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a b s t r a c t

Several familiar problems in extremal set theory can be cast as questions about the
maximum possible size of an independent set defined on a suitable graph, about the
total number of independent sets in such graphs, or about enumeration of the maximal
independent sets. Here we find bounds on the number of maximal independent sets in the
covering graph of a hypercube.
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1. Introduction

We consider problems from extremal set theory recast as questions about independent sets in graphs, usually graphs
defined on the power set of a finite set. In particular, we are interested in enumerating all independent sets and all maximal
[non-extendable] independent sets. The main results provide bounds for the graph Cn on the cube, defined as follows: the
vertices of Cn are the 0, 1-vectors of length n, with two adjacent if they differ in exactly one coordinate. Alternatively, we
can regard each vector (a1, a2, . . . , an) as the subset A of [n] = {1, 2, . . . , n} where A = {i ∈ [n] | ai = 1}.

Let X be the set of subsets with an even number and Y , the set of subsets with an odd number of elements. Then these
sets form a bipartition of Cn, that is, Cn = (X, Y ; E) such that for all A ∈ X and B ∈ Y ,

AB ∈ E ⇐⇒ |A∆B| = 1.

If we consider the power set as partially ordered by set containment, then Cn is just the covering graph of the power set
lattice.

Wewill consider a few other graphs defined on the power set. For instance, the Sperner graph Sn has edges all pairs where
one set is properly contained in the other, that is, Sn is the comparability graph of the power set lattice. The classical theorem
of Sperner [14] can be stated as follows:

if S is an independent set of vertices in Sn then |S| ≤


n

⌊
n
2⌋


.

Dedekind’s problem [2] concerns the same graph:

determine the total number of independent sets in Sn.

A celebrated theorem of Kleitman [8] provides the first solution to Dedekind’s problem:

the total number of independent sets in Sn is 2


n

⌊
n
2 ⌋


(1+o(1))

.
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The above result states that in a sense the average independent set is just a subset of one of themaximum-sized independent
sets in Sn, namely, the family of all subsets of [n] of size ⌊

n
2⌋ or all subsets of size ⌈

n
2⌉.

There is a considerable literature on Dedekind’s problem, including improvements of the o(1) term [10] and an
asymptotic formula for the total number [11,13]. In particular, Kahn [6] has developed entropy arguments that allow
enumeration of independent sets in bipartite graphs and of antichains in graded partially ordered sets, from which the
results in [10] follow.

The starting point for ourwork is the problemof finding better upper bounds for the total number ofmaximal independent
sets in Sn, that is, better than the bounds from Kleitman’s result. First, we introduce some notation that will simplify our
presentation. Given a graph G, let tis(G) be the total number of independent sets in G, let I(G) denote the family of all
maximal independent sets in G, and let mis(G) = |I(G)|.

Problem 1. Determine the asymptotic value of the log2 mis(Sn). In particular, improve the upper bound inherited from
Kleitman’s result on log2 tis(Sn).

In a related paper [3] we addressed this problem and obtained some partial results. However, we were unable to obtain

a bound of the form 2


n

⌊
n
2 ⌋


(α+o(1))

for some fixed α < 1. Here we are concerned with the graph Cn.

Problem 2. Determine the asymptotic value of log2 mis(Cn).

Our main result is a first step in this direction. We are inclined to believe the lower bound in the following.

Theorem 1. For all n,

2n−2
≤ log2 mis(Cn) ≤ 0.78(1 + o(1))2n−1,

where o(1) → 0 as n → ∞.

2. Preliminaries

We denote a bipartite graph Gwith vertex sets X and Y and edge set E by G = (X, Y ; E). For X ′
⊆ X , let

S(X ′) = {y ∈ Y | xy ∈ E for some x ∈ X ′
}

and call this the span of X ′ in G. Say that Y ′
⊆ Y is a spanned set or a span if Y ′

= S(X ′) for some X ′
⊆ X . Write S(x) in place

of S({x}). Given F ⊆ E, ∪F is the set of vertices of G that belong to edges in F . We say that F is an induced matching if the
subgraph G[∪F ] of G induced by∪F is a matching.We also say that F is a cover of G if every edge of G contains somemember
of ∪F .

We now partition the parts X and Y of bipartite graph Cn = (X, Y ; E). For i = 1, 2, . . . , n, let

X0
i = {A ∈ X | i ∉ A}, X1

i = {A ∈ X | i ∈ A}, (1)

Y 0
i = {B ∈ Y | i ∉ B}, Y 1

i = {B ∈ Y | i ∈ B}. (2)
For subsets X ′

⊆ X and Y ′
⊆ Y , we use [X ′, Y ′

] to denote the set of edges in the subgraph Cn[X ′
∪ Y ′

] of Cn induced by the
vertex set X ′

∪ Y ′.
Each of the following statements is an easy consequence of these definitions.

