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Retracts of posets: the chain-gap property and the selection
property are independent

Dwight Duffus, Claude Laflamme, and Maurice Pouzet

Dedicated to George Grätzer and E. Tamás Schmidt on their 70th birthdays

Abstract. Posets which are retracts of products of chains are characterized by means of
two properties: the chain-gap property and the selection property (Rival and Wille [9]).
Examples of posets with the selection property and not the chain-gap property are easy to

find. To date, the Boolean lattice P(ω1)/ Fin has been the sole example of a lattice without
the selection property [9]. We prove that it also fails to have the chain-gap property. In
addition, we provide an example of a lattice which has the chain-gap property but not the
selection property. This answers questions raised in [9].

1. Introduction

Given posets P and Q, P is a retract of Q if there are order-preserving maps

f : P → Q and g : Q → P such that g ◦ f = 1P . The maps f and g are called a

coretraction and a retraction, respectively. I. Rival and the first author [2] defined

an order variety to be a class of posets closed under direct products and retracts.

I. Rival and R. Wille [9] characterized members of the order variety generated by

the class of chains as posets satisfying two properties: the chain-gap property and

the selection property. Briefly, a poset P has the selection property if for each

separable gap of P one can select an element of P separating the gap such that

the overall selection preserves the natural order on these gaps. We say that P

has the chain-gap property if each gap can be mapped into a gap within a chain

in an order-preserving fashion. Rival and Wille gave examples of lattices with

the selection property for which the chain-gap property fails. They showed that

P(ω1)/Fin, the quotient of the power set of ω1 by the ideal Fin of finite sets, does
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not have the selection property. They asked if it has the gap-property, and we

answer this in the negative.

Theorem 1.1. If E is infinite, P(E)/Fin does not have the chain-gap property.

They also asked if there is a lattice with the chain-gap property but without

the selection property, and we answer this question positively. Our example is a

distributive lattice of size ℵ1 which does not embed the ordinal ω1. It is built from

a Sierpinskization of a subchain S of the real line R which is ℵ1-dense, that is,∣∣ ]a, b[ ∩ S
∣∣ ≥ ℵ1 for every a < b in S, it has no end points and it has size ℵ1. (The

existence of such chains is well known and easily proved.) Let ≤
ω1

be an ordering on

S such that the chain (S,≤ω1
) has order type ω1, and let ≤

R
be the usual ordering

on the reals. The Sierpinskization of S is the poset (S,≤), where ≤ is the ordering

on S defined by x ≤ y iff x ≤
ω1

y and x ≤
R

y. Let L(S,≤) be the lattice generated

within the lattice of subsets of S by the principal initial segments of (S,≤). So

L(S,≤) consists of all the finite unions of finite intersections of initial segments of

the form ↓x for x ∈ S, where ↓x := {y ∈ S : y ≤ x}. With this construction in

mind we show:

Theorem 1.2. L(S,≤) has the chain-gap property, but not the selection property.

More generally the above notions relate to a central objective in the study of

retracts of posets, namely to find conditions (denoted by (C), say) that a map

f : P → Q must satisfy in order to be a coretraction. Posets P for which maps

satisfying (C) are necessarily coretractions are called absolute retracts with respect to

maps satisfying (C). For example, each coretraction must be an order-embedding.

As is well known, the absolute retracts with respect to order-embeddings are the

complete lattices. As well, the complete lattices are precisely those posets that are

injective with respect to order-embedding. That is, every order-preserving map from

a poset Q to P extends to an order-preserving map of every poset Q′ in which Q

order-embeds. Moreover, there are enough absolute retracts, in the sense that every

poset order-embeds into a complete lattice, that is, into an absolute retract.

Every coretraction must be gap-preserving. A somewhat similar situation to the

case of order-embeddings was observed by Duffus and Pouzet [1], and by Nevermann

and Rival [6]:

A poset P is an absolute retract with respect to gap-preserving maps if and

only if P has the selection property. Moreover, absolute retracts coincide with

injective objects with respect to gap-preserving maps, and there are enough of

them.

The class of absolute retracts is preserved under retraction and products (Rival

and Wille [9]), it contains the chains (Duffus, Rival and Simonovits [3]) and, hence,

the variety generated by the class of chains. According to Rival and Wille [9]:
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A poset P embeds by a gap-preserving map into a product of chains iff P has

the chain-gap property.

