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Abstract

Aigner, M., D. Duffus and D.J. Kleitman, Partitioning a power set into union-free classes,
Discrete Mathematics 88 (1991) 113-119.

Two problems involving union-free colorings of the set of all subsets of an n-set are considered,
with bounds obtained for minimum colorings.

1. Introduction

We consider two problems involving ‘union-free’ colorings of 27, the set of
subsets of the n-set [n]. The first is due to Abbott and Hanson [1]: for any integer
n let f(n) be the minimum number of colors necessary to color 2" so that each color

class is (pairwise) union-free. That is, no class has three distinct sets A, B, and C
. such that AUB =C.

The second function, suggested by Kleitman, is defined in a similar manner: for
any integer n let g(n) be the minimum number of colors necessary to color 2" so

. that each color class is (completely) union-free. That is, for all k no class has
distinct sets Ag, A4, . .., A, such that

k
AO = U A,-.
i=1

Here is what we know about f and g.
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Theorem 1.

In2
0.35n z—“z—n <f(n)<|n/2] +1.

Theorem 2.

[n/2] +1<g(n)sn—-0O@").

The new results are verified below, the lower bounds of f and g in Section 3 and
the upper bound of g in Section 2. We also go over what has been known about
bounds for f, giving Abbott and Hanson’s upper bound {[1], a lovely argument
due to Erd6s and Shelah [4] yielding a lower bound of about #/4, and an
improvement due to Aigner and Grieser [2].

2. Upper bounds for f(n) and g(n)

Abbott and Hanson [1] observed that there is an upper bound for f(n) given by
a partition defined via cardinality.

Consider this partition of 2": for i =0, 1, ..., |n/2]
% contains all (2i +1)2* — 1 element sets (for all k& = 0).

This is pairwise union-free and verifies the upper bound for f(n). It is also the
correct value for small values of n and we know of no n for which this bound is
not equal to f(n). ‘

Turning to g(n), let us take union-free to mean completely so for the rest of
this section. To establish the upper bound in Theorem 2 we need some notation.

Let % be the set of i-subsets of [n]. The idea is to choose distinct colors ¢; for
all the sets in %,_; (j=0,...,n—k—1) and to color the remaining levels
Py - ., Fy with ¢g, . .., ¢,y Without creating unions and with k as large as
possible. We shall show that k = (3n)"? works.

We shall specify that color class %; contains some sets from % and %,_, for
some [ <k as well as all of %,_;. This is done so each of the /-sets contains 1, no
(I-1)-set contains 1, and the union of these /- and (/-1)-sets contains at most
n —j—1 elements. It then follows that €, is union-free.

Let X;}X,|-- -] X, be a partition of [n] into blocks of consecutive integers.
For i <1, some of the X;’s may be primed; for instance,

{1,2}"1{3,4,5}14{6,7,8}'|{9,10}.

Byi: X |X,|---|X,., denote the family of all i-sets which contain at least one
element from every unprimed X; and have empty intersection with every primed
X; (j<t). On the last block X,,; there are no restrictions. So, 3:
{1,2}'143,4,5}1{6,7,8}"| {9, 10} is the set consisting of 3-sets

3,4,5 3,4,9 3,4,10 3,5,9 3,5,10

4,5,9 4,5,10 3,9,10 4,9,10 5,9,10.
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Since the X/’s are sets of consecutive integers, given in order, we may substitute
|X;] for X;; our example becomes 3: 2’,3, 3’ 2.