Fact 1. Let Cn = (X, Y ; E). Then the following hold.
(a) E is partitioned by E =

n
i=1[X

0
i , Y 1

i ] ∪ [X1
i , Y 0

i ].
(b) For i = 1, 2, . . . , n, Cn[X0

i ∪ Y 1
i ] and Cn[X1

i ∪ Y 0
i ] are both induced matchings in Cn, each containing 2n−2 edges.

(c) For i = 1, 2, . . . , n, Cn[X0
i ∪ Y 0

i ] and Cn[X1
i ∪ Y 1

i ] are both (n − 1)-regular subgraphs with (n-1)-factorizations in Cn.

The following is proved in [3]—we include the straightforward verification here for completeness. As noted by one of the
referees, the same proof establishes these statements for all graphs.

Lemma 1. Let G = (X, Y ; E) be a bipartite graph.
(a) For any induced matching M of G, 2|M|

≤ |I(G)|.
(b) For any matching M that is a cover of G, |I(G)| ≤ 3|M|.
Proof. (a) There are exactly 2|M| subsets of ∪M that contain just one element from each edge in M . Each such set extends

to a maximal independent set of G with the addition of vertices from X ∪ Y − (∪M). Consequently, 2|M|
≤ |I(G)|.

(b) Each independent set in∪M contains at most one vertex from each edge inM , so there are at most 3|M| independent sets
contained in ∪M . For all I ∈ I(G), I ∩ (∪M) is an independent set in ∪M and for all z ∈ X ∪ Y − (∪M), z ∈ I if and only
if z ∉ S(I ∩ (∪M)). Thus, each independent set contained in ∪M can be extended to at most one maximal independent
set of G. This shows that |I(G)| ≤ 3|M|. �

The observation in Lemma 1(a) above was suggested to us by Kahn for the bipartite graph induced by the middle two
levels of the Boolean lattice, for n odd.

The lower bound in Theorem 1 is an immediate consequence of Fact 1(b) and Lemma 1(a).
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3. The upper bound for maximal independent sets

We first give two observations about matchings in general bipartite graphs, then obtain the upper bound in Theorem 1.
The first result records the obvious limiting effect of induced matchings in bipartite graphs on the number of independent
subsets.

Fact 2. Let G = (X, Y ; E) have a perfect matching of X onto Y . For anyX ⊆ X andY ⊆ Y , the number of sets X0 ⊂ X such that
X0 ∩X = ∅ and S(X0) ∩Y = ∅ is at most 2|X |−max(|X |,|Y |).

The following lemma guarantees expansion in span sets when degree conditions are assumed.

Lemma 2 ([3]). Let G = (X, Y ; E) and let c and d be positive integers such that δ(X) ≥ c and ∆(Y ) ≤ d. Then for all p ≤ c
there exists a q-element set X ⊆ X such that

q =


|X |(c − p + 1)
c + pd − p + 1


, and |S(X)| ≥ qp.

To verify the upper bound in Theorem 1, let I be a maximal independent set in Cn, fix i ∈ [n], and let

A0 = I ∩ X0
i , A1 = I ∩ X1

i ,

B0 = I ∩ Y 0
i , B1 = I ∩ Y 1

i .

Note that I is determined by A0 ∪ A1 and by B0 ∪ B1. We overestimate the number of maximal independent sets by finding
an upper bound on the number of pairs (A0, A1) or (B0, B1).

We shall use the (binary) entropy function,

H(α) = α log2(1/α) + (1 − α) log2(1/(1 − α)).

(See [1] for properties of this function and [6] for its applications to enumeration of independent sets and antichains.)
Suppose that |B0| + |B1| = β2n−1. For each β , an upper bound on the number of pairs (B0, B1), and, hence, an upper

bound for mis(Cn), is given by

mis(Cn) ≤


2n−1

β2n−1


= 22n−1(1+o(1))H(β). (3)

We need an accompanying bound on the number of pairs (A0, A1). For this, we apply Lemma 2 to the bipartite graph
G = (X, Y ; E) = Cn[B1 ∪ X1

i ]. That is, X = B1 and Y = X1
i . Then the degree of vertices in X is n − 1 because Cn is n-regular

and each vertex of B1 is adjacent to precisely one vertex in X0
i , by Fact 1(b), and has all other neighbors in X1

i . The maximum
degree in G of vertices in Y is n − 1, as can be seen from Fact 1(b). Thus, Lemma 2 does indeed apply with c = d = n − 1.
With p =

√
n, we obtain B1 ⊆ B1 such that

|B1| =


|B1|(n − 1 −

√
n + 1)

n − 1 +
√
n(n − 1) −

√
n + 1


, and |S(B1)| ≥ |B1|

√
n.