The chain-gap property implies that P is a lattice. Every countable lattice belongs

to the variety generated by the class of chains [8], hence satisfies the chain-gap

property. However, there are many lattices for which the chain gap property fails

(see [2], [9]).

2. Preliminaries

Let P be a partially ordered set and let C ⊆ P . We use this notation and

terminology:

• U(C) := {x ∈ P : y ≤ x for all y ∈ C} is the set of upper bounds of C and

L(C), the set of lower bounds, is defined dually;

• ↓C = {x ∈ P : x ≤ y for some y ∈ C} is the initial segment generated by C

and ↑C is defined dually and called the final segment generated by C;

• C is cofinal in P if ↓C = P and is coinitial in P if ↑C = P ;

• the cofinality of P , cf(P ), is the least cardinality of a cofinal subset, the

coinitiality of P is defined dually and denoted by ci(P ).

For a singleton x ∈ P , we use ↓x instead of ↓{x}. If reference to P is needed,

particularly in case of several orders on the same ground set, we use the notation

↓P C instead of ↓C.

Let (A,B) be a pair of subsets of P . Here are terms and notation associated to

these pairs:

• the cardinality of a pair (A,B) is the pair (|A|, |B|);

• call (A,B) regular if |A| and |B| are both regular cardinal numbers, or if one

is regular and the other is 0;

• say that (A,B) is a pregap of P if A ⊆ L(B) or, equivalently, if B ⊆ U(A);

• a pregap (A,B) is separable if U(A) ∩ L(B) 6= ∅;

• a pregap (A,B) is a gap if U(A) ∩ L(B) = ∅;

• a pair (A′, B′) is a subpair of (A,B) if A′ ⊆ A and B′ ⊆ B, and if both pairs

are gaps, call (A′, B′) a subgap of (A,B).

We denote by B(P ) the set of separable pregaps of P . Pregaps are quasiordered

as follows: (A,B) ≤ (A′, B′) if A ⊆ ↓A′ and B′ ⊆ ↑B.

A gap (A,B) of P is said to be minimal if all subgaps have the same cardinality

as (A,B). Call a gap (A,B) irreducible if for all subpairs (A′, B′), (A′, B′) is a gap

if and only if it has the same cardinality as (A,B). It is straightforward to show

that every gap has a subgap which is minimal. On an other hand, irreducible gaps

are just minimal gaps all of whose subpairs, of its cardinality, are gaps.

We now come to the main concepts of this paper.
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Definition 2.1. (1) The poset P has the selection property (the strong selec-

tion property in the terminology of Nevermann and Wille [7]) if there is an order-

preserving map ϕ from B(P ) to P which associates to every pair (A,B) ∈ B(P )

an element of U(A) ∩ L(B).

(2) An order-preserving map g from P into a poset Q preserves a gap (A,B) of

P if (g[A], g[B]) is a gap of Q. If g preserves all gaps of P , it is gap-preserving. A

poset Q preserves a gap (A,B) of P if there is an order-preserving map g : P → Q

which preserves (A,B). The poset P is said to have the chain-gap property if each

gap of P is preserved by some chain.

The relationship between the chain-gap property and regular irreducible gaps is

given by the following result by Duffus and Pouzet.

Theorem 2.2. [1] An ordered set P has the chain-gap property if and only if every

gap of P contains a regular irreducible gap.

Although this will not be needed here, they proved a bit more in presence of the

selection property.

Proposition 2.3. [1] Let (A,B) be a minimal gap of P with λ := |A| and µ := |B|

both infinite. If P has the selection property then there are two chains C and D of

type respectively cf(λ) and cf(ν)∗ such that (C,D) is a gap and (A,B) ≤ (C,D).

Moreover, if (A,B) is an irreducible gap then the ordinal sum C ⊕D is a retract

of P which preserves (A,B).

We conclude this section with some notation and remarks necessary for the proof

of Theorems 1.1 and 1.2.

For E any set, let P(E) be the Boolean algebra of all subsets of E and let

P(E)/Fin be the quotient of P(E) by the ideal Fin of finite subsets of E. Define

p : P(E) → P(E)/Fin to be the canonical projection. For X,Y ∈ P(E), we set

X ≤Fin Y if X \ Y ∈ Fin. This defines a quasiorder on P(E); its image under p is

the order on P(E)/Fin.

