Partitioning a power set into union-free classes

Martin Aigner

Freie Universität Berlin, Berlin, FRG

Dwight Duffus*

Emory University, Atlanta, GA 30322, USA

Daniel J. Kleitman**

The Massachusetts Institute of Technology, Cambridge, MA 02193, USA

Received 17 October 1988

Abstract

Aigner, M., D. Duffus and D.J. Kleitman, Partitioning a power set into union-free classes, Discrete Mathematics 88 (1991) 113–119.

Two problems involving union-free colorings of the set of all subsets of an n-set are considered, with bounds obtained for minimum colorings.

1. Introduction

We consider two problems involving 'union-free' colorings of 2^n , the set of subsets of the *n*-set [n]. The first is due to Abbott and Hanson [1]: for any integer n let f(n) be the minimum number of colors necessary to color 2^n so that each color class is (pairwise) union-free. That is, no class has three distinct sets A, B, and C such that $A \cup B = C$.

The second function, suggested by Kleitman, is defined in a similar manner: for any integer n let g(n) be the minimum number of colors necessary to color 2^n so that each color class is (completely) union-free. That is, for all k no class has distinct sets A_0, A_1, \ldots, A_k such that

$$A_0 = \bigcup_{i=1}^k A_i.$$

Here is what we know about f and g.

* Supported in part by ONR Contract N00014-85-K-0769.

0012-365X/91/\$03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)

^{**} Supported in part by NSF Grant DMS: 86-06225 and AF Contract OSR 86-0078.

Theorem 1.

$$0.35n \approx \frac{\ln 2}{2} n \leq f(n) \leq \lfloor n/2 \rfloor + 1.$$

Theorem 2.

$$\lfloor n/2 \rfloor + 1 \le g(n) \le n - O(n^{1/3}).$$

The new results are verified below, the lower bounds of f and g in Section 3 and the upper bound of g in Section 2. We also go over what has been known about bounds for f, giving Abbott and Hanson's upper bound [1], a lovely argument due to Erdős and Shelah [4] yielding a lower bound of about n/4, and an improvement due to Aigner and Grieser [2].

2. Upper bounds for f(n) and g(n)

Abbott and Hanson [1] observed that there is an upper bound for f(n) given by a partition defined via cardinality.

Consider this partition of 2^n : for $i = 0, 1, ..., \lfloor n/2 \rfloor$

$$\mathcal{C}_i$$
 contains all $(2i+1)2^k-1$ element sets (for all $k \ge 0$).

This is pairwise union-free and verifies the upper bound for f(n). It is also the correct value for small values of n and we know of no n for which this bound is not equal to f(n).

Turning to g(n), let us take union-free to mean completely so for the rest of this section. To establish the upper bound in Theorem 2 we need some notation.

Let \mathcal{F}_i be the set of *i*-subsets of [n]. The idea is to choose distinct colors c_j for all the sets in \mathcal{F}_{n-j} $(j=0,\ldots,n-k-1)$ and to color the remaining levels $\mathcal{F}_k,\ldots,\mathcal{F}_0$ with c_0,\ldots,c_{n-k-1} without creating unions and with k as large as possible. We shall show that $k\approx (3n)^{1/3}$ works.

We shall specify that color class \mathcal{C}_j contains some sets from \mathcal{F}_l and \mathcal{F}_{l-1} for some $l \leq k$ as well as all of \mathcal{F}_{n-j} . This is done so each of the l-sets contains 1, no (l-1)-set contains 1, and the union of these l- and (l-1)-sets contains at most n-j-1 elements. It then follows that \mathcal{C}_l is union-free.

Let $X_1 | X_2 | \cdots | X_{t+1}$ be a partition of [n] into blocks of consecutive integers. For $i \le t$, some of the X_i 's may be primed; for instance,

$$\{1, 2\}' \mid \{3, 4, 5\} \mid \{6, 7, 8\}' \mid \{9, 10\}.$$

By $i: X_1 | X_2 | \cdots | X_{t+1}$ denote the family of all *i*-sets which contain at least one element from every unprimed X_j and have empty intersection with every primed X_j $(j \le t)$. On the last block X_{t+1} there are no restrictions. So, 3: $\{1,2\}' | \{3,4,5\} | \{6,7,8\}' | \{9,10\}$ is the set consisting of 3-sets

Since the X_i 's are sets of consecutive integers, given in order, we may substitute $|X_i|$ for X_i ; our example becomes 3: 2', 3, 3', 2.

