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Abstract

Subgroups of the symmetric group Sn act on Cn (the n-fold product C×· · ·×C
of a chain C) by permuting coordinates, and induce automorphisms of the power
Cn. For certain families of subgroups of Sn, the quotients defined by these groups
can be shown to have symmetric chain decompositions (SCDs). These SCDs allow
us to enlarge the collection of subgroups G of Sn for which the quotient 2n/G on the
Boolean lattice 2n is a symmetric chain order (SCO). The methods are also used to
provide an elementary proof that quotients of powers of SCOs by cyclic groups are
SCOs.

1 Introduction

We are interested in a familiar symmetry property of finite partially ordered sets – pos-
sessing a partition into symmetric chains. We want to determine circumstances under
which having a symmetric chain decomposition is preserved by quotients.

Here we restrict our attention to finite ordered sets P with minimum element 0P all of
whose maximal chains have the same length. Such P have a rank function r = rP defined
as follows: for all x ∈ P , r(x) is the maximum length l(C) = |C|−1 over all chains C ⊆ P
with maximum element x. The rank r(P ) of P is the maximum of r(x) over all x ∈ P
and we call such P ranked partial orders.

In a ranked order P a chain x1 < x2 < · · · < xk is saturated if for each i there is no z
such that xi < z < xi+1. Call the saturated chain symmetric if r(x1) + r(xk) = r(P ). A
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symmetric chain decomposition, an SCD, of P is a partition of P into symmetric chains.
If P has an SCD, call P a symmetric chain order, an SCO. Here, we are concerned with
a particular family of SCOs, products of finite chains, and whether quotients of these are
also SCOs.

For any partially ordered set P and any subgroup G of Aut(P ) the automorphism group
of P , let P/G denote the quotient poset. That is, the elements of P/G are the orbits
induced by G, denoted by [x]G, or just [x] when no confusion should arise. And, [x] 6 [y]
in P/G if there are x′ ∈ [x] and y′ ∈ [y] such that x′ 6 y′ in P .

Let 2n denote the Boolean lattice of all subsets of [n] := {1, 2, . . . , n}, ordered by con-
tainment. Then Aut(2n) is the group induced by the symmetric group Sn acting on [n].
Canfield and Mason [2] conjectured that 2n/G is an SCO for all subgroups G of Sn. In
§4.2, we shall see that Stanley [17] was first to ask if certain quotients of 2n are SCOs. A
more general problem is to investigate conditions on an SCO P and on subgroups G of
Aut(P ) under which P/G an SCO.

In studying Venn diagrams, Griggs, Killian and Savage [12] explicitly constructed an SCD
of the quotient 2n/G provided that n is prime and G is generated by a single n-cycle.
They asked if this necklace poset is an SCO for arbitrary n. Jordan [13] proved that it
is by constructing an SCD of the quotient based on SCDs of 2n obtained by Greene and
Kleitman [9]. P. Hersh and A. Schilling [11] gave another proof of Jordan’s result by
devising a cyclic version of Greene and Kleitman’s bracketing procedure. We [7] showed
that 2n/G is an SCO provided that G is generated by powers of disjoint cycles. This
result generalizes Jordan’s result a bit, but the method of proof is likely more interesting
in that we construct an SCD of the quotient by pruning the Greene-Kleitman SCD in a
more direct way than Jordan.

Dhand [4] has shown that if P is an SCO and Zn acts on P n by permuting coordinates
then P n/Zn is an SCO. His methods are algebraic. The base case of his argument is that
for any chain C, Cn/G is an SCO where G generated by an n-cycle. In [7], a somewhat
more general version of the base case is found: Cn/G is an SCO provided G is generated
by powers of disjoint cycles.

Here are our two main results. The required definitions and notation are provided in §2
and §3.

Theorem 1. Let n, k, t be positive integers and n = kt. Then 2n/G is a symmetric chain
order for any subgroup G of Aut(2n) defined as follows: G = K o T , the wreath product
of K by T , where K is a subgroup of Sk, T is a subgroup of St, and both K and T are
generated by powers of disjoint cycles.

The proof (in §2) begins with the fact that certain quotients of products of chains are
SCDs, proved in [7]. The same proof strategy provides an elementary combinatorial proof
of Dhand’s result [4] (§3), stated in somewhat more generality here.
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Theorem 2. Let P be a symmetric chain order and let G be a subgroup of Sn generated
by powers of disjoint cycles. Then P n/G is a symmetric chain order.