Thus,

|B1| =
|B1|
√
n

(1 − o(1)), and |S(B1)| ≥ |B1|(1 − o(1)). (4)

We now apply Lemma 2 to G = (X, Y ; E) = Cn[X1
i ∪ Y 0

i ], which is a perfect matching, by Fact 1(b). We setX = S(B1) andY = B0. With (4) and Fact 2, we see that the number of possible sets A1 is at most

22n−2
−max(|B0|,|S(B1)|) ≤ 22n−2

−max(|B0|,|B1|(1−o(1))) (5)

once B1 is determined. (See Fig. 1 for a schematic of these sets.)
Similarly, we can apply Lemma 2 to the bipartite graph G = (X, Y ; E) = Cn[B0 ∪X0

i ]. This time X = B0 and Y = X0
i . Now,

once B0 is specified, the number of choices of A0 is at most

22n−2
−max(|B1|,|S(B0)|) ≤ 22n−2

−max(|B1|,|B0|(1−o(1))). (6)

Thus, given B0 and B1, we multiply the right-hand sides of (5) and (6) to see that the number of choices of (A0, A1) is at most

22n−1
−max(|B0|,|B1|(1−o(1)))−max(|B1|,|B0|(1−o(1)))

≤ 22n−1(1−β).
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Fig. 1. An independent set I = (A0 ∪ A1) ∪ (B0 ∪ B1) in Cn .

Since I is determined by A0 ∪ A1, we simply multiply this bound by an upper bound on the number of choices of the pair
(B0, B1). For each choice of β , this gives the following bound for mis(Cn):

mis(Cn) ≤


2n−2
√
n

(1−o(1))−
i=0


2n−2

i


2

· 22n−1(1−β)

= 2o(2n−1)
· 22n−1(1−β)

= 22n−1(1+o(1))(1−β). (7)
Nowconsider the bounds onmis(Cn)provided by (3) and (7). The rootβ0 ofH(β) = 1−β satisfies 1−β0 ≥ min(H(β), 1−β)
for all 0 ≤ β ≤ 1. We find that β0 = 0.2271.

We can finally count the total number of maximal independent sets, depending upon |B0|+ |B1| = β2n−1. If β ≤ β0 then
we use the bound in (3); if β > β0 then we use the bound in (7). Since there are 2n−1 possibilities for |B0| + |B1|, we infer
that

mis(Cn) ≤ 2n−1
· 20.7729(1+o(1))2n−1

≤ 20.7729(1+o(1))2n−1
,

which completes the proof of Theorem 1.

4. Further problems

In the Introduction we noted that many results of extremal set theory can be formulated as the determination or
estimation of the maximum size of an independent set in an appropriately defined graph on the power set of a finite set.
Here we are concerned with estimating log2 tis(G) and log2 mis(G) for such G.

We began the paper with the example of the Sperner graph Sn. The Sperner theorem provides the maximum size of
an independent set and a complete description of those sets. Kleitman’s theorem settles Dedekind’s problem, as far as the
asymptotics of log2 tis(Sn) is concerned [8]. We have made some progress on the asymptotics of log2 mis(Sn) [3].

Here is a second class of graphs. Given 0 < s < n, recall that a familyF of sets is s-intersecting if for allA, B ∈ F , |A∩B| ≥

s. Nowdefine the graph In,s whose vertex set is the power set of [n] andwith A and B adjacent if |A∩B| < s. Then independent
sets corresponds to s-intersecting families. The maximum size of an independent set is given by the Erdős–Ko–Rado
Theorem in the case s = 1 [5]. A well-known result of Katona [7] provides the maximum size k(n, s) of an s-intersecting
family:

k(n, s) =



n−
i= n+s

2

n
i


, n + s even;

n−1−
i= n+s−1

2


n − 1

i


, n + s odd.

(8)

A complete description of the maximum-sized families is also given.
We can obtain the asymptotic value of log2 tis(In,s) in case s is fixed and n is large.