Lemma. Let l_1, \ldots, l_{i+1} and m_1, \ldots, m_i be nonnegative integers with $\sum l_j = \sum m_j = n-1$. Then A_1^i, \ldots, A_{i+1}^i (B_1^i, \ldots, B_i^i) defined below form a partition of all the sets in \mathcal{F}_i which do not contain 1 (respectively, which contain 1):

$$A_{1}^{i} = i: (l_{1} + 1)', n - l_{1} - 1$$

$$A_{2}^{i} = i: 1', l_{1}, l'_{2}, n - l_{1} - l_{2} - 1$$
...
$$A_{j}^{i} = i; 1', l_{1}, \dots, l_{j-1}, l'_{j}, n - \sum_{h=1}^{j} l_{h} - 1$$
...
$$A_{i+1}^{i} = i: 1', l_{1}, l_{2}, \dots, l_{i}, l_{i+1}$$

$$B_{1}^{i} = i: 1, m'_{1}, n - m_{1} - 1$$

$$B_{2}^{i} = i: 1, m_{1}, m'_{2}, n - m_{1} - m_{2} - 1$$
...
$$B_{j}^{i} = i: 1, m_{1}, \dots, m_{j-1}, m'_{j}, n - \sum_{h=1}^{j} m_{h} - 1$$
...
$$B_{i}^{i} = i: 1, m_{1}, \dots, m_{i-1}, m_{i}$$

Proof. Let A be an *i*-set not containing 1 and let us partition $\{2, 3, ..., n\}$ with intervals

$$X_{1} = [2, l_{1} + 1], \dots, X_{j} = \left[\sum_{h=1}^{j-1} l_{h} + 2, \sum_{h=1}^{j} l_{h} + 1\right], \dots,$$
$$X_{t+1} = \left[\sum_{h=1}^{i} l_{h} + 2, n\right].$$

Then with s the maximum index with $A \cap X_j \neq \emptyset$ for $j = 1, \ldots, s$, it is clear that $s \leq i$, $A \in A_{s+1}^i$, and $A \notin A_j^i$ for $j \neq s+1$.

Proceed similarly to show that the B^{i} 's partition the family of *i*-sets which contain 1; the proof of the Lemma is complete. \square

In obtaining the upper bound of g(n) we use these observations about the partitions of the Lemma:

$$\left| \bigcup_{A \in A_j^i} A \right| = n - l_j - 1 \quad (j = 1, \dots, i), \tag{1}$$

$$\left| \bigcup_{A \in A(i_1)} A \right| = \sum_{i=1}^{i} l_i, \tag{2}$$

$$\left|\bigcup_{B\in B_i^i} B\right| = n - m_j \quad (j=1,\ldots,i-1), \tag{1'}$$

$$\left| \bigcup_{B \in B_i} B \right| = \sum_{i=1}^{i-1} m_i + 1. \tag{2'}$$

Call the colors $0, 1, \ldots, n-k-1$ and group them as follows:

0,
0: 1,..., k,
1:
$$k+1,..., 2k-1$$
,
...
 $i: ik - \binom{i}{2} + 1,..., (i+1)k - \binom{i+1}{2}$,
...
 $k-2$: $(k-2)k - \binom{k-2}{2} + 1,..., (k-1)k - \binom{k-1}{2}$,
 $k-1$: remaining colors.

where we assume that

$$(k-1)k - {k-1 \choose 2} = \frac{k^2 + k - 2}{2} \le n - k - 1.$$

For $1 \le i \le k-1$, we define sequences $l_1^{k-i}, \ldots, l_{k-i+1}^{k-i}$ and $m_1^{k-i}, \ldots, m_{k-i}^{k-i}$ as in the lemma:

$$l_{j}^{k-i} = (i-1)k - {i-1 \choose 2} + 1 + j \quad (j = 1, \dots, k-i),$$

$$l_{k-i+1}^{k-i} = n - 1 - \sum_{h=1}^{k-i} l_{h}^{k-i},$$

$$m_{j}^{k-i} = ik - {i \choose 2} + 1 + j \quad (j = 1, \dots, k-i-1),$$

$$m_{k-i}^{k-i} = n - 1 - \sum_{h=1}^{k-i-1} m_{h}^{k-i}.$$

Color $\mathcal{F}_k, \ldots, \mathcal{F}_1$ in this manner. The k-sets in [2, n] are colored 0 and the sets in B_j^k are colored j $(j = 1, \ldots, k)$, where the partition of the k-sets containing 1 arises from

$$m_1 = 2, m_2 = 3, \ldots, m_{k-1} = k$$
, and $m_k = n - 1 - \sum_{h=1}^{k-1} m_h$.