In §4, a number of observations and problems are presented. First, we consider the
implications of results-to-date for quotients of 2n by subgroups of Sn for small values of
n. Second, the original problem of Stanley is presented in the terminology of quotients (as
he did [18]). Third, we consider whether quotients of 2n by abelian subgroups of Sn are
SCOs – an obvious question since 2n/G is an SCO whenever G is generated by disjoint
cycles and each finite abelian group is a product of cyclic groups. Finally, we see that
ordered sets of isomorphism types of graphs and hypergraphs can be viewed as quotients.
Consequently, they possess several symmetry properties but are not known to be SCOs.

2 Proof of Theorem 1

We start with the required terminology and notation. We use standard ordered set nota-
tion. See [6] for background on permutation groups.

In this section, set n = kt for positive integers n, k, t and let 2n denote the Boolean lattice
of subsets of the n-element set [k] × [t] of ordered pairs. Let SX denote the symmetric
group on any set X. It is convenient to use Sn in place of S[k]×[t], while using Sk and St
for the symmetric groups on [k] and [t], respectively. Let

[k]× [t] = N1 ∪N2 ∪ · · · ∪Nt where Nr = [k]× {r}, (r = 1, 2, . . . , t). (1)

Given subgroups K of Sk and T of St, the wreath product G = K o T of K by T is the
set of all φ ∈ Sn defined as follows: given ρ = (ρ1, ρ2, . . . , ρt) ∈ Kt and τ ∈ T , for all
(i, r) ∈ [k]× [t],

φ(i, r) = (ρr(i), τ(r)). (2)

The three subsections below are organized as follows. In §2.1, we specify the properties
of K and T that are needed in our proof that for G = K oT , 2n/G is an SCO. In §2.2, we
show that these properties do indeed suffice. In §2.3, we prove that if subgroups K and
T are each generated by powers of disjoint cycles then they have the required properties;
other sufficient conditions are given at the end of §2.3.

2.1 The required properties

We assume that G = K o T is a subgroup of Sn with K a subgroup of Sk, T a subgroup
of St, and use the notation given above.

We need notation for this situation: for a partially ordered set P and subsets P1, P2, . . . Pm,
use P =

∑m
i=1 Pi to mean that P is partitioned by the family of Pi’s and the order on each

Pi is that induced by the order on P , with no restriction on the order between elements
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of distinct Pi’s. This notation is non-standard but is very convenient here, particularly
since direct products distribute over such sums.

For a subposet Q of a ranked partially ordered set P , Q is said to be saturated if for
all x, y ∈ Q, x is covered by y in Q implies that x is covered by y in P . Given a
saturated Q ⊆ P with minimum 0Q and maximum 1Q, say that Q is symmetric in P if
rP (0Q) + rP (1Q) = rP (P ).1 Here is an immediate consequence of these definitions.

Lemma 1. Let P be a partially ordered set, P1, P2, . . . , Pm, subsets of P and P =
∑m

i=1 Pi.
If each Pi is a symmetric, saturated subposet of P and is an SCO then P is an SCO.

For all X ⊆ [k]× [t], let Xr = X ∩Nr, r = 1, 2, . . . , t (see equation (1) for this notation).
With the notation in (2), let K ′ be the subgroup of G consisting of all φ for which τ is
the identity on [t]. This is the base group of the wreath product and is isomorphic to Kt.
Let Kr denote the copy of K acting on Nr and for any set N , let 2N denote the Boolean
lattice of all subsets of N . Then

2n/K ′ ∼=
t∏

r=1

2Nr/Kr
∼= (2k/K)t. (3)

The first isomorphism, say F , in (3) is the map [X]K′
F−→ ([X1]K1 , [X2]K2 , . . . , [Xt]Kt),

where [X]K′ and [Xr]Kr denote the orbit of X under K ′ and the orbit of Xr under Kr,
respectively.

Here is the property of the subgroup K of Sk needed in our proof:

[K]: 2k/K has an SCD.

With an SCD guaranteed by [K], let’s derive the required property of T .

Suppose that C1, C2, . . . , Cs constitute an SCD of 2k/K and that Cr
1 , C

r
2 , . . . , C

r
s is the

corresponding SCD of 2Nr/Kr, r = 1, 2, . . . , t. Then these SCDs define a partition of the
product

∏t
r=1 2Nr/Kr into grids, that is, products of chains:

t∏
r=1

2Nr/Kr =
t∏

r=1

(
s∑
j=1

Cr
j

)
=

∑
j=(j1,j2,...,jt)∈[s]t

C1
j1
× C2

j2
. . .× Ct

jt . (4)

Note that each grid C(j) = C1
j1
× C2

j2
. . .× Ct

jt is itself an SCO ([1]) and is a symmetric,

saturated subset of
∏t

r=1 2Nr/Kr. Following Lemma 1, the family of all chains from the
SCDs of the C(j)s and the first isomorphism in (3) yield an SCD for 2n/K ′.