Theorem 2. For s a fixed integer and n → ∞,

tis(In,s) = 2k(n,s)(1+o(1)),

where o(1) → 0 as n → ∞.

Proof. Since there is an independent set of size k(n, s) in In,s, it is immediate that 2k(n,s)
≤ tis(In,s).

To see the upper bound, note that every independent set is contained in a maximal one. Each maximal independent set
has size at most k(n, s). And every maximal independent set in In,s is an order filter (is closed under taking supersets) and
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so is determined by the antichain of its minimal elements. Therefore,

tis(In,s) ≤ mis(In,s) · 2k(n,s)

≤ tis(Sn) · 2k(n,s)

≤ 2


n
⌊n/2⌋


(1+o(1))

· 2k(n,s).

The last inequality is Kleitman’s theorem. From Stirling’s formula and Katona’s result (8), k(n, s) = 2n−1(1 + o(1)), as long
as s = o(

√
n). Since we take s to be fixed and n → ∞, we have
n

⌊n/2⌋


(1 + o(1)) + k(n, s) = k(n, s)(1 + o(1)).

This completes the proof. �

Now let us consider estimating log2 mis(In,s). This has been done for s = 1, that is, for intersecting families, by Erdős and
Hindman [4]. Let In = In,1. They proved that

log2(mis(In)) ∼


n − 1
⌊n/2⌋


. (9)

(They also say somewhat more about the lower bound for mis(In).) The upper bound in (9) follows from the observation
that a maximal intersecting family is determined by (the antichain of) those of its minimal elements that do not contain
some fixed element. Their proof of the lower bound is quite short and straightforward. It can also be obtained by observing
that for n = 2t (n = 2t + 1), the collection of all t-element subsets of [n] (respectively, all t-element subsets containing
a fixed element and their complements) induces a matching with


2t
t


/2 (respectively,


2t
t−1


) edges. In the review of the

Erdős–Hindman paper [4], Kleitman [9] states that a sharper asymptotic formula for the number of maximal intersecting
families (as opposed to the asymptotics of the log of this number) might be derived from Korshunov’s description of the
antichains in the power set lattice [11].

For s > 1, one can easily obtain a lower bound for mis(In,s) as follows. Let F be a maximal independent set in In−(s−1),
that is, a maximal intersecting family on the set [n− (s− 1)]. Let X = {n− s+ 2, n− s+ 3, . . . , n} and let F ′ be the family
of subsets of [n] defined by F ′

= {A ∪ X | A ∈ F }. Then F ′ is s-intersecting and so is an independent set in In−(s−1). Extend
F ′ to a maximal independent set F ′′. It is obvious that if F0 and F1 are distinct maximal independent sets in In−(s−1) then
F ′

0 ≠ F ′

1 . Without loss of generality, let A ∈ F0 − F1 and A∪ X ∈ F ′

0 − F ′

1 . Now suppose that F ′′

0 = F ′′

1 . Then A∪ X ∈ F ′′

1 .
Since F ′′

1 is s-intersecting, |(A ∪ X) ∩ (B ∪ X)| ≥ s for all B ∈ F1. Hence, |A ∩ B| ≥ 1 for all B ∈ F1. Since F1 is a maximal
intersecting family, we must have that A ∈ F1. This is a contradiction. Therefore, the mapping F → F ′′ is a 1–1 map of the
family of maximal independent sets of In−(s−1) into the family of maximal independent sets in In,s. It follows that

mis(In,s) ≥ mis(In−(s−1)) ≥ 2


n−s
⌊(n−s)/2⌋


.

At this time, this is all we can say about mis(In,s) and we pose this

Problem 3. Determine the asymptotics of log2(mis(In,s)) for s fixed and n → ∞.

We close with a very natural graph theoretic question that can be formulated in similar language. Indeed, this extremal
question may occur to readers, so it is worth noting that it has been completely solved! Erdős and Moser asked for the
maximum number f (n) of maximal independent sets that an n-vertex graph could have. With our notation, they asked to
determine

f (n) = max
G

mis(G),

where themaximum is taken over all n-vertex graphs G. Moon andMoser [12] determined f (n) exactly and gave a complete
description of the extremal graphs: for all n ≥ 2

f (n) =

3n/3, if n ≡ 0 (mod 3);
4 · 3⌊n/3⌋−1, if n ≡ 1 (mod 3);
2 · 3⌊n/3⌋, if n ≡ 2 (mod 3).

(10)

The extremal graphs realizing the values in (10) are disjoint unions of complete graphs, asmany that are triangles as possible
and the remaining ones either edges or complete graphs on 4 vertices.
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