Remark 2.4. Since P(E)/Fin is a lattice, there are no gaps of cardinality (λ, µ)

where either λ or µ is finite. Moreover, by a countable diagonalization argument

as first observed by Hadamard [5], there are no gaps of cardinality (ω, ω) either.

To avoid trivialities, let us assume that E is infinite in what follows. Gaps

of P(E) under the above quasiorder correspond under p to gaps in the poset

P(E)/Fin, so for notational simplicity all our discussion regarding gaps in P(E)

can be translated in the latter structure if necessary.

We also recall that the usual Hausdorff topology on P(E) is obtained by identi-

fying each subset of E with its characteristic function and giving the resulting space

{0, 1}E the product topology. A basis of open sets consists of subsets of the form
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O(F,G) := {X ∈ P(E) : F ⊆ X and G ∩ X = ∅}, where F,G are finite subsets

of E. We can therefore talk about closed sets and more generally Fσ sets, that is,

countable unions of closed sets. Endowed with this topology, P(E) is compact and

Hausdorff, therefore a Baire space, that is, a space in which any countable union of

closed sets with empty interior has empty interior.

3. Proof of Theorem 1.1

Consider E = T2 the binary tree of finite sequences of 0 and 1, and T2(n) those

sequences of length at most n. We denote by ( ) the empty sequence and by s.(i)

the sequence obtained by adding i ∈ {0, 1} to the sequence s. As mentioned above,

for notational simplicity we will consider the quasiorder ≤Fin on P(E) as opposed

to the poset P(E)/Fin itself.

For B ⊆ P(E) set Bc = {E \ X : X ∈ B}. We will be particularly interested

in the set B of maximal branches of T2, a closed subset of P(E) with no isolated

points. Notice that for (A,B) ∈ P(B) × P(B), (A,Bc) is a pregap if and only if A

and B are disjoint.

Proposition 3.1. Let A and B be disjoint subsets of B. Then (A,Bc) is separable

if and only if A and B are contained in disjoint Fσ sets.

Proof. Let X ∈ U(A) ∩ L(Bc) separate (A,Bc), and consider A′ :=
⋃

n{Y ∈ B :

Y \ X ⊆ T2(n)} and B′ :=
⋃

n{Y ∈ B : Y ∩ X ⊆ T2(n)}. Then A′ and B′ are

disjoint, are Fσ sets (since B is closed) and contain A and B respectively.

Conversely, let A′, B′ be disjoint Fσ sets containing A,B, respectively. Since B

is closed, we may assume without loss of generality that A′ =
⋃

A′
n and B′ =

⋃
B′

n

are increasing chains of closed sets in B. For any fixed n, we claim that there must

be an integer kn such that any s ∈ X ∩ Y has length at most kn for any X ∈ A′
n

and Y ∈ B′
n. Indeed otherwise for infinitely many k we could find sk ∈ Xk ∩ Yk

of length at least k for some Xk ∈ A′
n and Yk ∈ B′

n. But then we could find a

subsequence of {sm : m ∈ N} converging to a maximal branch which by closure

would be in A′
n ∩ B′

n, a contradiction. We can also assume that the sequence

produced, {kn : n ∈ N}, is strictly increasing. Now if Xn := (∪A′
n) \ T2(kn), then

X :=
⋃

n Xn ∈ U(A) ∩ L(Bc) and therefore (A,Bc) is separable. �

By considering A consisting of a single branch and with B = B\A, one concludes

that the above result cannot be strengthened to a covering by disjoint closed sets.

Although the first part of the proof does generalize to any separable pregap in

P(E), it is interesting that the converse is not true as is shown by an example

given by Todorcevic [11]. Indeed for Y ∈ B let aY = {s ∈ E : s.0 ∈ Y } and

bY = {s ∈ E : s.1 ∈ Y }. Then A = {aY : Y ∈ B} and B = {bY : Y ∈ B} form two
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disjoint closed sets in P(E). Observe moreover that aY ∩ bY = ∅ for each Y , and

that for Y 6= Y ′, either aY ∩ bY ′ 6= ∅ or aY ′ ∩ bY 6= ∅. This last property guarantees

that (A,Bc) is a so-called Luzin gap in P(E).