The group T acts on [s]t as follows: for τ ∈ T and j = (j1, j2, . . . , jt) ∈ [s]t,

τ(j) = (jτ−1(1), jτ−1(2), . . . , jτ−1(t)).

1As is customary, we define “symmetric” only for saturated subposets. However, we usually use the
phrase “saturated and symmetric” to emphasize the two aspects of the property.
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Let Tj denote the stabilizer of j – the subgroup of all τ ∈ T such that τ(j) = j. Each

τ ∈ T induces a permutation of the family of all C(j), j ∈ [s]t, via C(j) → C(τ(j)). In
fact, each τ ∈ T induces “local isomorphisms” among the grids C(j), j ∈ [s]t, as follows.

Given X ⊆ [k]× [t] and Xr = X ∩Nr, let Xr,p = {(i, p)|(i, r) ∈ Xr}. Thus, Xr and Xr,p

have the same first projection into [k]. Also, for brevity, let [Xr] replace [Xr]Kr , [Xr,p]
replace [Xr,p]Kp , and X = ([X1], [X2], . . . , [Xt]).

Define τ̂ : C(j)→ C(τ(j)) by

τ̂([X1], [X2], . . . , [Xt]) = ([Xτ−1(1),1], [Xτ−1(2),2], . . . , [Xτ−1(t),t]). (5)

Then τ̂ is well-defined and is an order isomorphism because:

τ̂(X) = τ̂([X1], [X2], . . . , [Xt]) 6 τ̂([Y1], [Y2], . . . , [Yt]) = τ̂(Y ) in C(τ(j)) ⇐⇒
[Xτ−1(r),r] 6 [Yτ−1(r),r] in Cr

jτ−1(r)
(r = 1, 2, . . . , t) ⇐⇒

[Xτ−1(r)] 6 [Yτ−1(r)] in C
τ−1(r)
jτ−1(r)

(r = 1, 2, . . . , t) ⇐⇒

X = ([X1], [X2], . . . , [Xt]) 6 ([Y1], [Y2], . . . , [Yt]) = Y in C(j).

Whenever τ ∈ Tj, τ̂ : C(j)→ C(j) is an automorphism of C(j).

Finally, we can state the property of T we need.

[T]: With the SCD C1, C2, . . . , Cs of 2k/K, for each j ∈ [s]t, C(j)/Tj is an SCO.

2.2 Proof of Theorem 1 from [K] and [T]

In this subsection, we assume that the subgroups K and T of Sk and St, respectively,
satisfy [K] and [T]. We have the partition of

∏t
r=1 2Nr/Kr into symmetric, saturated

grids C(j), j ∈ [s]t, given in (4) and know that the union of the SCDs of these grids gives
an SCD of

∏t
r=1 2Nr/Kr.

Select a representative from each orbit in [s]t under T , say the lexicographically least,
and let J be the set of these representatives. The family {C(j) | j ∈ J} seems to be a
promising source of an SCD of 2n/G. Indeed, for X = ∪tr=1Xr ⊆ [n], each Xr determines
an index jr via [Xr] ∈ Cr

jr in the SCD of 2Nr/Kr. There is a unique j ∈ [s]t such

that X = ([X1], [X2], . . . , [Xt]) ∈ C(j). Thus, there is exactly one j′ ∈ J such that
τ̂(X) ∈ C(j′) for some τ ∈ T .

Creating an SCD for 2n/G begins with verifying this claim.

Claim 1. Let Φ : 2n/G→
∑

j∈J C(j)/Tj be defined by

Φ([Y ]G) = [X]Tj

where X ∈ [Y ]G and X ∈ C(j) for some j ∈ J . Then Φ is a bijection.
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Proof. Let’s begin by verifying the following equivalence: for all U, V ⊆ [k]× [t],

φ(U) = V for some φ ∈ G if and only if τ̂(U) = V for some τ ∈ T. (6)

Suppose that φ ∈ G corresponds to ρ ∈ Kt and τ ∈ T as in (2). We need a description of
φ(W ) for any W ⊆ [k]× [t]: with W ′

r = {i ∈ [k] | (i, r) ∈ Wr},

φ(W ) =
t⋃

r=1

(
ρτ−1(r)(W

′
τ−1(r))× {r}

)
.

