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Abstract

For a subset S of a finite ordered set P , let

S ↑ = {x ∈ P : x ≥ s for some s ∈ S} and S ↓ = {x ∈ P : x ≤ s for some s ∈ S}.
For a maximal antichain A of P , let

s(A) = max
A=U∪D

|U ↑ | + |D↓ |
|P | ,

the maximum taken over all partitions U ∪ D of A, and

sk(P ) = min
A∈A(P ),|A|=k

s(A)

where we assume P contains at least one maximal antichain of k elements. Finally,
for a class C of finite ordered sets, we define

sk(C) = inf
P∈C

sk(P ).

Thus sk(C) is the greatest proportion r satisfying: every k-element maximal an-
tichain of a member P of C can be “split” into sets U and D so that U ↑ ∪ D ↓
contains at least r|P | elements.

In this paper we determine sk(Gk) for all k ≥ 1, where Gk = {k × n : n ≥ k} is
the family of all k by n “grids”.
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1 Introduction

Given a maximal antichain A of an ordered set P , say that A splits if there is a partition
A = U ∪ D such that P = U ↑ ∪ D↓, where

U ↑ = {x ∈ P : x ≥ u for some u ∈ U} and D↓ = {x ∈ P : x ≤ d for some d ∈ D}.
Say that P has the splitting property if every maximal antichain of P splits. Ahlswede,
Erdős and Graham introduced these notions in [1], and proved that every finite Boolean
lattice has the splitting property. In [2] we used the splitting property to study maximal
antichains in distributive lattices. More recently, in [3], we characterized the set of dis-
tributive lattices with the splitting property, and also introduced the idea of a splitting
number for any finite ordered set and any class of finite ordered sets. We restate the
required definitions.

For a maximal antichain A of a finite ordered set P , let

s(A) = max
A=U∪D

|U ↑ | + |D↓ |
|P | ,

the maximum taken over all partitions U ∪ D of A. Define the splitting number of P to
be

s(P ) = min
A∈A(P )

s(A) ,

where A(P ) is the set of all maximal antichains of P . Furthermore, if C is a class of finite
ordered sets, we define the splitting number of C to be

s(C) = inf
P∈C

s(P ).

We also make analogous definitions when the antichains involved are restricted to a certain
size: for a finite ordered set P , or a class C of finite ordered sets, let

sk(P ) = min
A∈A(P ),|A|=k

s(A) and sk(C) = inf
P∈C

sk(P ),

where k is a positive integer such that P contains at least one maximal antichain of k
elements. Thus sk(C) is the greatest proportion r satisfying: every k-element maximal
antichain of a member P of C can be “split” into sets U and D so that U ↑ ∪ D↓ contains
at least r|P | elements. The same condition with the restriction on antichain size removed
yields s(C). It is clear that s(P ) ≤ sk(P ) and s(C) ≤ sk(C) for all k.

Note that the Ahlswede–Erdős–Graham theorem [1] could be stated as: s(B) = 1
where B is the class of all finite Boolean lattices. Also, it’s not difficult to see that if
P is the class of all finite ordered sets, s(P) = sk(P) = 1/2 for all k. The problem
of determining s(C) and sk(C) for various classes is an interesting order-theoretic and
combinatorial task. When C is the family of all finite distributive lattices, for instance,
we only have bounds (and not very good ones) in [3]. But the more restricted family
Gk = {k × n : n ≥ k} of all k by n “grids”, where k is fixed and n ≥ k, appeared to
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us to present a challenging but attainable goal, and in [3] we began to determine sk(Gk).
It is not difficult to show that limk→∞ sk(Gk) = 1, and at the time we had a guess for
what sk(Gk) was, linked closely to the Pell numbers and a “Pascal-like” triangle. Here,
we present verification of our guess.

Theorem 1 For all positive integers k,

sk(Gk) = 1 − 1

k
+

1

kyk
,

where yk is defined by: y1 = 2, y2 = 3, y3 = 6, and

yk =

{
2yk−1 − yk−4 for k odd,
2yk−1 − yk−2 for k even.

Thus the sequence y1, y2, . . . starts 2, 3, 6, 9, 16, 23, 40, 57, 98, 139, 238, . . . and we get

s1(G1) =
1

2
, s2(G2) =

2

3
, s3(G3) =

13

18
, s4(G4) =

7

9
,

and so on, as reported in [3]. The first two values are derived from general results for
distributive lattices. The values for k = 3 through k = 6 were obtained with an early
version of the strategy fully developed in this paper.

Actually, the result we obtain is stronger: for each odd k there is, in a certain sense,
a “unique” antichain which realizes the minimum splitting value. This is made precise
in Theorem 2 in Section 5. For even k, there does not appear to be uniqueness, unless
perhaps symmetry is imposed.

Here is an outline of the paper. Section 2 contains definitions and notation. We
employ matrix notation in the proof of Theorem 1 and the required material is provided
in Sections 2 and 3. Section 3 also contains our proof that the value given in Theorem 1
is a lower bound for sk(Gk). The converse inequality is verified in Section 4. In Section
5 is the promised description and proof of uniqueness. Finally in Section 6 we show that
for even k we cannot obtain the same uniqueness result and state some open problems.

2 Preliminaries

We represent a k-element maximal antichains in the lattice L = k × n as a vector of
nonnegative integers. Assume that the chains are labelled so that k = {1 < 2 < . . . < k}
and n = {1 < 2 < . . . < n}. Given a k-element maximal antichain A = {a1, a2, . . . , ak},
we can put a1 = (k, n1), a2 = (k−1, n1+n2), and in general ai = (k+1−i, n1+n2+· · ·+ni),
where ni ≥ 1 for all 1 ≤ i ≤ k and

∑k
i=1 ni ≤ n. Letting nk+1 = n −∑k

i=1 ni ≥ 0, we
have a representation of A by the vector n = (n1, n2, . . . , nk+1). It is clear that this
provides a 1-1 correspondence between k-antichains of L and (k + 1)-vectors of integers
n = (n1, n2, . . . , nk+1) where

∑k+1
i=1 ni = n, ni > 0 (i = 1, 2, . . . , k) and nk+1 ≥ 0.
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Given a maximal antichain A of L, there is a corresponding natural partition

{N(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1}

of L into intervals N(i, j), where

N(i, j) =

{
(i, v) ∈ L :

j−1∑
t=1

nt < v ≤
j∑

t=1

nt

}
for 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1.

