chains in C or C′ that begin with edges {Y , X1} from a chain in C′. There
must be such an edge since otherwise Y belongs to a 1-element chain in C′ which would contradict
w(D) = w(D′). If X1 is maximum in its C chain, stop; otherwise add an edge {X1, Y1} from a chain in
C. If Y1 is minimum in its C′ chain, stop; otherwise, add an edge {Y1, X2} from a chain in C′. Continue
in the same manner. Since there is no augmenting path, this process must terminate with an edge
{Xr , Yr} from C.

Now replace the r + 1 skipless chains from C′ that each contain one of

{Y , X1}, {Y1, X2}, . . . , {Yr−1, Xr} and {Yr+1}

with r + 1 skipless chains that each contain one of

{Y }, {X1, Y1}, {X2, Y2}, . . . , {Xr , Yr}.

Because Y is maximal in D′, the resulting SD-partition of D′ has a singleton chain {Y }. This again
contradicts w(D) = w(D′). □

6. Maximizing the generated downset

Call a family of r-sets top-heavy or simply heavy if there is no larger antichain in the downset it
generates. Wewould like to answer this question: among heavy families of r-sets of given size, which
one generates the largest downset? We formulate a conjecture, verify it for the first nontrivial case
and prove a (rather weak) bound. For T ⊆ B(n), let ↓T denote the downset generated by T . We use
the standard shadow notation in the case of downsets D of B(n): given a family T of k-sets in D, let
∆(T ) be the set of all Y ∈ ↓T ∩ D with |Y | = k − 1.

Conjecture 12. Let T be a heavy family of t r-sets. Then

|↓T | ≤

[
22r−2

− 1(2r−1
r

) + 1

]
t + 1 .
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Let fr (t) be the maximum size of a heavy downset generated by t r-sets.
Here are some straightforward observations about this function. First, fr (t) is not defined for small

values of t . For instance, if t <
( r
⌊r/2⌋

)
, then one maximal element of any downset of height r contains( r

⌊r/2⌋

)
subsets of size ⌊r/2⌋, an antichain in the downset; thus, no heavy downset of height r andwidth

t <
( r
⌊r/2⌋

)
can exist. Second, fr (t) ≤ rt + 1 since every level of a top-heavy downset has size at most

r and level 0 consists of ∅. Third,

f1(t) = t + 1 and f2(t) = 2t + 1

follow from simple constructions.
Provided that t = k ·

(2r−1
r

)
if the conjecture is correct then it would be tight by the following

construction. Suppose that Xi, i = 1, 2, . . . , k, are pairwise disjoint subsets of [n], with each |Xi| =

2r − 1. Let the downset

H = {A | |A| ≤ r and A ⊆ Xi for some i = 1, 2, . . . , k}.

Thus, H is the union of k copies of the first r levels of B(2r − 1). Each copy only has the empty set as
a common element in the union. Furthermore, the width of this downset is k ·

(2r−1
r

)
and the number

of elements is k · (22r−1/2 − 1 +
(2r−1

r

)
) + 1.

We note that:[
22r−2

− 1(2r−1
r

) + 1

]
t + 1 ≈ t

√
π (2r − 1)

8
= Θ(t

√
r).

We can improve the trivial upper bound fr (t) ≤ rt + 1 by about a third by showing that the total
number of elements at height 2r/3 in a heavy downset of height r and width t is less than 4t

√
r .

Proposition 13. fr (t) ≤ t(r/3 + 4
√
r)

Proof. Let H be a heavy downset generated by r-sets. Let X ∈ H be a k-set, k < r . We first find a
lower bound on the number of upper covers of X in H.

Claim 1. There are at least 2(r − k) − 1 upper covers of X in H.

Let Hi denote the family of sets in H at level i in B(n) (that is, the i-subsets of [n] in H) and let ↑X
denote the upset generated by X in B(n). Then

|Hi ∩ ↑X | ≤ |Hr ∩ ↑X |

as otherwise (Hr−↑X) ∪ (Hi∩↑X) is an antichain in H of size greater than t , a contradiction.
Because the maximal elements of H are r-sets, Hr−1∩ ↑X = ∆(Hr∩ ↑X)∩ ↑X . Since H is heavy,

|Hr∩ ↑X | ≥ |∆(Hr∩ ↑X)∩ ↑X |. (8)

Observe that ∆(Hr∩ ↑X)∩ ↑X is the shadow of Hr∩ ↑X in ↑X where ↑X is isomorphic to the
Boolean lattice B(n−k). The Kruskal–Katona theorem [8,9] shows that if a familyF of (r −k)-element
sets in B(n − k) has |F| <

(2(r−k)−1
r−k

)
then |∆(F)| > |F|. In view of (8), we have that

|Hr∩ ↑X | ≥

(
2(r − k) − 1

r − k

)
.

Since each set in Hr∩ ↑X is the union of (k + 1)-element sets containing X , all of which must be
members of H, X has at least 2(r − k) − 1 upper covers in H. This verifies Claim 1.

Every k + 1-set in H covers exactly k + 1 members of Hk. Each set in Hk is covered by at least
2(r − k) − 1 in Hk+1 for k = 0, 1, . . . , r − 1. Counting the edges in the bipartite containment graph
induced by levels k and k + 1 of H verifies

|Hk| ≤
k + 1

2(r − k) − 1
· |Hk+1|, k = 0, 1, . . . , r − 1. (9)
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Claim 2. For 0 ≤ i ≤
2
3 r − 2

√
r, |Hi| ≤

1
2 |Hi+2

√
r |.