With this notation we have

φ(U) = V ⇐⇒
t⋃

r=1

(
ρτ−1(r)(U

′
τ−1(r))× {r}

)
=

t⋃
r=1

Vr

⇐⇒ ρτ−1(r)(U
′
τ−1(r))× {r} = Vr, r = 1, 2, . . . , t

⇐⇒ [Uτ−1(r),r] = [Vr], r = 1, 2, . . . , t

⇐⇒ τ̂(U) = V .

The first equivalence is from the description of the wreath product in (2). The second is
obvious. The third is the definition of the Kr-orbit. The last is the definition of τ̂ in (5).

Let us see that Φ is well-defined and injective. Suppose that X and Y are as in the
statement of the claim and that V ∈ [U ]G, V ∈ Cj′ for some j′ ∈ J and Φ([U ]G) = [V ]T

j′
.

Suppose that [U ]G = [Y ]G. Then φ(X) = V for some φ ∈ G so, by (6), τ̂(X) = V for
some τ ∈ T . Then τ(j) = j′. Since j, j′ ∈ J , a system of representatives of the T -orbits
in [s]t, j = j′ and τ ∈ Tj. Hence, [X]Tj = [V ]Tj , that is, Φ([U ]G) = Φ([Y ]G). Thus, Φ

is well-defined. The converse is easily argued, also based on (6), establishing that Φ is
injective.

It is obvious that Φ is surjective: any element of
∑

j∈J C(j)/Tj is the form [X]Tj , for some

X ∈ C(j), j ∈ J . Then X ⊆ [k]× [t] and Φ([X]G) = [X]Tj .

We began this subsection assuming that

[T]: With the SCD C1, C2, . . . , Cs of 2k/K, for each j ∈ [s]t, C(j)/Tj is an SCO.

Let j ∈ J and let C be a symmetric chain in an SCO of C(j)/Tj.

Claim 2. The inverse image Φ−1(C) of C under Φ is a symmetric, saturated chain in
2n/G.

Proof. Observe that for all ranked orders P , and all subgroups G of Aut(P ), and all
x ∈ P , rP/G([x]G) = rP (x). Thus, for all [X]Tj ∈ C(j)/Tj,

rC(j)/Tj
([X]Tj) = rC(j)(X) and r2n/K′([X]K′) = r2n/G([X]G).
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Recall C(j) is a symmetric, saturated subset of
∏t

r=1 2Nr/Kr
∼= 2n/K ′ and that r2n/K′ =

r(2n) = n. If rC(j) = nj then we have

r2n/K′([X]K′) = 1/2(n− nj) + rC(j)(X).

Since C is a symmetric saturated chain in an SCD of Cj/Tj, the ranks of its elements form
an interval k, k + 1, . . . , nj − k, for some k. Thus, the ranks of the elements of Φ−1(C) in
2n/G form the interval

1/2(n− nj) + k, 1/2(n− nj) + k + 1, . . . , 1/2(n− nj) + nj − k = n− (1/2(n− nj) + k),

a symmetric interval of ranks in 2n/G.

Suppose that [X]Tj 6 [Y ]Tj in C. Then there is some Y ′ = τ̂(Y ), for some τ ∈ Tj such

that X 6 Y ′ in
∏t

r=1 2Nr/Kr. Then [X]K′ 6 [Y ′]K′ and, so, [X]G 6 [Y ′]G = [Y ]G. Hence,
Φ−1(C) is a symmetric saturated chain in 2n/G.

The collection of the symmetric, saturated chains Φ−1(C), over all C in the given SCDs of
all C(j)/Tj, j ∈ J , provides an SCD of 2n/G.

2.3 Powers of disjoint cycles suffice

Let’s see that if both K and T are generated by powers of disjoint cycles in Sk and St,
respectively, then both [K] and [T] hold. First, this result from [7] (Corollary 7) and [4]
establishes [K].

Lemma 2. Let P be a product of chains and let K be a subgroup of Aut(P ) that is
generated by powers of disjoint cycles. Then P/K is an SCO.

Lemma 2 plus the following lemma yield [T], assuming T , too, is generated by powers of
disjoint cycles.