For all i, j, |N(i, j)| = nj. (See Figure 1.)

An orientation o of a maximal antichain A is an ordered pair (U, D) where A is
partitioned by U and D. We say that o captures the elements in U ↑ ∪ D ↓. We assign
↑’s to the elements of U and ↓’s to those of D. For instance, if o has U = {a1, a3, a5, . . .}
and D = {a2, a4, a6, . . .}, we denote o by a1 ↑ a2 ↓ a3 ↑ a4 ↓ . . . . With the elements of
A in their natural order, the ai’s can be dropped and an orientation can be defined by a
k-sequence of ↑’s and ↓’s — the “alternating” orientation above is just ↑↓↑↓↑↓ . . . .
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Figure 1: an interval N(i, j)
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The reverse of an orientation o is the orientation or obtained by both reversing the
order of the arrows and replacing each ↑ by a ↓ and vice versa; so for o = ↑↑↓ we would
get or = ↑↓↓ for example. (See Figure 2.) An orientation is self-reversing if it is equal to
its reverse.
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Figure 2: an orientation and its reverse

Most of the time, if any element of N(i, j) is captured by an orientation o then all are.
The only exception is that o can capture the greatest element (i, n1 + · · ·+ nj) of N(i, j)
without capturing all of N(i, j). This happens for such an N(i, j) precisely if i+j ≥ k+1,
aj ↑, and ar ↓ for all r such that k + 1 − i ≤ r < j; in this case all elements (r,

∑j
l=1 nl)

for k + 1− j ≤ r ≤ i are exceptional. In fact, o captures r1n1 + r2n2 + · · ·+ rk+1nk+1 + r0

elements of L, where rj (j ≥ 1) is the number of indices i such that N(i, j) is captured
by o, and r0 is the number of exceptional elements (r, n1 + · · · + nj) captured by o but
not in an interval captured by o. Note that 0 ≤ r0 ≤ k, since there is at most one such
exceptional element with a given first coordinate. Define the capture vector vo induced
by o to be the (k + 1)-vector (r1, r2, . . . , rk+1). Then the number of elements captured by
o is vo · n + r0, the dot denoting the dot product of the vectors.

Here is a simple result which we will need later. The reverse vr of a vector v is obtained
by writing the components of v in reverse order.

Lemma 1 For any orientation o,

vor = (vo)
r.

Finally, the methods we develop to prove Theorem 1 do not apply in case k = 2. As
noted above, for small values of k, the result in Theorem 1 was obtained in [3]. Where
needed, we are free to assume k 6= 2 in Sections 3 and 4.

3 The lower bound

Let

sk = 1 − 1

k
+

1

kyk

the electronic journal of combinatorics 12 (2005), #R17 5



be the quantity given in Theorem 1. Our goal here is to prove that every maximal k-
antichain of a lattice L = k × n ∈ Gk can be oriented so as to capture at least sk|L|
elements of L. This will prove that sk(Gk) ≥ sk.

To establish the lower bound, we show that for any antichain A with associated vector
n as defined above, there is an orientation o such that vo ·n ≥ sk|L| = skkn. Our method
is to find a nonempty set O = {o1, . . . , om} of orientations, and positive numbers λi,
1 ≤ i ≤ m, so that

m∑
i=1

λi(voi
· n) = skkn

m∑
i=1

λi (1)

for all n. It follows that at least one of the oi’s in O satisfies voi
·n ≥ skkn, so sk(Gk) ≥ sk

as desired. It turns out we can select O and the λi’s independently of n.
Arranging the capture vectors of the m orientations in the set O as rows of a matrix,

we obtain the m by k+1 capture matrix Mk of O. Now we can rewrite (1) in matrix form
as

nM t
kλ = nskkJλ,

where n is a 1-by-(k + 1) row vector, λ = (λ1, . . . , λm) is an m-by-1 column vector, and
J is a matrix of 1’s of appropriate size, in this case (k + 1)-by-m. This equation can be
written as

n(M t
k − skkJ)λ = 0,

so it certainly suffices to prove that

(M t
k − skkJ)λ = 0, (2)

where 0 is a zero column vector of length m.
Now we will define the set O of m orientations and the associated m-vector λ. It turns

out that we can let m = k + 1.
Define the orientations

a↑ :

{ ↑↓↑↓↑↓ . . . ↑ for k odd,
↑↓↑↓↑↓ . . . ↓ for k even,

a↓ :

{ ↓↑↓↑↓ . . . ↓ for k odd,
↓↑↓↑↓ . . . ↑ for k even,

(3)

and

oi :




↑↓↑↓ . . . ↓
i

↑↑↓↑↓ . . . ↑↓ for k odd, 1 ≤ i < k/2, i odd,

↓↑↓↑ . . . ↓
i

↑↑↓↑↓ . . . ↓↑ for k odd, 1 < i < k/2, i even,

↑↓↑↓ . . . ↓
i

↑↑↓↑↓ . . . ↓↑ for k even, 1 ≤ i < k/2, i odd,

↓↑↓↑ . . . ↓
i

↑↑↓↑↓ . . . ↑↓ for k even, 1 < i < k/2, i even.

Also, for k even and at least 4, define the orientation

oo : ↑↑↓↑↓↑ . . . ↓↑↓↓ .