Since as mentioned above P(E) is a Baire space, we further have:

Corollary 3.2. If A ⊆ B and B = B \ A are both dense then the pair (A,Bc) is a

gap in P(E).

We finally arrive at the main reason for considering this structure.

Proposition 3.3. Let A and B be disjoint subsets of B. If (A,Bc) is a gap, then

it does not contain a regular irreducible gap.

Proof. For s ∈ E and D ⊆ P(E), we set D(s) = {X ∈ D : s ∈ X} and D̂ = {s ∈

E : |D(s)| = |D|}.

Now observe that for an infinite D ⊆ B, the least element of T2, namely the

empty sequence ( ), belongs to D̂. Moreover if s ∈ D̂, then either s.(0) or s.(1)

belongs to D̂, so we conclude that D̂ contains a branch and so certainly is infinite.

Moreover, if |D| is regular and uncountable, then D̂ must contain more than a

branch and is therefore itself not a chain.

With this, suppose for contradiction that (A,Bc) contains a regular irreducible

gap of size (λ, µ) in P(E). This means that there is a pair (A′, B′) such that A′ ⊆ A,

|A′| = λ, B′ ⊆ B, |B′| = µ such that (A′, B′c) is an irreducible gap.

As noted in Remark 2.4, λ and µ must be infinite and one of them uncountable.

With no loss of generality, we may suppose that this is λ. According to the above

observation, Â′ is not a chain and B̂′ is infinite, hence there are s ∈ Â′, t ∈ B̂′

which are incomparable with respect to the order on T2. Let A′′ := A′(s) and

B′′ := B′(t). We have A′′ ⊆ A′, |A′′| = |A′| = λ, B′′ ⊆ B′, |B′′| = |B′| = µ, and

therefore (A′′, B′′c) must be a gap by the irreducibility assumption. On the other

hand for Z :=
⋃

A′′, we have X ≤Fin Z ≤Fin Y for every X ∈ A′′ and Y ∈ B′′c, a

contradiction. �

With this in hand, the proof of Theorem 1.1 breaks into two cases.

Case 1. E is countably infinite. We deduce Theorem 1.1 as follows. We

identify E with T2, and choose A ⊆ B and B = B \ A both dense in B. According

to Corollary 3.2, (A,Bc) is a gap of P(E), and according to Proposition 3.3, it does

not contain a regular irreducible gap. According to Theorem 2.2, P(E)/Fin does

not have the chain-gap property.

Case 2. E is uncountable. Let E′ be a countably infinite subset of E. The

identity map 1E′ on E′ extends to a map ϕ from P(E′)/Fin into P(E)/Fin. This

map is gap-preserving.
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By Case 1, P(E′)/Fin has a gap (A,B) containing no regular irreducible subgap.

But then (ϕ(A), ϕ(B)) is a gap in P(E)/Fin containing no regular irreducible

subgap. Thus, it does not have the chain-gap property.

4. Proof of Theorem 1.2

The proof naturally breaks into two main parts.

Part 1: L(S,≤) does not have the selection property.

It suffices to prove the following.

Proposition 4.1. (1) ω1 does not embed into L(S,≤).

(2) L(S,≤) has a minimal gap (A, ∅) of cardinality (ℵ1, 0).

Indeed to see how the statement of Part 1 follows, let (aα)α<ω1
be an enumeration

of the elements of A. Set Aα = {aβ : β < α}. If the selection property holds, then

to every pair (Aα, ∅) we can associate an element xα ∈ U(Aα) ∩ ∅∗ = U(Aα)

such that (Aα, ∅) ≤ (Aα′ , ∅) implies xα ≤ xα′ . In particular, for α ≤ α′ we must

have xα ≤ xα′ . If ω1 does not embed into L(S,≤) then the sequence xα must

eventually be stationary, and in particular have an upper bound. If u is such an

upper bound, then u ∈ U(Aα) for every α, thus u ∈ U(A). This is impossible since

A is unbounded.

Proof of Proposition 4.1. We first prove that (2) holds.