Lemma 3. Let s, t be positive integers and let T be a subgroup of St that is generated by
powers of disjoint cycles. Then for all j ∈ [s]t, the stabilizer Tj of j in the action of T on
[s]t is also generated by powers of disjoint cycles.

Proof. Let j ∈ [s]t and τ ∈ T . Then τ ∈ Tj if and only if for all u, v ∈ [t], τ(u) = v
implies that ju = jv. In other words, the partition of [t] defined by the orbits of [t] under
τ refines the partition of [t] defined j. For each τ ∈ T there is a minimum d, at most the
order of τ , such that τ d ∈ Tj.

Suppose that T = 〈σr11 , σr22 , . . . , σrmm 〉 where σi acts on Ni, [t] =
⋃
Ni, and di is minimum

such that (σrii )di ∈ Tj for i = 1, 2, . . . ,m. Then Tj ⊇ 〈σ
r1d1
1 , σr2d22 , . . . , σrmdmm 〉. Let

τ ∈ Tj. Then for each i, τ|Ni is a power of σrii and the τ -orbits in Ni refine the j-

partition of [t] restricted to Ni. By definition of di, τ|Ni is a power of σridii . Thus,

Tj ⊆ 〈σ
r1d1
1 , σr2d22 , . . . , σrmdmm 〉.
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This completes the proof of Theorem 1.

The proof strategy gives other circumstances under which quotients by a wreath product
are symmetric chain orders. As long as we know that n = kt, G = K oT for K a subgroup
of Sk such that 2k/K is an SCO and T a subgroup of St generated by powers of disjoint
cycles, then 2n/G is an SCO. For instance, if K = Sk or K = Ak, the alternating group,
then K is transitive on the family of m-element subsets of [k] for all m, so the quotient
2k/K is a (k+1)-element chain. As long as T is generated by powers of disjoint cycles,
G = K o T produces quotients that are SCOs.

Corollary 1. Let P be the family of permutation groups constructed as follows. For all
positive integers k, t and n,

(1) if G = Sk, Ak or G is a subgroup of Sk generated by powers of disjoint cycles, then
G ∈ P;

(2) if n = kt and G is a subgroup of Sn such that G = K o T , with K a subgroup of
Sk that belongs to P and T a subgroup of St generated by powers of disjoint cycles,
then G ∈ P.

For all subgroups G of Sn that belong to P, 2n/G is a symmetric chain order.

Here is an example of an infinite family in P . For a prime p, the Sylow p-subgroup of Spn
is an iterated wreath product Wn = Wn−1 o Zp, with W1 = Zp [14].

3 Proof of Theorem 2

Let C1, C2, . . . , Cs form an SCD of P . As noted after (4) in §2.1, the family of grids

C(j) = Cj1 × Cj2 × · · · × Cjn , j = (j1, j2, . . . , jn) ∈ [s]n

provides a partition of P n into symmetric, saturated subsets. The group G acts on [s]n

as before, σ(j1, j2, . . . , jn) = (jσ−1(1), jσ−1(2), . . . , jσ−1(n)), and defines these mappings:

σ permutes the members of the family {C(j) | j ∈ [s]n};

σ : P n → P n, σ(p) = (pσ−1(1), pσ−1(2), . . . , pσ−1(n), ), p = (p1, p2, . . . , pn) ∈ P n,

is an automorphism; and,

for each j ∈ [s]n, the restriction of σ is a local isomorphism of C(j) to C(σ(j)).

Let J ⊆ [s]n be a system of representatives of the G-orbits of [s]n. Note that for each
j ∈ [s]n and σ ∈ Gj, the restriction of σ is an automorphism of C(j).
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Claim 3. Let Ψ : P n/G→
∑

j∈J C(j)/Gj be defined by

Ψ([y]G) = [x]Gj

where x ∈ [y]G and x ∈ C(j) for some j ∈ J . Then Ψ is a bijection.

The proof of this claim is analogous to that of Claim 1, with simpler notation. If [y′]G =
[y]G, x′ ∈ [y′]G with x′ ∈ C(j′) for some j′ ∈ J , and x, y are as in the statement of Claim
3, then there exist σ1, σ2, σ3 ∈ G such that

σ1(x) = y, σ2(y′) = y, and σ3(x′) = y′.

Thus, σ−11 σ2σ3(x′) = x. Since x ∈ Cj, x′ ∈ Cj′ , and j, j′ ∈ J , we have j = j′ and, thus,

σ−11 σ2σ3 ∈ Gj. This shows that Ψ is well-defined. It is easily shown to be bijective.