The capture vectors of these orientations are given in the following tables, the first
is for k odd, and the second is for k even. All vectors, including the constant vector
k − 1 = (k − 1, k − 1, . . . , k − 1), have length k + 1.
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orientation o capture vector vo

a↑ k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1)
a↓ k − 1 + (1,−1, 1,−1, . . . ,−1, 1, 0)
o1 k − 1 + (−1, 0, 1,−1, 1,−1, 1, . . . ,−1, 1, 0)

oi, 1 < i < k/2, i odd k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1,
i−2, 0, 1,−1, 1,−1, . . . ,−1, 1, 0)

oi, 1 < i < k/2, i even k − 1 + (1,−1, 1,−1, . . . ,−1, 1,
i−2, 0, 1,−1, 1,−1, . . . ,−1, 1),

orientation o capture vector vo

a↑ k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1, 0)
a↓ k − 1 + (1,−1, 1,−1, . . . ,−1, 1)
o1 k − 1 + (−1, 0, 1,−1, 1,−1, 1, . . . ,−1, 1)

oi, 1 < i < k/2, i odd k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1,
i−2, 0, 1,−1, 1,−1, . . . ,−1, 1)

oi, 1 < i < k/2, i even k − 1 + (1,−1, 1,−1, . . . ,−1, 1,
i−2, 0, 1,−1, 1,−1, . . . ,−1, 1, 0),

oo k − 1 + (−1, 0, 1,−1, 1,−1, . . . ,−1, 1, 0,−1)
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Figure 3: finding the capture vector of a↑

the electronic journal of combinatorics 12 (2005), #R17 7



Figure 3 shows the alternating orientation a↑ applied to a maximal antichain of an
arbitrary lattice in Gk for odd k. The antichain elements are shown as small solid circles,
and larger hollow circles show intervals which are not captured by the orientation. One
sees that exactly k − 1 intervals (out of k) of length n1 are captured, all k of the length
n2 intervals are captured, k − 2 of the length n3 intervals are captured, and so on, giving

va↑ = (k − 1, k, k − 2, k, k − 2, . . . , k, k − 2, k) = k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1)

as claimed. The other capture vectors can be similarly checked.
Note that a↓ is the reverse of a↑ when k is odd, but not when k is even. When k is

even, the orientations a↑, a↓ and oo are all self-reversing.

For k odd, we let

O = {a↑, o(k−1)/2, o(k−3)/2, . . . , o2, o1, o
r
1, o

r
2, . . . , o

r
(k−1)/2, a↓}.

Note that |O| = k + 1. As noted in Lemma 1, the capture vector of or is the reverse of
the capture vector of o. Thus with the orientations of O ordered as listed, we obtain the
(k + 1) × (k + 1) capture matrix

Mk = (k − 1)Jk+1 + Ck,

where Jk+1 is the square all-ones matrix of order k + 1,

Ck =




0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . 1 −1 1 −2 0 | 1 −1 1 −1 . . . −1 1 −1 1
0 1 −1 1 −1 . . . −1 1 −2 0 1 | −1 1 −1 1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . 1 −2 0 1 −1 | 1 −1 1 −1 . . . −1 1 −1 1

...
...

0 1 −2 0 1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . 1 −1 1 0
1 −2 0 1 −1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . −1 1 −1 1
−1 0 1 −1 1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . 1 −1 1 0

0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . −1 1 0 −1
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . 1 0 −2 1
0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . 0 −2 1 0
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . −2 1 −1 1

...
...

0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 0 −2 1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | 0 −2 1 −1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . 1 −1 1 0




when k ≡ 1 mod 4, and
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Ck =




0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . −1 1 −1 1
0 1 −1 1 −1 . . . 1 −1 1 −2 0 | 1 −1 1 −1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . −1 1 −2 0 1 | −1 1 −1 1 . . . −1 1 −1 1
0 1 −1 1 −1 . . . 1 −2 0 1 −1 | 1 −1 1 −1 . . . 1 −1 1 0

...
...

0 1 −2 0 1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . 1 −1 1 0
1 −2 0 1 −1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . −1 1 −1 1
−1 0 1 −1 1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . 1 −1 1 0

0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . −1 1 0 −1
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . 1 0 −2 1
0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 1 −1 1 . . . 0 −2 1 0
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . −2 1 −1 1

...
...

1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 0 −2 1 . . . −1 1 −1 1
0 1 −1 1 −1 . . . 1 −1 1 −1 1 | 0 −2 1 −1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 −1 1 −1 . . . 1 −1 1 0




when k ≡ 3 mod 4. [Note: the horizontal and vertical lines divide Ck into four square
submatrices of order (k + 1)/2.]

For k even and at least 4, we similarly define

O = {a↑, o(k/2)−1, o(k/2)−2, . . . , o2, o1, oo, o
r
1, o

r
2, . . . , o

r
(k/2)−1, a↓}.

Again |O| = k + 1, and this time the (k + 1) × (k + 1) capture matrix is

Mk = (k − 1)Jk+1 + Ck

where

Ck =




0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . 1 −1 1 −2 0 | 1 | −1 1 −1 1 . . . 1 −1 1 0
0 1 −1 1 −1 . . . −1 1 −2 0 1 | −1 | 1 −1 1 −1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . 1 −2 0 1 −1 | 1 | −1 1 −1 1 . . . 1 −1 1 0

...
...

0 1 −2 0 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −1 1 −1 1
1 −2 0 1 −1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . 1 −1 1 0
−1 0 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −1 1 −1 1

− 1 0 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −1 1 0 −1

1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −1 1 0 −1
0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . 1 0 −2 1
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . 0 −2 1 0
0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −2 1 −1 1

...
...

1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 0 −2 1 . . . 1 −1 1 0
0 1 −1 1 −1 . . . −1 1 −1 1 −1 | 1 | 0 −2 1 −1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −1 1 −1 1




when k ≡ 2 mod 4, and
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Ck =




0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . 1 −1 1 0
0 1 −1 1 −1 . . . 1 −1 1 −2 0 | 1 | −1 1 −1 1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . −1 1 −2 0 1 | −1 | 1 −1 1 −1 . . . 1 −1 1 0
0 1 −1 1 −1 . . . 1 −2 0 1 −1 | 1 | −1 1 −1 1 . . . −1 1 −1 1

...
...

0 1 −2 0 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −1 1 −1 1
1 −2 0 1 −1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . 1 −1 1 0
−1 0 1 −1 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −1 1 −1 1

− 1 0 1 −1 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −1 1 0 −1

1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −1 1 0 −1
0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . 1 0 −2 1
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . 0 −2 1 0
0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 | 1 −1 1 −1 . . . −2 1 −1 1

...
...