Lemma. Let [,,..., [\, and my,..., m; be nonnegative integers with ¥ I;=
Lmy=n—1. Then A}, ..., ALy, (BS, ..., B)) defined below form a partition of
all the sets in % which do not contain 1 (respectively, which contain 1):

All=i: (ll+1)'> n—’ll_l
A’z—_—l: 1’, 11, lé, n"l]"lz“l

. i
A}:i;l’,ll,...,lj—ly ;:nhzlh—‘l
h=1

Al =iV 0y Ly L Ly
Bi=i:l,m\,n—m;—1

s=itl,my,my,n—m;—my,~1
A J
. ,
Bi=i:1,my,..., ,ul,m,«,n—th—l
h=1

B:=l. 17 my, ..., mM;_y, 0y

Proof. Let A be an i-set not containing 1 and let us partition {2,3,...,n} with
intervals

i1 I
X1=[2,11+1],...,Xj=[2 L+2, > 1,,+1],...,
h=1 h=1

X,*,z[z 1,,+2,n}.
h=1

Then with s the maximum index with ANX;#@ for j=1,...,s, it is clear that
s<i, AcAl,,, and A¢ Al forj#s+ 1.

Proceed similarly to show that the B"s partition the family of i-sets which
contain 1; the proof of the Lemma is complete. [

In obtaining the upper bound of g(n) we use these observations about the
partitions of the Lemma:

ALEJAiAi=n—I,--1 G=1,...,0), 1)
A=z @
€A j=
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UvBl——-n—mj (=1,...,i—-1),

(1)
BeBj
i-1
UABl-—‘ij«f-l. @)
BeB} j=1
Call the colors 0,1, ...,n ~k ~ 1 and group them as follows:
0,
0: 1,...,k, :
1: k+1,...,2k—-1,
i i+1
o am()en e (),
i i 5 i+ Mk 5
k-2 k-1
k—2: (k-—2)k-—< )—i—l,...,(k—l)k—( ),
2 2
k —1: remaining colors.
where we assume that
k—1 K+k-2
( ) ) > n 1
For 1=<i<k -1, we define sequences /57, ..., I{Zi,, and mY™", ..., miZlasin
the lemma:
i o i—1 .. .
o=@ 1)k~ 9 +1+j (G=1,...,k~-1),
s kﬁl .
Boi=n—1- 3 I,
h=1
i i . .
m¥ -——lk-—<2>+1+] G=1,...,k—i=1),
) ki—1 .
miZi=n—1-— > mi
h=1
Color %, ..., % in this manner. The k-sets in [2, n] are colored 0 and the sets »
in B}‘ are colored j (j =1, ..., k), where the partition of the k-sets containing 1
arises from
k1
m1=2,m2=3,...,mk_1=k, and mk-‘—‘n*l—th.
h=1

The family of 0-colored sets is union-free; so far the j-colored families are as well,

this following from (1') and (2') for the Bf’s.
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In %._; (i=1), color the sets in Af ™" with i(i — 1)k — (3') +/ and those in
BY~" with ik — (4) +j. To see that these color classes are union-free, consider any
color other than 0, say

i

c,~,»=ik-—(2>+]' O=sisk-2,1sj=sk-1i).

In this class there are the sets of
?n_cij, A,’»“i“l, . B}"‘l

Let j<k —i. The sets in Af™*"! contain a total of n— I\ 1 —1=n—c;—2
elements (by (1)), while those in Bf ™ contain n — mf ™ =n — ¢; — 1 elements (by
(1')). From the definition of the I’s and m’s, the elements in these two unions are
the same apart from 1, which appears in all the sets in Bf ™" and in none of the
sets in Af~'~'. Thus, the new use of color c; results in no forbidden union. Let

j=k—i. Applying (2) and (2') the sets in AfZi"! and B%Z! contain a total of

(ik—<;>+2>+~--+(ik-,(;)+(k~i)>
(ik—<;>+2)+-°-+<ik—<;)+(k~i)>+1

elements respectively. Again, these elements are the same, apart from 1, so no
union is created if

n—(i+1)k~—<i22),>,2+(k—i-—1)<ik~<£)+1)+<k;i). 3)

and

By an easy manipulation (3) is equivalent to

FO=kQi+1)—k@Bi*+i—3)+(>-3i +2)<2n. 4)
By considering the maximum of f(i), it is easily seen that (4) holds if
BBk —=)+k/B3k—D+k—i)+1<n (i=1,...,k—i). 5)

Inequality (5) is valid if
K3+k*3+k+1<n. (6)

Finally, (6) is satisfied with k < cn3, ¢ = 35. This completes the proof concerning
the upper bound of g.