Lemma 4.2. Fix r ∈ S arbitrary and let A = {↓x : x ∈ S and x ≤
R

r}. Then

(A, ∅) is a minimal gap in L(S,≤) of size (ℵ1, 0).

Proof. The proof will follow after these two claims.

Claim 4.3. Any two elements of (S,≤) have an upper bound.

Proof of Claim 4.3. Let x, y ∈ S. The set X := {z ∈ S : z ≤
ω1

x or z ≤ω1
y} is

countable, but on the other hand the set Y := {z ∈ S : x, y ≤R z} is uncountable.

Thus, Y \X is non empty, and every z ∈ Y \X majorizes x and y in (S,≤), proving

our claim. �

Claim 4.4. A subset B of L(S,≤) has an upper bound if and only if
⋃

B has an

upper bound in (S,≤).

Proof of Claim 4.4. If B has an upper bound in L(S,≤), then there is some member

X of L(S,≤) which includes every element of B, hence
⋃

B ⊆ X. This set X is

a finite union of finite intersections of principal initial segments of (S,≤); hence B

is a subset of a finite union ↓x1 ∪ · · · ∪ ↓xk of principal initial segments of (S,≤).

By Claim 4.3, there is some x which majorizes x1, . . . , xk, and such an x majorizes⋃
B. The converse is trivial and the claim is verified. �
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With these claims, the proof of Lemma 4.2 goes as follows. From the fact that

S is ℵ1-dense of size ℵ1, A has size ℵ1. Next, let’s see that (A, ∅) is a gap.

Now if A is bounded, then Claim 4.4 implies that
⋃

A ⊆ ↓z for some z ∈ S.

In particular, the uncountable initial segment of S below r under ≤R from S is a

subset of the countable initial segment of S below z under ≤ω1
, a contradiction.

Therefore, A is unbounded in L(S,≤) and (A, ∅) is a gap.

Finally, showing that (A, ∅) is a minimal gap amounts to showing that every

countable subset A′ of A is bounded. Indeed, {x ∈ S : ↓x ∈ A′} is countable and

thus bounded in ≤ω1
. If y is such a bound, then according to Claim 4.3 there is

some z ∈ S such that y ≤ z and r ≤ z. Then ↓z is a bound of A′. �

This concludes the verification of statement (2) of the Proposition, and we now

turn our attention to (1).

Claim 4.5. Let a1, . . . , an ∈ (S,≤) and A := ↓a1∩· · ·∩↓an. Then there are i, j ≤ n

such that A = ↓ai ∩ ↓aj.

Proof of Claim 4.5. Let i such that ai ≤ω1
ak for all k, 1 ≤ k ≤ n, and let j such

that aj ≤R ak for all k, 1 ≤ k ≤ n. Then A = ↓ai ∩ ↓aj . �

From this we immediately get:

Claim 4.6. Every finite intersection of principal initial segments of (S,≤) is of the

form ↓x ∩ ↓y with x ≤R y and y ≤ω1
x.

Now toward a proof that ω1 does not embed in L(S,≤), let (Aα)α<ω1
be an

ω1-sequence of elements of L(S,≤). According to Claim 4.6, for each α < ω1, we

may write Aα =
⋃
{Aα,i : i ∈ Iα} where Iα is a finite set and Aα,i = ↓xα,i ∩ ↓yα,i

with xα,i ≤R
yα,i and yα,i ≤ω1

xα,i. Set Xα = {xα,i : i ∈ Iα}, Yα = {yα,i : i ∈ Iα}

and Zα = Xα ∪ Yα.

Claim 4.7. If (Aα)α<ω1
is strictly increasing then the sets Zα cannot be pairwise

disjoint.

Proof of Claim 4.7. For α < ω1 let xα = maxR(Xα). Since Aα ⊆ Aβ whenever

α ≤ β we have ↓RAα ⊆ ↓RAβ . Since further ω1 does not embed into (S, ≤R),

it does not embed into the chain of initial segments of (S,≤R). Hence, the ω1-

sequence (↓RAα)α<ω1
is eventually constant. Let α0 such that ↓RAα = ↓RAα0

for

α0 ≤ α < ω1 and define A = ↓RAα0
.