0 1 −1 1 −1 . . . 1 −1 1 −1 1 | −1 | 1 0 −2 1 . . . −1 1 −1 1
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 | 0 −2 1 −1 . . . 1 −1 1 0
1 −1 1 −1 1 . . . −1 1 −1 1 −1 | 1 | −1 1 −1 1 . . . −1 1 −1 1




when k ≡ 0 mod 4. In each matrix the central row and column are flanked by four
k/2 × k/2 submatrices.

The next step is definition of the vector λ. For this we will use the sequence of integers
(yk) defined in Theorem 1, and also the well-known Pell numbers (uk), defined by: u1 = 1,
u2 = 2, and ui = 2ui−1 +ui−2 for i ≥ 3, so that (uk) = (1, 2, 5, 12, 29, 70, . . .). We will also
need the initial value u0 = 0 in some circumstances. In case that k is even, we require
yet another sequence of integers, closely related to the Pell numbers. Define (vk) by:
vi = ui + ui−1, so that

(v1, v2, . . .) = (1, 3, 7, 17, 41, 99, . . .).

See [5], for example, for information on these sequences.

The following results are routine, and their proofs are left to the reader.

Lemma 2 (a) u2n = 2
n∑

i=1

u2i−1, u2n+1 = 2
n∑

i=1

u2i + 1.

(b) un+1 =

n∑
i=1

vi + 1.

(c) vn = 2vn−1 + vn−2.

(d) yn =




2

(n+1)/2∑
i=1

ui for n odd,

2

n/2∑
i=1

ui + u(n/2)−1 + un/2 for n even.

(e) y2n = 2

n∑
i=1

vi + 1.
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Now define the (k + 1)-vector

λ =




(
u1 +

k + 1

2
, u2, u3, . . . , u(k+1)/2, u(k+1)/2, u(k−1)/2, . . . , u2, u1 +

k + 1

2

)
− 1 for k odd,

(
uk/2 +

k

2
+ 1, v2, v3, . . . , v(k/2)−1, u(k/2)−1 + 1, uk/2,

u(k/2)−1 + 1, v(k/2)−1, v(k/2)−2, . . . , v2,
k

2
+ 1

)
− 1 for k even.

Note that, for k odd,

∑
λ = 2

(k+1)/2∑
i=1

ui + (k + 1) − (k + 1) = 2

(k+1)/2∑
i=1

ui = yk

by Lemma 2(d), and for k even,

∑
λ =


2uk/2 + k + 4 + 2

(k/2)−1∑
i=2

vi + 2u(k/2)−1


− (k + 1)

= 2(uk/2 + u(k/2)−1) + 2

(k/2)−1∑
i=2

vi + 3

= 2

k/2∑
i=1

vi + 1 = yk,

the last equality following from Lemma 2(e). So
∑

λ = yk for all k, and (2) becomes

0 = (Mk − kskJk+1)
tλ =

(
Mk −

[
(k − 1) +

1

yk

]
Jk+1

)t

λ

=

(
Ck − 1

yk

Jk+1

)t

λ = Ct
kλ −

(
1

yk

∑
λ

)
1 = Ct

kλ − 1.

Thus we want to prove Ct
kλ = 1.

We will do this by showing that the dot product of each column of Ck with λ equals
1. Let coli(Ck) denote the ith column of Ck. Our proof treats the four congruence classes
of k modulo 4 separately.

Case (i): k ≡ 1 mod 4.
Note that, for each i, the ith row of Ck is the reverse of the (k+2−i)th row by Lemma

1, since the corresponding orientations are reverses of each other. Thus it is also true that
coli(Ck) is the reverse of colk+2−i(Ck) for each i. Since λ is symmetric, coli(Ck) · λ =
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colk+2−i(Ck) ·λ, so we need only show that coli(Ck) ·λ = 1 for 1 ≤ i ≤ (k +1)/2. We first
consider column 1:

col1(Ck) · λ = (u2 − 1) + (u4 − 1) + · · ·+ (u(k−1)/2 − 1) − (u(k+1)/2 − 1)

+(u(k−1)/2 − 1) + (u(k−5)/2 − 1) + · · ·+ (u2 − 1) +

(
u1 +

k − 1

2

)

= 2

(k−1)/4∑
i=1

(u2i − 1) − u(k+1)/2 + 1 + u1 +
k − 1

2

= 2

(k−1)/4∑
i=1

u2i − u(k+1)/2 + 2 = 1

by Lemma 2(a). To handle the other columns, it seems easiest to show that [coli(Ck) +
coli+1(Ck)] · λ = 2 for each i ∈ {1, 2, . . . , (k− 1)/2}. Since col1(Ck) · λ = 1, it then follows
that coli(Ck) · λ = 1 for all i ≤ (k + 1)/2 and thus for all i. A similar strategy will be
adopted for the other three cases.

Thus we first note that

col1(Ck) + col2(Ck) = (1, 0, 1, 0, . . . , 1, 0, 1,−1,−1|1, 0, 1, 0, . . . , 1, 0, 0)

(where the midpoint of the (k + 1)-vector is indicated by a vertical line), so

[col1(Ck) + col2(Ck)] · λ =

(
u1 +

k − 1

2

)
+ (u3 − 1) + (u5 − 1) + · · ·+ (u(k−3)/2 − 1)

−(u(k−1)/2 − 1) − (u(k+1)/2 − 1)

+(u(k+1)/2 − 1) + (u(k−3)/2 − 1) + · · · + (u3 − 1)

= 2

(k−1)/4∑
i=2

(u2i−1 − 1) − u(k−1)/2 + 1 + u1 +
k − 1

2

= 2

(k−1)/4∑
i=1

u2i−1 − u(k−1)/2 + 2 = 2

by Lemma 2(a). For any i ∈ {2, 3, . . . , (k − 3)/2},

coli(Ck) + coli+1(Ck) = (0, 0, . . . , 0,−1,−2,
j

1, 0, 0, . . . , 0)

where

j =
k + 5

2
− i.