By Lemma 3 and the hypothesis that G is generated by powers of disjoint cycles, we have
that the same is true for each Gj. By Lemma 2, each C(j)/Gj has an SCD. Let j ∈ J
and let C be a symmetric chain in an SCO of C(j)/Gj. That P n/G has an SCD follows
from

Claim 4. The inverse image Ψ−1(C) of C under Ψ is a symmetric, saturated chain in
P n/G.

Follow the proof of Claim 2 in the obvious way to establish that the set of ranks of elements
of Ψ−1(C) is a symmetric interval in the ranks of P n/G and that if Ψ([y]G) 6 Ψ([u]G) in
C then [y]G 6 [u]G in P n/G.

4 Observations, Examples and Problems

As noted at the end of §2, the proof of Theorem 1 and the results of [7] allow the recursive
construction of a family of groups defining quotients that are SCOs. We do not have an
easy characterization of this family, but we can provide a catalog of those subgroups of
Sn that, by these results, do generate quotients of 2n with SCDs for some small values of
n. We display the collection for n = 6 in Table 4.1.

4.1 The case n = 6 and some specific groups

Here are the applicable facts:

(1) if [n] = X1 ∪ X2 ∪ · · · ∪ Xm is a partition and G = G1 × G2 × · · · × Gm where
Gi = G|Xi then 2n/G is an SCO provided that each 2Xi/Gi is an SCO;
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(2) if G = 〈σr〉 for some cycle σ ∈ Sn then 2n/G is an SCO; and

(3) Theorem 1.

We list the groups in Table 4.1 according to the partitions of 6 given by their orbit sizes,
then refine with the cycle structure. These are all the subgroups, up to conjugation, that
are handled by (1) - (3) and the fact that the quotient of 2n by either the symmetric
group Sn or the alternating group An is an (n+1)-element chain.

The partitions 6 = 1 + 1 + · · · + 1 and 6 = 1 + · · · + 1 + 2 each give only one group, (1)
and Z2

∼= 〈(12)〉, respectively. Also, 6 = 1 + 1 + 1 + 3 yields two: Z3
∼= 〈(1 2 3)〉 and

S3
∼= 〈(1 2 3), (12)〉. The rest are listed in Table 4.1. This is far from all the groups of

degree 6. In [6], there are 16 transitive subgroups of S6 listed. Our table contains 6. One
familiar transitive subgroup of S6 missing from our list is the dihedral group D12. The
dihedral groups seem to be the next interesting case.

Problem 1. For all n > 1, let D2n denote the dihedral group of symmetries of a regular
n-gon. Show that 2n/D2n is an SCO.

We know this only for the trivial cases n = 1, 2, 3 and, as noted in the table, n = 4,
since D8 is a wreath product Z2 o Z2. Note that D2n is the semidirect product Zn o Z2.
However the dihedral groups are not wreath products for n > 5. This is easy to see: each
permutation in D2n has either no fixed points, or one (for odd n) or two (for even n), or
n fixed points. However, a wreath product K oT has maps with k, 2k, . . . , tk fixed points,
where K is a subgroup of Sk and T is a subgroup of St.

The approach presented above can be extended in some other special cases. Here is an
example. Let

G be the subgroup of S8 generated by {(15)(26)(37)(48), (14)(23)}, and

H be the subgroup of G generated by {(15)(26)(37)(48), (14)(23)(58)(67)}.

Then G = K o T where

K = 〈(1243)2〉 is a subgroup of S4 and T = 〈(12)〉 is a subgroup of S2.

Thus 28/G is an SCO. One can describe how to refine the G-orbits to obtain H-orbits
and how to produce the additional symmetric chains required for an SCD of 28/H. Un-
fortunately, this sort of argument does not appear to yield anything for D2n since it is
not a “manageable” subgroup of any group we can handle, such as Zn o Z2 or Z2 o Zn.