Suppose now that the Zα’s are pairwise disjoint. Then in particular all the Xα’s

are pairwise disjoint, and therefore there is at most one α such that A = ↓Rxα. With

no loss in generality, we may assume that xα ∈ S \A for all α > α0. Since ω∗
1 does

not embed in S, there is x ∈ S \A for which Xx := {α : α0 < α < ω1 and x <R xα}

is uncountable. Now consider yα := maxR{yα,i : xα,i = xα and i ∈ Iα} for α < ω1.
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Since the Yα’s are also pairwise disjoint, all yα’s are distinct. Since {z ∈ S : z ≤ω1
x}

is countable, there is some α ∈ Xx such that x ≤ω1
xα and x ≤ω1

yα. But for such

an α we have x <R xα ≤R yα. This implies that x ∈ Aα. Since Aα ⊆ ↓RAα = A,

we get x ∈ A, contradicting the properties of x. �

Claim 4.8. If there is a strictly increasing ω1-sequence of elements of L(S,≤)

then there is an ℵ1-dense subchain S
′ of R and a strictly increasing ω1-sequence of

elements of L(S′,≤′) for which all Zα’s are pairwise disjoint.

Proof of Claim 4.8. Start with a strictly increasing ω1-sequence (Aα)α<ω1
of mem-

bers of L(S,≤). Since the Zα’s are finite, there is an uncountable subset U of ω1

and a finite subset F of S such that for all α, β ∈ U , F is an initial segment of Zα

with respect to (S,≤ω1
) and Zα ∩Zβ = F . That is, (Zα)α∈U forms an uncountable

∆-system.

Let x ∈ S satisfy F ⊆ ↓ω1
x and write X = ↓ω1

x. Set S
′ = S \ X, A′

α = Aα \ X,

A′
α,i = Aα,i \ X, and I ′α = {i ∈ Iα : A′

α,i 6= ∅}.

Since X is countable, S
′ is again an ℵ1-dense chain with no end points and the

well-ordering induced has order type ω1. The intersection order ≤′ is the order

induced by ≤ on S
′.

The ω1-sequence (A′
α)α<ω1

is increasing and since X is countable, it contains

a strictly increasing subsequence (A′
α)α∈U ′ , for some uncountable U ′ ⊆ U . Let

α ∈ U ′ \ min(U ′). Then A′
α 6= ∅, hence A′

α = ∪{A′
α,i : i ∈ I ′α}. Since X is an

initial segment of (S,≤) it follows that A′
α,i = ↓(S′,≤′)xα,i ∩↓(S′,≤′)yα,i. Thus, with

X ′
α := {xα,i : i ∈ I ′α}, Y ′

α := {yα,i : i ∈ I ′α}, and Z ′
α := X ′

α ∪ Y ′
α, we see that the

Z ′
α’s for α ∈ U \ min(U) are pairwise disjoint. �

From Claim 4.7 and Claim 4.8, there is no strictly increasing ω1-sequence of

elements of L(S,≤). The proof of Proposition 4.1 is complete. �

Part 2: L(S,≤) has the chain-gap property.

Let (A,B) be a gap in L(S,≤). By Theorem 2.2 it suffices to show that it

contains a regular irreducible gap. The fact that L(S,≤) is a distributive lattice

allows us to break this into two steps via the following well-known consequence of

distributivity.

Lemma 4.9 ([8, Lemma 4]). There is a partition of L(S,≤) into a prime ideal I

and a prime filter F such that (A, ∅) is a gap of I and (∅, B) is a gap of F .

Proof. Since (A,B) is a pre-gap, U(A) is a filter and L(B) is an ideal. Since (A,B)

is a gap, U(A)∩L(B) = ∅. By Stone’s Lemma [4], there exists a prime ideal I such

that L(B) ⊆ I and I ∩ U(A) = ∅. Put F = L(S,≤) \ I. �

Now to show that (A,B) contains a regular irreducible gap in L(S,≤), it suffices

to show that both (A, ∅) and (∅, B) do, within I and F , respectively.
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Lemma 4.10. The gap (∅, B) of F contains a regular irreducible gap.

Proof. It suffices to show that the coinitiality of F is countable.

Let K = {x ∈ S : ↓x ∈ F}. The coinitiality of any subset of R is countable,

so we can select a countable subset D coinitial in K with respect to the order ≤R.