Thus

[coli(Ck) + coli+1(Ck)] · λ = −(uj−2 − 1) − 2(uj−1 − 1) + (uj − 1)

= uj − 2uj−1 − uj−2 + 2 = 2.
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Finally,
col(k−1)/2(Ck) + col(k+1)/2(Ck) = (0,−2, 1, 0, 0, . . . , 0),

so

[col(k−1)/2(Ck) + col(k+1)/2(Ck)] · λ = −2(u2 − 1) + (u3 − 1)

= −2 + 4 = 2.

Case (ii): k ≡ 3 mod 4.
Once again we need only show that coli(Ck) · λ = 1 for 1 ≤ i ≤ (k + 1)/2. Proceeding

as in Case (i),we first get

col1(Ck) · λ = (u3 − 1) + (u5 − 1) + · · ·+ (u(k−1)/2 − 1) − (u(k+1)/2 − 1)

+(u(k−1)/2 − 1) + (u(k−5)/2 − 1) + · · ·+ (u3 − 1) +

(
u1 +

k − 1

2

)

= 2

(k+1)/4∑
i=2

(u2i−1 − 1) − u(k+1)/2 + 1 + u1 +
k − 1

2

= 2

(k+1)/4∑
i=1

u2i−1 − u(k+1)/2 + 1 = 1

by Lemma 2(a). Then

col1(Ck) + col2(Ck) = (1, 1, 0, 1, 0, . . . , 1, 0, 1,−1,−1|1, 0, 1, 0, . . . , 0, 1, 0),

so

[col1(Ck) + col2(Ck)] · λ =

(
u1 +

k − 1

2

)
+ (u2 − 1) + (u4 − 1) + · · ·+ (u(k−3)/2 − 1)

−(u(k−1)/2 − 1) − (u(k+1)/2 − 1)

+(u(k+1)/2 − 1) + (u(k−3)/2 − 1) + · · · + (u2 − 1)

= 2

(k−3)/4∑
i=1

(u2i − 1) − u(k−1)/2 + 1 + u1 +
k − 1

2

= 2

(k−3)/4∑
i=1

u2i − u(k−1)/2 + 3 = 2

by Lemma 2(a). Now note that for any i ∈ {2, 3, . . . , (k − 1)/2}, coli(Ck) + coli+1(Ck) in
Case (ii) equals the sum of the same two columns in Case (i), so we must have

[coli(Ck) + coli+1(Ck)] · λ = 2

for 2 ≤ i ≤ (k − 1)/2 here as well, which completes the proof for this case.
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Case (iii): k ≡ 2 mod 4.
For this and the final case we must work a little harder, because we do not have quite

the same symmetry in Ck and λ when k is even as we had when k is odd.
First,

col1(Ck) · λ = (v2 − 1) + (v4 − 1) + · · ·+ (v(k/2)−1 − 1) − u(k/2)−1 − (uk/2 − 1)

+u(k/2)−1 + (v(k/2)−2 − 1) + (v(k/2)−4 − 1) + · · · + (v3 − 1) +
k

2

=

(k/2)−1∑
i=2

(vi − 1) − uk/2 + 1 +
k

2

=

(k/2)−1∑
i=1

vi − uk/2 + 2 = 1

by Lemma 2(b). Then

col1(Ck) + col2(Ck) = (1, 0, 1, 0, . . . , 1, 0, 1,−1,−1| − 1|0, 1, 0, 1, . . . , 0, 1, 0),

where the central ((k/2) + 1)st element has been sandwiched by vertical lines. So

[col1(Ck) + col2(Ck)] · λ =

(
uk/2 +

k

2

)
+ (v3 − 1) + (v5 − 1) + · · · + (v(k/2)−2 − 1)

−(v(k/2)−1 − 1) − u(k/2)−1 − (uk/2 − 1)

+(v(k/2)−1 − 1) + (v(k/2)−3 − 1) + · · ·+ (v2 − 1)

=

(k/2)−2∑
i=2

(vi − 1) − u(k/2)−1 +
k

2
+ 1

=

(k/2)−2∑
i=1

vi − u(k/2)−1 + 3 = 2

by Lemma 2(b). Also

col2(Ck) + col3(Ck) = (0, 0, . . . , 0,−1,−2, 1|1|0, 0, . . . , 0),

so

[col2(Ck) + col3(Ck)] · λ = −(v(k/2)−2 − 1) − 2(v(k/2)−1 − 1) + u(k/2)−1 + (uk/2 − 1)

= −v(k/2)−2 − 2v(k/2)−1 + (u(k/2)−1 + uk/2) + 2

= vk/2 − 2v(k/2)−1 − v(k/2)−2 + 2 = 2

by Lemma 2(c). For any i ∈ {3, 4, . . . , (k/2) − 2},

coli(Ck) + coli+1(Ck) = (0, 0, . . . , 0,−1,−2,
j

1, 0, 0, . . . , 0)
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where

j =
k

2
+ 2 − i,

and we get

[coli(Ck) + coli+1(Ck)] · λ = −(vj−2 − 1) − 2(vj−1 − 1) + (vj − 1)

= vj − 2vj−1 − vj−2 + 2 = 2

by Lemma 2(c). Next

col(k/2)−1(Ck) + colk/2(Ck) = (0,−2, 1, 0, 0, . . . , 0),

so

[col(k/2)−1(Ck) + colk/2(Ck)] · λ = −2(v2 − 1) + (v3 − 1)

= −4 + 6 = 2.

And one more:
colk/2(Ck) + col(k/2)+1(Ck) = (0, 1, 0, 0, . . . , 0),

so
[colk/2(Ck) + col(k/2)+1(Ck)] · λ = v2 − 1 = 2.

Now notice that for i ∈ {2, 3, . . . , k/2},
colk+2−i(Ck) + colk+1−i(Ck) is the reverse of coli(Ck) + coli+1(Ck).

Since the first and last entries of coli(Ck) + coli+1(Ck) equal zero for all 2 ≤ i ≤ k/2, and
since λ is symmetric except for its first and last entries, it follows that

[colk+2−i(Ck) + colk+1−i(Ck)] · λ = [coli(Ck) + coli+1(Ck)] · λ = 2

for 2 ≤ i ≤ k/2. This means that we will be done with this case once we verify that

[colk(Ck) + colk+1(Ck)] · λ = 2 and colk+1(Ck) · λ = 1.