The family of 0-colored sets is union-free; so far the j-colored families are as well, this following from (1') and (2') for the B_i^{k} 's.

In \mathcal{F}_{k-i} $(i \ge 1)$, color the sets in A_j^{k-i} with $i(i-1)k - {i-1 \choose 2} + j$ and those in B_j^{k-i} with $ik - {i \choose 2} + j$. To see that these color classes are union-free, consider any color other than 0, say

$$c_{ij} = ik - {i \choose 2} + j \quad (0 \le i \le k - 2, \ 1 \le j \le k - i).$$

In this class there are the sets of

$$\mathscr{F}_{n-c_{ij}}, \qquad A_j^{k-i-1}, \qquad B_j^{k-i}.$$

Let j < k-i. The sets in A_j^{k-i-1} contain a total of $n-l_j^{k-i-1}-1=n-c_{ij}-2$ elements (by (1)), while those in B_j^{k-i} contain $n-m_j^{k-i}=n-c_{ij}-1$ elements (by (1')). From the definition of the *l*'s and *m*'s, the elements in these two unions are the same apart from 1, which appears in all the sets in B_j^{k-i} and in none of the sets in A_j^{k-i-1} . Thus, the new use of color c_{ij} results in no forbidden union. Let j=k-i. Applying (2) and (2') the sets in A_{k-i}^{k-i-1} and B_{k-i}^{k-i} contain a total of

$$\left(ik - {i \choose 2} + 2\right) + \cdots + \left(ik - {i \choose 2} + (k-i)\right)$$

and

$$\left(ik-\binom{i}{2}+2\right)+\cdots+\left(ik-\binom{i}{2}+(k-i)\right)+1$$

elements respectively. Again, these elements are the same, apart from 1, so no union is created if

$$n - (i+1)k - {i+2 \choose 2} \ge 2 + (k-i-1)(ik - {i \choose 2} + 1) + {k-i \choose 2}.$$
 (3)

By an easy manipulation (3) is equivalent to

$$f(i) = k^{2}(2i+1) - k(3i^{2} + i - 3) + (i^{3} - 3i + 2) \le 2n.$$
(4)

By considering the maximum of f(i), it is easily seen that (4) holds if

$$k^3/3(k-i)+k/3(k-i)+(k-i)+1 \le n \quad (i=1,\ldots,k-i).$$
 (5)

Inequality (5) is valid if

$$k^3/3 + k^2/3 + k + 1 \le n. ag{6}$$

Finally, (6) is satisfied with $k \le cn^{\frac{1}{3}}$, $c = 3^{\frac{1}{3}}$. This completes the proof concerning the upper bound of g.

3. Lower bounds for f(n) and g(n)

Concerning f(n), Kleitman [5] showed that for some constant c, no union-free class can contain more than $c(2^n/\sqrt{n})$ subsets of [n]. From this Abbott and

Hanson [1] observed that

$$f(n) \ge c\sqrt{n}$$
.

The lower bound was improved to $\lfloor n/4 \rfloor + 1$ with this argument [4]. For convenience, assume that n is even. Now, consider only intervals $[i,j] = \{i,i+1,\ldots,j\}$ where $i \le n/2 < j$. Let \mathscr{A} be a union-free class of such intervals and define a bipartite graph with vertex sets $\{1,2,\ldots,n/2\}$ and $\{n/2+1,n/2+2,\ldots,n\}$ with i adjacent to j if and only if the set $[i,j] \in \mathscr{A}$. As \mathscr{A} is union-free, there is no 3-element path in the graph with vertices $i < i' \le n/2 < j' < j$ and edges $j' \sim i \sim j \sim i'$. In particular, the graph has no cycles and, hence, at most n-1 edges. Thus, a union-free class has at most n-1 such intervals. As there are $n^2/4$ of these intervals, $f(n) \ge \lfloor n/4 \rfloor + 1$.

The next contribution bounding f(n) below is a result of Aigner and Grieser [2]: for $n \to \infty$, $0.29n \le f(n)$. This is obtained by investigating hook-free colorings of rectangular arrays.