3. Lower bounds for f(n) and g(n)

Concerning f(n), Kleitman [5] showed that for some constant ¢, no union-free
class can contain more than c(2"/Vn) subsets of [n]. From this Abbott and
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Hanson [1] observed that
f(n)=cVn.

The lower bound was improved to [n/4] +1 with this argument [4]. For
convenience, assume that n is even. Now, consider only intervals [i, j]= {i, i + 1,

.,J} where i<n/2<j. Let & be a union-free class of such intervals and
define a bipartite graph with vertex sets {1,2,..., n/2} and {n/2+1,n/2+
2, ..., n} with i adjacent to j if and only if the set [i, j] € o. As o is union-free,
there is no 3-element path in the graph with vertices i <i' <n/2 < j' <j and edges
j'~i~j~i". In particular, the graph has no cycles and, hence, at most n — 1
edges. Thus, a union-free class has at most n — 1 such intervals. As there are n?/4
of these intervals, f(n) = |n/4] + 1.

The next contribution bounding f(n) below is a result of Adgner and Grieser
[2]: for n— 0, 0.29n < f(n). This is obtained by investigating hook-free colorings
of rectangular arrays.

Here we provide the improvement of the lower bound given in Theorem 1. To
begin the proof, let €,,..., €, be a partition of 2” such that for distinct 4, B, C
in any 6;, AUB+# C. In showing that s = (In2)/2~0.35n, we make use of the
dual form of the Erd6s—Ko-Rado Theorem [3]: for k =n/2 and & a family of
k-subsets of [n] such that BU C # [n] for all B and Cin o, || < ("7 ").

Let k=n/2 and consider all maximal chains in the lattice 2". Let yi be the
proportion of chains which intersect €; in some k-set and let x/, be the proportion
of chains which intersect €; in a k-set and do not intersect €; in any set B where
n/2<|B|<k. We claim that for all i and all k =n/2,

2 Ye=1, - Q)
Dxp=<1, (8)
k

n . .

2“,;)/2<x'k- )]

(7) and (8) are easy; here is a proof of (9). Let A be a k-set in €. For each
maximal chain containing A containing some B e %, such that Bc A and
|B| = n/2, choose the n/2-subset C of B on that chain. How many such C’s can
there be? As €; is union-free, the hypotheses of the Erdés—Ko—Rado Theorem
apply to the family of C’s, showing that there at most

( F(n-/‘; ) '

Therefore, the proportion of n/2-subsets of A which are contained in a member
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of €, which is a proper subset of A is at most

(F{n—/—ﬁ):l_ [n/?_]sl_ n

< [ni/(ﬂ ) ) *

Thus, the proportion of maximal chains hitting %; at level k arad again between
levels k and n/2 is at most 1 —n/2k. So the proportion of chains hitting €; at level
k and not again in a level at or above n/2 is at least (n/2k)y}, finishing the proof
of (9). From (7), (8), and (9) we have

n n

n 1 n "oon /3, .
22 =2 5= 2 ()

k=n/2 k=nl2 k i=1

=S (S504) =S (Sx) =S+

i k i
Hence, asymptotically,

In2
g(lnn—lnn/2)=~%~nSS.

Concerning the lower bound of g(n) given in Theorem 2, we show that
g(n—2)+1=<g(n).

As g(1)=1 and g(2) =2, it will follow that |n/2} + 1=<g(n). Suppose that 2" has
been colored in a completely union-free manner and that [n] has received color a.
Then there is some j € [n] such that no set containing j, except [n], is colored a.
Choose any i € [n] other than j and consider the interval [{j}, [n] — {i}] in 2"
This is isomorphic to 2”7? and inherits a union-free coloring without color a.
Thus, g(n —2)+1=<g(n). O (Theorem 1 and 2).
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