So what are we waiting for?

colk(Ck) + colk+1(Ck) = (1, 1, 0, 1, 0, . . . , 1, 0| − 1| − 1,−1, 1, 0, 1, 0, . . . , 1, 0, 0),

so

[colk(Ck) + colk+1(Ck)] · λ =

(
uk/2 +

k

2

)
+ (v2 − 1) + (v4 − 1) + · · ·+ (v(k/2)−1 − 1)

−(uk/2 − 1) − u(k/2)−1 − (v(k/2)−1 − 1)

+(v(k/2)−2 − 1) + (v(k/2)−4 − 1) + · · ·+ (v3 − 1)

=

(k/2)−2∑
i=2

(vi − 1) − u(k/2)−1 +
k

2
+ 1

=

(k/2)−2∑
i=1

vi − u(k/2)−1 + 3 = 2
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by Lemma 2(b). Finally,

colk+1(Ck) · λ = (v3 − 1) + (v5 − 1) + · · ·+ (v(k/2)−2 − 1) + u(k/2)−1 − (uk/2 − 1)

−u(k/2)−1 + (v(k/2)−1 − 1) + (v(k/2)−3 − 1) + · · · + (v2 − 1) +
k

2

=

(k/2)−1∑
i=2

(vi − 1) − uk/2 + 1 +
k

2

=

(k/2)−1∑
i=1

vi − uk/2 + 2 = 1

by Lemma 2(b).

Case (iv): k ≡ 0 mod 4.
This case works almost the same way as Case (iii). For column 1,

col1(Ck) · λ = (v3 − 1) + (v5 − 1) + · · ·+ (v(k/2)−1 − 1) − u(k/2)−1 − (uk/2 − 1)

+u(k/2)−1 + (v(k/2)−2 − 1) + (v(k/2)−4 − 1) + · · · + (v2 − 1) +
k

2

=

(k/2)−1∑
i=2

(vi − 1) − uk/2 + 1 +
k

2

=

(k/2)−1∑
i=1

vi − uk/2 + 2 = 1

by Lemma 2(b). Then

col1(Ck) + col2(Ck) = (1, 1, 0, 1, 0, . . . , 1, 0, 1,−1,−1| − 1|0, 1, 0, 1, . . . , 0, 1, 0, 0),

so

[col1(Ck) + col2(Ck)] · λ =

(
uk/2 +

k

2

)
+ (v2 − 1) + (v4 − 1) + · · · + (v(k/2)−2 − 1)

−(v(k/2)−1 − 1) − u(k/2)−1 − (uk/2 − 1)

+(v(k/2)−1 − 1) + (v(k/2)−3 − 1) + · · ·+ (v3 − 1)

=

(k/2)−2∑
i=2

(vi − 1) − u(k/2)−1 +
k

2
+ 1

=

(k/2)−2∑
i=1

vi − u(k/2)−1 + 3 = 2

by Lemma 2(b). But now we have that for any i ∈ {2, 3, . . . , k− 1}, coli(Ck) + coli+1(Ck)
in Case (iv) equals the sum of the same two columns in Case (iii), so

[coli(Ck) + coli+1(Ck)] · λ = 2
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for 2 ≤ i ≤ k − 1 in this case too. Thus we once again need only show

[colk(Ck) + colk+1(Ck)] · λ = 2 and colk+1(Ck) · λ = 1.

This time,

colk(Ck) + colk+1(Ck) = (1, 0, 1, 0, . . . , 1, 0| − 1| − 1,−1, 1, 0, 1, 0, . . . , 1, 0)

results in

[colk(Ck) + colk+1(Ck)] · λ =

(
uk/2 +

k

2

)
+ (v3 − 1) + (v5 − 1) + · · ·+ (v(k/2)−1 − 1)

−(uk/2 − 1) − u(k/2)−1 − (v(k/2)−1 − 1)

+(v(k/2)−2 − 1) + (v(k/2)−4 − 1) + · · ·+ (v2 − 1)

=

(k/2)−2∑
i=2

(vi − 1) − u(k/2)−1 +
k

2
+ 1

=

(k/2)−2∑
i=1

vi − u(k/2)−1 + 3 = 2

by Lemma 2(b), and

colk+1(Ck) · λ = (v2 − 1) + (v4 − 1) + · · ·+ (v(k/2)−2 − 1) + u(k/2)−1 − (uk/2 − 1)

−u(k/2)−1 + (v(k/2)−1 − 1) + (v(k/2)−3 − 1) + · · · + (v3 − 1) +
k

2

=

(k/2)−1∑
i=2

(vi − 1) − uk/2 + 1 +
k

2

=

(k/2)−1∑
i=1

vi − uk/2 + 2 = 1

by Lemma 2(b). This finishes the last case, and the verification of the lower bound in
Theorem 1.

4 The upper bound

Suppose that a k-antichain A in L = k×n is defined by the (k+1)-vector n (so
∑

n = n).
We noted in Section 2 that the number of elements of L captured by an orientation o of
A is vo · n + r0, where r0 ≤ k. Thus to prove sk(Gk) ≤ sk for any fixed k, where sk is
given at the beginning of §3, it is enough to verify that, for each ε > 0, there is some n
depending on ε so that

vo · n + r0 ≤ (sk + ε)(kn)

for all 2k orientations o of the k-antichain A associated with n.
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For this we use a particular symmetric (k + 1)-vector nk (k ≥ 1), namely

nk =

{
(u1, u2, . . . , u(k+1)/2, u(k+1)/2, u(k−1)/2, . . . , u2, u1) for k odd,
(u1, u2, . . . , uk/2, uk/2 + u(k/2)−1, uk/2, u(k/2)−1, . . . , u2, u1) for k even.

}
(4)

Note the remarkable similarity between nk and λ (§3) in the case that k is odd. Note also
that, for all k, the sum of the entries of nk equals precisely yk, by Lemma 2(d).