Let U = {x ∈ K : x ≤
ω1

y for some y ∈ D}. Since D is countable, U is countable.

Moreover, U is coinitial in K. To see this, for any x ∈ K, there is x1 ∈ D such

that x1 ≤R x. Now, either x1 ≤ω1
x, in which case x1 ≤ x, or x <ω1

x1 but

then by definition of U , x ∈ U . So in both cases, x majorizes an element of U .

Let δ(U) = {↓x ∩ ↓y : x ∈ U, y ∈ U}. Since U is countable, δ(U) is countable.

Moreover, it is coinitial in F . Indeed, any a ∈ F is of the form a = a1 ∪ · · · ∪ an

where ai = ↓xi ∩ ↓yi. Since F is a prime filter, some ai ∈ F and since F is a filter,

xi, yi belong to K. Because U is coinitial in K there are x′, y′ ∈ U such that x′ ≤ xi

and y′ ≤ yi. Thus, ↓x′ ∩ ↓y′ ⊆ ai ⊆ a proving that δ(U) is coinitial in F . �

Lemma 4.11. The gap (A, ∅) of I contains a regular irreducible gap.

Proof. Elements of I are of the form a = a1∪a2 · · ·∪an where ai = ↓xi∩↓yi. Since

I is a prime ideal, for every ai one of the sets ↓xi, ↓yi belongs to I. Consequently

the set of finite unions of members of I of the form ↓x is cofinal in I. Note that for

all X ⊆ I,
⋃

X = {x ∈ S : x ∈ u for some u ∈ X} and observe that: (A, ∅) is a gap

in I iff
⋃

A is not contained in a finitely generated initial segment of
⋃

I.

Let ≤∗ denote one of the two orderings ≤
ω1

, ≤
R

restricted to
⋃

I and let (
⋃

I)∗ :=

(
⋃

I,≤∗). We consider two cases:

(1):
⋃

A is an unbounded subset of (
⋃

I)∗ for some ≤∗.

(2):
⋃

A is a bounded subset of (
⋃

I)∗ for the two possible orderings ≤∗.

Case (1). To ease reading in this case, let J = (
⋃

I)∗.

Since
⋃

A is an unbounded subset of J in this case, J has no largest element.

Therefore we can choose (cα)α<µ (µ = ω1 or ω) to be a strictly increasing cofinal

sequence of elements of J . With Iα := {u ∈ I : u ⊆ ↓Jcα}, α < µ, we have

an increasing sequence. We claim I =
⋃

α<µIα. Indeed, let u ∈ I. There are

x1, . . . , xk ∈
⋃

I such that u ⊆ ↓x1 ∪ · · · ∪ ↓xk, and there exists cα such that

x1, . . . , xk ≤∗ cα. For i = 1, . . . , k, ↓xi ⊆ ↓Jxi ⊆ ↓Jcα, so we have u ⊆ ↓Jcα and,

thus, u ∈ Iα.

Now let us see that for all α, A \ Iα 6= ∅. Indeed, since
⋃

A is unbounded in

J , there is some x ∈
⋃

A such that cα+1 ≤∗ x. Since x ∈ a for some a ∈ A, that

a 6∈ Iα. Pick aα ∈ A \ Iα for each α < µ. Let A′ := {aα : α < µ}. Since (A, ∅)

is a minimal gap and µ is regular, (A′, ∅) is a regular and irreducible gap. This

completes Case (1).

Case (2). To simplify notation in this case, let W = (S,≤ω1
) and let R = (S,≤R).
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Since
⋃

A is a bounded subset of
⋃

I with respect to ω1,
⋃

A is countable. Hence,

there is a least element c of W for which C := (
⋃

A) ∩ ↓W c is not contained in a

finitely generated initial segment of
⋃

I. Let C̃ = {↓x : x ∈ C}. The pair (C̃, ∅)

is a gap in I and is a subgap of (A, ∅). Therefore, it suffices to show that (C̃, ∅)

contains a regular irreducible gap.

Let G = {z ∈
⋃

I : C ⊆ ↓W z}. Clearly c is a lower bound of G with respect to

≤ω1
. Let C1 = C ∩ ↓SG and let C2 = C \C1. Since C is not contained in a finitely

generated initial segment of
⋃

I, for at least one of i = 1 or i = 2, Ci has the same

property.