4.2 The lattice L(k, t)

Stanley [17] raised the question of whether the distributive lattice L(k, t), the poset with
elements all integer sequences a = (a1, a2, . . . , at) such that 0 6 a1 6 · · · 6 at 6 k and
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Partition of 6 Generators Description Order

1 + 1 + 2 + 2 (1 2 ), (3 4) Z2 × Z2 4

(1 2 )(3 4) Z2 2

1 + 1 + 4 (1 2 3 4) Z4 4

(1 2 3 4), (1 2) S4 24

(1 2 3), (2 3 4) A4 12

(1 2 3 4), (1 3) Z2 o Z2
∼= D8 8

1 + 2 + 3 (1 2), (3 4 5) Z2 × Z3 6

(1 2), (3 4 5), (3 4) Z2 × S3 12

2 + 2 + 2 (1 2), (3 4), (5 6) Z2 × Z2 × Z2 8

(1 2)(3 4), (5 6) Z2 × Z2 4

(1 2)(3 4)(5 6) Z2 2

3 + 3 (1 2 3), ( 4 5 6) Z3 × Z3 9

(1 2 3), (1 2), (4 5 6) S3 × Z3 18

(1 2 3), (1 2), ( 4 5 6), (4 5) S3 × S3 36

2 + 4 (1 2), (3 4 5 6) Z2 × Z4 8

(1 2), (3 4 5 6), (3 4) Z2 × S4 48

(1 2), (3 4 5), (4 5 6) Z2 × A4 24

(1 2), (3 4 5 6), (3 5) Z2 × (Z2 o Z2) 16

1 + 5 (1 2 3 4 5) Z5 5

(1 2 3 4 5), (1 2 3) A5 60

(1 2 3 4 5), (1 2) S5 120

6 (1 2 3 4 5 6) Z6 6

(1 2 3 4 5), (1 2 3), (1 2)(5 6) A6 360

(1 2 3 4 5 6), (1 2) S6 720

(1 2 3)(4 5 6), (1 4) Z2 o Z3 24

(1 2 3), (1 4)(2 5)(3 6) Z3 o Z2 18

(1 2 3), (1 2), (1 4)(2 5)(3 6) S3 o Z2 72

Table 1: Catalog of subgroups of S6 that generate quotients of 26 with SCDs.

the electronic journal of combinatorics 22(2) (2015), #P2.35 11



componentwise order, is an SCO for all k and t. He noted [18, 19] that L(k, t) is obtained
as a quotient of the Boolean lattice 2kt by the group Sk o St with its natural action on
[k] × [t]. (This is the action described at the beginning of Section 2.) It is easiest to see
this if we think of L(k, t) as the set of down sets of the grid k× t ordered by containment
(using m to denote the m-element chain). The wreath product Sk oSt acts on the elements
of k× t by permuting the elements of Cj = {(1, j), (2, j), . . . , (k, j)} independently under
Sk for each j = 1, 2, . . . , t, then permuting C1, C2, . . . , Ct. Each equivalence class under
this action contains a unique down set of k× t.

If we break this action into two steps then the independent permutations of the elements
in each Cj produce the quotient (2k/Sk)

t, just as in (3) in Section 2. Since 2k/Sk ∼= k+1,
the second part of the action is just St acting on the coordinates of (k+1)t. We restate
Stanley’s problem.

Problem 2. Show that for all k, t, L(k, t) is an SCO. Equivalently, show that this quotient
is an SCO:

2kt/(Sk o St) ∼= (k+1)t/St.

In thinking about Dhand’s result, one can ask several types of questions. If we focus on
groups acting by permuting coordinates, we can pose this problem.

Problem 3. Determine whether P n/G is an SCO, assuming that P is an SCO and the
subgroup G of Sn acts on P n by permuting coordinates.

One approach to this follows the strategy given in §2.1 and the proof of Theorem 2. With
an SCD C1, C2, . . . , Cs of P , the family of grids C(j), j ∈ [s]t, forms a partition of P n

into symmetric, saturated subsets. Every σ ∈ G permutes the members of the family
{C(j) | j ∈ [s]n} and the restriction of σ defines a local isomorphism of C(j) to C(σ(j)).
We have an SCD for P n/G if we can obtain an SCD of each C(j)/Gj for a set J of
representatives of the G-orbits of [s]n. If we follow this line, quotients of products of
chains could be the key to Problem 3. Of course, in the case that G = Sn, the stabilizers
Gj are themselves products of symmetric groups acting on disjoint subsets of [n], so we
are back to Stanley’s problem.

4.3 Abelian subgroups of Sn

Any abelian group A is the direct product of cyclic groups of prime power order – this is
just the basis theorem. If we begin with an isomorphism such as A ∼= Z2 × Z2 × Z5 then
the subgroups

A1 = 〈(1 2), (3 4), (5 6 7 8 9)〉 in S9 and A2 = 〈(1 2), (3 4 · · · 12)〉 in S12

are both isomorphic to A and produce SCOs 29/A1 and 212/A2, respectively, by Theorem
1 in [7]. However, if we take the usual regular representation of A, say A3, we obtain a
subgroup of S20 and our results do not show that 220/A3 is an SCO.
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Problem 4. Given a finite abelian group A with its regular representation in SA determine
whether 2A/A is an SCO.