In fact, we prove that for all k, the vector nk satisfies

vo · nk ≤ sk(kyk) (5)

for all 2k orientations o of A. Then for any positive integer t, the vector n = tnk,
corresponding to a maximal k-antichain A in k × n (where n =

∑
n = tyk), satisfies

vo · n ≤ sk(ktyk) = sk(kn)

and thus

vo · n + r0 ≤ sk(kn) + k =

(
sk +

1

tyk

)
(kn)

for all 2k orientations o of A. Letting t → ∞, we are done.
We prove (5) by showing that

• for each o, there is an alternating orientation a [one of the four orientations defined
in (3)] such that

vo · nk ≤ va · nk, (6)

and

• for every alternating orientation a,

va · nk = sk(kyk). (7)

Our proof of (6) requires that we alter orientations in a stepwise fashion. Suppose o is
not an alternating orientation. So, upon identifying o with a k-sequence of ↑’s and ↓’s, we
see that o has two consecutive ↑’s or two consecutive ↓’s. We know that nk is symmetric,
and we have that vo · nk = vor · nk, by Lemma 1. Therefore we may assume that o has
two ↑’s in positions r − 1 and r, where

Case (i): r ≤ (k + 1)/2 and the first r − 1 entries of o are alternating, or

Case (ii): r − 1 ≥ (k + 1)/2 and the last k − (r − 1) entries of o are alternating, or

Case (iii): k is even, r = k/2 + 1, and o is alternating except for consecutive ↑’s in
positions r − 1 and r.
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In each of (i) – (iii), and depending upon the parity of k and r, we shall define a new
orientation ô by reversing all the arrows in the first r − 1 positions [in Cases (i) and (iii)]
or all arrows after and including the rth position [in Case (ii)]. This is made precise in
each case following. Set vo = (a1, . . . , ak+1) and vô = (b1, . . . , bk+1).

Assume that Case (i) holds and r is odd. Then o and ô are of this form:

o : ↓↑↓↑↓↑↓↑
r

↑ . . . , ô : ↑↓↑↓↑↓↑↓
r

↑ . . . .
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Figure 4: intervals lost and gained in switching from o to ô

See Figure 4, where o is indicated with shorter arrows and ô with longer arrows (where
they differ); hollow circles indicate intervals captured by o but not ô; solid circles indicate
intervals captured by ô but not o; and question marks are intervals that are captured by
ô and may or may not have been captured by o. It is easy to see that bt = at for all
t ≥ r + 1, and

br = ar − 1, br−1 ≥ ar−1 + 3, br−2 = ar−2 − 2, br−3 = ar−3 + 2, . . . ,
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b3 = a3 − 2, b2 = a2 + 2, b1 = a1 − 1.

Therefore, by Lemma 2(a) and the Pell recurrence ui = 2ui−1 + ui−2 (and since the
components of nk are all positive),

vô · nk − vo · nk = (vô − vo) · nk

≥ (−1, 2,−2, 2, . . . ,−2, 3,
r−1, 0, . . . , 0) · nk

= −u1 + 2u2 − 2u3 + 2u4 − · · ·+ 2ur−3 − 2ur−2 + 3ur−1 − ur

= −2(u1 + u3 + · · ·+ ur) + u1 + ur + 2(u2 + u4 + · · ·+ ur−1) + ur−1

= −ur+1 + u1 + ur + ur − 1 + ur−1

= 0.

On the other hand, if Case (i) holds and r is even, then o and ô are of the form:

o : ↑↓↑↓↑↓↑↓↑
r

↑ . . . , ô : ↓↑↓↑↓↑↓↑↓
r

↑ . . . .

Then bt = at for all t ≥ r + 1, and

br = ar − 1, br−1 ≥ ar−1 + 3, br−2 = ar−2 − 2, br−3 = ar−3 + 2, . . . ,

b3 = a3 + 2, b2 = a2 − 2, b1 = a1 + 1.

Therefore

vô · nk − vo · nk = (vô − vo) · nk

≥ (1,−2, 2,−2, . . . ,−2, 3,
r−1, 0, . . . , 0) · nk

= u1 − 2u2 + 2u3 − · · ·+ 2ur−3 − 2ur−2 + 3ur−1 − ur

= 2(u1 + u3 + · · ·+ ur−1) − u1 + ur−1 − 2(u2 + u4 + · · ·+ ur) + ur

= ur − u1 + ur−1 − ur+1 + 1 + ur

= 0.

Next, assume that Case (ii) holds. If k − r is even, then o and ô are of the form:

o : . . . ↑
r

↑↓↑↓↑↓↑, ô : . . . ↑
r

↓↑↓↑↓↑↓ .

This time we have bt ≥ at for all t ≤ r − 2, and

br−1 = ar−1 + 1, br = ar + 1, br+1 = ar+1 − 2, br+2 = ar+2 + 2, . . . ,

bk−1 = ak−1 − 2, bk = ak + 2, bk+1 = ak+1 − 1.

Therefore, since for (k + 3)/2 ≤ t ≤ k + 1 the tth component of nk is uk−t+2, we get

vô · nk − vo · nk = (vô − vo) · nk

≥ (0, 0, . . . , 0, 1,
r

1,−2, 2, . . . ,−2, 2,−1) · nk

= w + uk−r+2 − 2uk−r+1 + 2uk−r − · · · − 2u3 + 2u2 − u1,
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where

w =




uk−r+3 if r > (k + 4)/2,
uk/2 + u(k/2)−1 if k is even and r = (k + 4)/2,
u(k+1)/2 if k is odd and r = (k + 3)/2.

Thus

vô · nk − vo · nk

≥ −2(u1 + u3 + · · ·+ uk−r+1) + u1 + 2(u2 + u4 + · · · + uk−r+2) − uk−r+2 + w

= −uk−r+2 + u1 + uk−r+3 − 1 − uk−r+2 + w

= uk−r+1 + w > 0,

again applying the recurrence relation and Lemma 2(a).

If Case (ii) holds and k − r is odd, then

o : . . . ↑
r

↑↓↑↓↑↓, ô : . . . ↑
r

↓↑↓↑↓↑ .

We have bt ≥ at for all t ≤ r − 2, and

br−1 = ar−1 + 1, br = ar + 1, br+1 = ar+1 − 2, br+2 = ar+2 + 2, . . . ,

bk−1 = ak−1 + 2, bk = ak − 2, bk+1 = ak+1 + 1.