Subcase 1. i = 2. Due to the choice of c, C2 is cofinal in ↓W c. Thus C2 is cofinal

in C with respect to ≤ω1
. Let C ′ be a cofinal subset of C2 with respect to ≤ω1

having order type ω. We claim that no countable subset of C ′ can be contained

in a finitely generated initial segment of
⋃

I. Indeed, if there were one, then there

would be one, say C ′′, contained in some set of the form ↓z, with z ∈
⋃

I. But, with

respect to the order ≤ω1
, C ′′ is cofinal in C ′, C ′ is cofinal in C2, and C2 is cofinal

in C, so C ′′ is cofinal in C. Then from C ′′ ⊆ ↓W z we get z ∈ G. With the fact that

C ′′ ⊆ ↓Rz this implies C ′′ ⊆ C1, a contradiction. Therefore C̃ ′ := {↓x : x ∈ C ′} is

a regular irreducible gap, as desired.

Subcase 2. Subcase 1 does not hold. Hence i = 1. Again, due to the choice of

c, C1 is cofinal in ↓W c and thus in C. Select a cofinal sequence in C1 with type

ω, say x0 <ω1
x1 <ω1

· · · <ω1
xn <ω1

· · · . Observe that G has no largest element

with respect to the order ≤R. To see this, suppose that u is the largest element.

Then we have both C1 ⊆ ↓W u and C1 ⊆ ↓Ru, thus C1 ⊆ ↓u, contradicting the

unboundedness of C1. Hence, the cofinality of G with respect to ≤R is countably

infinite and we may select u0 <R u1 <R · · · <R un <R · · · in G forming a cofinal

sequence with respect to the order ≤R.

Claim 4.12. There is a sequence D := {yn : n < ω} ⊆ C1, strictly increasing with

respect to ≤ = ≤S, that is cofinal in (C1,≤ω1
) and in (G,≤R).

Proof of Claim 4.12. First, we define y0. Since x0 <ω1
c, C1 ∩ ↓W x0 is contained

in a finitely generated initial segment of
⋃

I. Hence, C1 ∩↑W x0 is not contained in

a finitely generated initial segment of
⋃

I. In particular,

C1 ∩ ↑W x0 6⊆ ↓u0 . (1)

Since u0 ∈ G we have C ⊆ ↓W u0. From (1) we get

C1 ∩ ↑W x0 6⊆ ↓Ru0 . (2)

From (2) there is some y0 ∈ C1 such that y0 ≥ω1
x0 and y0 ≥R u0.
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Suppose that y0 < y1 · · · < yn are defined with xi ≤ω1
yi and ui ≤R yi. In order

to define yn+1 select xn1
and un1

such that:

yn ≤ω1
xn1

, xn+1 <ω1
xn1

and yn ≤R un1
, un+1 <R un1

.

As above, since xn1
<ω1

c, C1 ∩ ↑W xn1
is not contained in a finitely generated

initial segment of
⋃

I. Thus, C1∩↑W xn1
6⊆ ↓Run1

, so there is an element, say yn+1,

such that xn1
≤ω1

yn+1 and un1
≤

R
yn+1. Clearly, yn < yn+1, xn+1 ≤ω1

yn+1 and

un+1 ≤R yn+1. From our construction, D is cofinal in (C1,≤ω1) and in (G,≤R). �

Since D is cofinal in (C1,≤ω1
) and in (G,≤R), D is unbounded in

⋃
I. But

D̃ := {↓yn : yn ∈ D} is a chain and is unbounded in I. Hence, (D̃, ∅) is a regular

irreducible gap in I.

With this, the proofs of Case (2) and of Lemma 4.11 are complete. �

Observe that in a lattice L it is not always true that a gap (A, ∅) contains a

regular irreducible gap, even when A is countable (see [9]). This is indeed the case

if L is a non-principal maximal ideal in P(N) and A = {{n} : n ∈ N}. The above

proof is therefore more technical, as expected.

We conclude with the following extension question.

Problem 4.13. Let κ be such that ω < κ ≤ 2ℵ0 , S be a κ-dense subchain of R of

size κ and L(S,≤) be the distributive lattice associated with a Sierpinskization of

S. Does L(S,≤) have the chain-gap property?
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