One can argue easily, using Dixon [5], that if this can be settled positively then the same
is true for all maximal abelian subgroups of Sn.

It is not difficult to describe, up to permutational equivalence, how to obtain all embed-
dings of a finite abelian group A in a finite permutation group. Let Hi, i = 1, 2, . . . , k,
be subgroups of A (repetition allowed) with [A : Hi] = ni and

⋂
Hi = {1}; set n =

∑
ni.

For each i, A acts on A/Hi, the quotient group of (left) cosets of Hi in A, by (left) multi-
plication. This defines a homomorphism ηi : A→ SA/Hi with kernel Hi. Identify [n] with⋃
A/Hi and extend each of these homomorphisms to φi : A → Sn by φi = ηi on A/Hi

and otherwise is the identity. Then φ = φ1φ2 · · ·φk is an embedding of A in Sn, since⋂
Hi = {1}. Note that the orbits induced by Â = φ(A) refine the partition [n] =

⋃
A/Hi.

L. Babai pointed out that this construction produces all embeddings of A, up to per-
mutational equivalence. And he noted that this suggests a good test case. Let A be an
elementary abelian p-group, say A = (Zp)t with p prime and t any positive integer. If we
use the cycle decomposition of A then we have independent actions on each orbit and,
with n = pt, 2n/(Zp)t is an SCO since the group is generated by t disjoint p-cycles. So,
let’s consider a case where the actions on the orbits are highly correlated.

Let Hi, i = 1, 2, . . . , k, be the maximal subgroups of A. Then k = (pt − 1)/(p − 1) and

each [A : Hi] = p, with A/Hi a cyclic group of order p. With the notation above and Âi =

φi(A), the subgroups Âi, i = 1, 2, . . . , k, are cyclic, of order p, and generated by disjoint

cycles in Sn. Also, Â is the diagonal subgroup of all pt elements φ1(a)φ2(a) · · ·φk(a), a ∈ A,

of the pk-element subgroup Â1×Â2×· · ·×Âk of Sn. For brevity, let G = Â1×Â2×· · ·×Âk,
[n] = N1 ∪N2 ∪ · · · ∪Nk where Ni = G/Hi.

Since G is a subgroup of Sn generated by disjoint cycles, 2n/G has a symmetric chain

decomposition, by Theorem 1, [7]. Also, Â is a subgroup of G so its orbits refine those in
2n/G. However, the refinements are not of uniform cardinality, though they are for each
X ⊂ [n] which intersects each Ni properly. On the other hand, we can view the maximal

subgroups Hi as hyperplanes and explicitly describe the action of Â and G.

Problem 5. With the notation defined above, show that 2n/Â is an SCO.

The obvious inductive strategy for showing that all abelian subgroups of Sn produce
quotients which are SCOs leads to the same difficulty. Take A to be an abelian subgroup
of Sn. If |A| = p, p prime, then A is generated by a product of p-cycles, so is a power of a
cycle, hence 2n/A is an SCO. If |A| = m then A has a subgroup B of index p and A acts
on the orbits [X]B in the obvious way, permuting them within the A-orbits. If nontrivial,
this action amounts to a cyclic p-element group acting on 2n/B, producing a quotient
isomorphic to 2n/A. However, it is not obvious how to use an inductively-obtained SCD
of 2n/B to obtain one for 2n/A.

the electronic journal of combinatorics 22(2) (2015), #P2.35 13



4.4 Graphs and hypergraphs ordered by embeddibility

Finally, consider the set of graphs (loopless, undirected) on the vertex set [n]. Ordered by
containment, this is the Boolean lattice 2M , where M =

(
[n]
2

)
is the set of 2-element subsets

of [n]. Let S
(2)
n denote the subgroup of SM induced by Sn on [n]. Then Gn = 2M/S

(2)
n is the

family of unlabelled graphs on n vertices, ordered by embedding. Pouzet and Rosenberg
[16] used this description of Gn to find the maximum size of an antichain in Gn. Stanley’s
results on quotients [19] give several symmetry properties of Gn – it is rank-symmetric,
rank-unimodal and strongly Sperner.

Problem 6. Determine whether the set of unlabelled graphs on n vertices, ordered by
embedding, is a symmetric chain order.

The same problem can be posed for the family of k-uniform n-vertex hypergraphs.
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