To verify this, first observe that repeated application of the inequality in (9) shows that |Hi| ≤

ci|Hi+2
√
r | where

ci =
i + 1

2(r − i) − 1
·

i + 2
2(r − i) − 3

·
i + 3

2(r − i) − 5
· · ·

i + 2
√
r

2(r − i) − 4
√
r + 1

. (10)

By comparing terms in these constants, we see that ci ≤ c 2
3 r−2

√
r for i = 0, 1, . . . , 2

3 r − 2
√
r . For each

j = 1, 2, . . . ,
√
r , and i =

2
3 r − 2

√
r , the jth factor in (10) is bounded above as follows:

2r/3 − 2
√
r + j

2r/3 + 4
√
r − (2j − 1)

≤
2r/3 −

√
r

2r/3 + 2
√
r
.

For each j =
√
r + 1,

√
r + 2, . . . , 2

√
r , the jth factor in (10) is bounded above by 1. Therefore, for

each i = 0, 1, . . . , 2
3 r − 2

√
r ,

ci ≤ c 2
3 r−2

√
r ≤

(
2r/3 −

√
r

2r/3 + 2
√
r

)√
r

.

Claim 2 now follows from the fact that(
2r/3 −

√
r

2r/3 + 2
√
r

)√
r

=

(
1 −

3
√
r

2r/3 + 2
√
r

)√
r

≤ exp
(

−
3r

2r/3 + 2
√
r

)
<

1
2
.

Partition the bottom 2r/3 levels of H into sets of 2
√
r consecutive levels. Use the trivial bound

of t for each of the 2
√
r levels in the first part, that is, the top part of the bottom 2r/3 levels of H.

Then Claim 2 shows that the total size of the jth set of 2
√
r consecutive levels is bounded above by

(1/2)j−1
·2

√
r · t . Thus, the bottom 2r/3 levels ofH have total size bounded above by 4

√
r · t . Bounding

the size of each of the top r/3 levels by t completes the proof. □

Proposition 14. Conjecture 12 is true for r = 3, namely f3(t) ≤ 2.5t + 1.

Proof. LetH be a top heavy downset of height 3. We claim that it is enough to prove that the average
number of upper covers of a singleton in H is at least 4. Suppose this holds. Since each member
of H2 covers two members of H1, we would have |H2| ≥ 2|H1|. Therefore, |H| =

∑3
i=0 |Hi| ≤

t + t + (1/2)t + 1 = 2.5t + 1.
Let X ∈ H1, say X = {1}. SinceH is heavy, its maximals each have size 3, so X ⊂ Y = {1, 2, 3}. Then

X has upper covers {1, 2} and {1, 3}. Since H has width equal to the number of its maximals, X ⊂ Z
for Z ̸= Y and |Z | = 3. At least one 2-element subset of Z gives a third upper cover of X .

Suppose that X has exactly 3 upper covers. Then ↑X consists of X , 3 upper covers and 3 3-element
sets — otherwise X has more than 3 upper covers. Without loss of generality,

↑X = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

Consider H− ↑X . We claim that each singleton Y ∈ H− ↑X has at least 3 upper covers in H− ↑X .
If not, without loss of generality, we may take Y = {4} and its upset in H is

↑Y = {{4}, {2, 4}, {3, 4}, {1, 4}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}}.

In particular, there is exactly one maximal above Y that is not above X . Then the 5 2-element sets
containing X or Y together with the maximals ofH not above X or Y would be a larger antichain than
max(H), a contradiction.

Let X1 = X . If some Y has exactly 3 upper covers in H− ↑X1, let X2 = Y , otherwise we stop with
all singletons in H− ↑X1 with at least 4 upper covers in H− ↑X1.

Suppose that we have a sequence of singletons X1, X2, . . . , Xk such that each Xj has exactly 3 upper
covers inH−

⋃j−1
i=1 ↑Xi. As above, ↑Xj −

⋃j−1
i=1 ↑Xi consists of Xj, 3 2-element sets and 3 3-element sets.

We again argue that each Y ∈ H−
⋃k

i=1 ↑Xi has at least 3 upper covers inH−
⋃k

i=1 ↑Xi. If some Y does
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not, because Y has at least 3 upper covers in H, Y = {y} is contained in a 2-element set in some ↑Xi,
say j is the maximum such, Xj = {x}, and {x, y} ∈↑Xj. Then {u, x, y}, {v, x, y} ∈↑Xj. The only possible
3-element sets in H that contain Y are in

⋃k
i=1 ↑Xi or equal {y, u, v}. It follows that((

H2 ∩

k⋃
i=1

↑Xi

)
∪ {u, y} ∪ {v, y}

)
∪ (H3− ↑{X1, X2, . . . , Xk, Y })

is an antichain larger than the set of maximals of H, a contradiction.
If some Y has exactly 3 upper covers in H −

⋃k
i=1 ↑Xi, let Xk+1 = Y , otherwise we stop with all

singletons in H −
⋃k

i=1 ↑Xi with at least 4 upper covers in H −
⋃k

i=1 ↑Xi.
This procedure stops after s steps. Consider the edge set in the bipartite containment graph induced

byH1∪H2. There are 3smembers ofH2 in
⋃s

i=1 ↑Xi that account for 6s edges in this graph. Each of the
m singletons inH −

⋃s
i=1 ↑Xi is incident with at least 4 edges, none of which are incident with the 3s

2-element sets in
⋃s

i=1 ↑Xi. This gives a total of at least 6s + 4m edges incident with exactly s + m
members ofH1. Thus, the average number of covers of singletons inH is at least (6s+ 4m)/(s+m) ≥

4. □

We think that it is unlikely that the approach of Proposition 14 will work for r > 3.
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