Here we provide the improvement of the lower bound given in Theorem 1. To begin the proof, let $\mathscr{C}_1, \ldots, \mathscr{C}_s$ be a partition of 2^n such that for distinct A, B, C in any \mathscr{C}_i , $A \cup B \neq C$. In showing that $s \geq (\ln 2)/2 \approx 0.35n$, we make use of the dual form of the Erdős-Ko-Rado Theorem [3]: for $k \geq n/2$ and \mathscr{A} a family of k-subsets of [n] such that $B \cup C \neq [n]$ for all B and C in \mathscr{A} , $|\mathscr{A}| \leq {n-1 \choose k}$.

Let $k \ge n/2$ and consider all maximal chains in the lattice 2^n . Let y_k^i be the proportion of chains which intersect \mathcal{C}_i in some k-set and let x_k^i be the proportion of chains which intersect \mathcal{C}_i in a k-set and do not intersect \mathcal{C}_i in any set B where $n/2 \le |B| < k$. We claim that for all i and all $k \ge n/2$,

$$\sum_{i} y_k^i = 1,\tag{7}$$

$$\sum_{k} x_k^i \le 1,\tag{8}$$

$$\frac{n}{2k}y_k^i \leqslant x_k^i. \tag{9}$$

(7) and (8) are easy; here is a proof of (9). Let A be a k-set in \mathscr{C}_i . For each maximal chain containing A containing some $B \in \mathscr{C}_i$ such that $B \subset A$ and $|B| \ge n/2$, choose the n/2-subset C of B on that chain. How many such C's can there be? As \mathscr{C}_i is union-free, the hypotheses of the Erdős-Ko-Rado Theorem apply to the family of C's, showing that there at most

$$\binom{k-1}{\lceil n/2 \rceil}$$
.

Therefore, the proportion of n/2-subsets of A which are contained in a member

of \mathcal{C}_i which is a proper subset of A is at most

$$\frac{\binom{k-1}{\lceil n/2 \rceil}}{\binom{k}{\lceil n/2 \rceil}} = 1 - \frac{\lceil n/2 \rceil}{k} \le 1 - \frac{n}{2k}.$$

Thus, the proportion of maximal chains hitting \mathcal{C}_i at level k and again between levels k and n/2 is at most 1 - n/2k. So the proportion of chains hitting \mathcal{C}_i at level k and not again in a level at or above n/2 is at least $(n/2k)y_k^i$, finishing the proof of (9). From (7), (8), and (9) we have

$$\frac{n}{2} \sum_{k=n/2}^{n} \frac{1}{k} = \sum_{k=n/2}^{n} \frac{n}{2k} = \sum_{k=n/2}^{n} \frac{n}{2k} \left(\sum_{i=1}^{s} y_k^i \right)$$
$$= \sum_{i} \left(\sum_{k} \frac{n}{2k} y_k^i \right) \le \sum_{i} \left(\sum_{k} x_k^i \right) \le \sum_{i} 1 = s.$$

Hence, asymptotically,

$$\frac{n}{2}(\ln n - \ln n/2) = \frac{\ln 2}{2}n \le s.$$

Concerning the lower bound of g(n) given in Theorem 2, we show that

$$g(n-2)+1 \leq g(n).$$

As g(1) = 1 and g(2) = 2, it will follow that $\lfloor n/2 \rfloor + 1 \le g(n)$. Suppose that 2^n has been colored in a completely union-free manner and that $\lfloor n \rfloor$ has received color a. Then there is some $j \in [n]$ such that no set containing j, except $\lfloor n \rfloor$, is colored a. Choose any $i \in [n]$ other than j and consider the interval $\lfloor \{j\}, \lfloor n \rfloor - \{i\} \rfloor$ in 2^n . This is isomorphic to 2^{n-2} and inherits a union-free coloring without color a. Thus, $g(n-2)+1 \le g(n)$. \square (Theorem 1 and 2).

References

- [1] H.L. Abbott and D. Hanson, A problem of Schur and its generalizations, Acta Arith. 20 (1972) 175-187.
- [2] M. Aigner and D. Grieser, Hook-free colorings and a problem of Hanson, Combinatorica 8 (2) (1988) 143-148.
- [3] P. Erdős, Chao Ko and R. Rado, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
- [4] P. Erdős and S. Shelah, On problems of Moser and Hanson, Graph Theory and Applications, Lecture Notes in Math. 303 (1972) 75-79.
- [5] D.J. Kleitman, On a combinatorial problem of Erdős, Proc. Amer. Math. Soc. 17 (1966) 139-141.