Therefore we get

vô · nk − vo · nk = (vô − vo) · nk

≥ (0, 0, . . . , 0, 1,
r

1,−2, 2, . . . , 2,−2, 1) · nk

= w + uk−r+2 − 2uk−r+1 + 2uk−r − · · ·+ 2u3 − 2u2 + u1,

with w defined as above. Thus once again

vô · nk − vo · nk

≥ 2(u1 + u3 + · · ·+ uk−r+2) − u1 − uk−r+2 − 2(u2 + u4 + · · · + uk−r+1) + w

= uk−r+3 − u1 − uk−r+2 − uk−r+2 + 1 + w

= uk−r+1 + w > 0.

Finally, assume that Case (iii) holds. In this case, we reverse the first k/2 arrows in o
to obtain ô, so the latter is an alternating sequence. Then bt = at for all t ≥ k/2 + 2, and

bk/2+1 = ak/2+1 − 1, bk/2 = ak/2 + 3, bk/2−1 = ak/2−1 − 2, bk/2−2 = ak/2−2 + 2, . . . ,

ending with
b3 = a3 + 2, b2 = a2 − 2, b1 = a1 + 1 (k/2 odd),
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or
b3 = a3 − 2, b2 = a2 + 2, b1 = a1 − 1 (k/2 even).

The case is finished with two more easy calculations: if k/2 is odd, then

vô · nk − vo · nk = (vô − vo) · nk

= (1,−2, 2, . . . ,−2, 3,−1, 0, . . . , 0) · nk

= u1 − 2u2 + 2u3 − · · · − 2u(k/2)−1 + 3uk/2 − (uk/2 + u(k/2)−1)

= 2(u1 + u3 + · · ·+ uk/2) − u1 − 2(u2 + u4 + · · ·+ u(k/2)−1) − u(k/2)−1

= u(k/2)+1 − u1 − uk/2 + 1 − u(k/2)−1

= uk/2 > 0;

and if k/2 is even then

vô · nk − vo · nk = (vô − vo) · nk

= (−1, 2,−2, . . . ,−2, 3,−1, 0, . . . , 0) · nk

= −u1 + 2u2 − 2u3 + · · · − 2u(k/2)−1 + 3uk/2 − (uk/2 + u(k/2)−1)

= −2(u1 + u3 + · · ·+ u(k/2)−1) + u1 + 2(u2 + u4 + · · ·+ uk/2) − u(k/2)−1

= −uk/2 + u1 + u(k/2)+1 − 1 − u(k/2)−1

= uk/2 > 0.

By successively applying Cases (i) - (iii), and appealing to symmetry to deal with
consecutive ↓’s, we have verified (6).

Note that, by the above proof, equality can only hold in (6) in Case (i), and then
only for orientations o such that br−1 = ar−1 + 3, where ar−1 and br−1 are the (r − 1)th
components of the capture vectors of o and ô respectively. The reader can check that this
happens precisely if the two consecutive ↑’s in o are followed by a ↓.

Let’s turn to the proof of (7), namely that va ·nk = sk(kyk) for all alternating orienta-
tions a. First notice that sk(kyk) = (k − 1)yk + 1. The capture vectors of the alternating
orientations are given in Section 3. For k odd, one vector is the reverse of the other, so,
since nk is symmetric, we need only check one, say a↑:

va↑ · nk =
(
k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1)

) · nk

= (k − 1)yk + 1 ,

because
∑

nk = yk and all terms of the second dot product cancel except the last term
of nk.

For k even, we first consider orientation a = a↑ and k ≡ 0 mod 4:

va↑ · nk =
(
k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1, 0)

) · nk

= (k − 1)yk + 2(u2 + u4 + · · ·+ uk/2) − 2(u1 + u3 + u5 + · · ·+ u(k−2)/2)

+ 2u1 − (u(k−2)/2 + uk/2)

= (k − 1)yk + u(k+2)/2 − 1 − uk/2 + 2 − u(k−2)/2 − uk/2

= (k − 1)yk + 1 ,
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using Lemma 2(a) and the recurrence defining uk. The case with k ≡ 2 mod 4 is just
about identical:

va↑ · nk =
(
k − 1 + (0, 1,−1, 1,−1, . . . ,−1, 1, 0)

) · nk

= (k − 1)yk + 2(u2 + u4 + · · ·+ u(k/2)−1) − 2(u1 + u3 + u5 + · · ·+ uk/2)

+ 2u1 + (u(k−2)/2 + uk/2)

= (k − 1)yk + uk/2 − 1 − u(k/2)+1 + 2 + u(k−2)/2 + uk/2

= (k − 1)yk + 1.

Now consider the orientation a = a↓. If k ≡ 0 mod 4:

va↓ · nk =
(
k − 1 + (1,−1, 1,−1, . . . ,−1, 1)

) · nk

= (k − 1)yk + 2(u1 + u3 + · · ·+ u(k−2)/2) − 2(u2 + u4 + · · · + uk/2)

+(u(k−2)/2 + uk/2)

= (k − 1)yk + uk/2 − u(k+2)/2 + 1 + u(k−2)/2 + uk/2

= (k − 1)yk + 1 ,

again using Lemma 2(a) and the recurrence defining uk. The case with k ≡ 2 mod 4 is
the same:

va↓ · nk =
(
k − 1 + (1,−1, 1,−1, . . . ,−1, 1)

) · nk

= (k − 1)yk + 2(u1 + u3 + · · ·+ uk/2) − 2(u2 + u4 + · · · + u(k/2)−1)

−(u(k−2)/2 + uk/2)

= (k − 1)yk + u(k/2)+1 − uk/2 + 1 − u(k/2)−1 − uk/2

= (k − 1)yk + 1.

This completes the proof of (7) and verification of the upper bound. The proof of
Theorem 1 is complete.

Note that, by (7) and the remark following the proof of (6), all the orientations o in the
families O defined in §3 satisfy vo · nk = sk(kyk) and so capture essentially the maximum
number of elements of the lattice defined by the vector nk. This helps to explain how
we chose these orientations. It has also helped to suggest an open problem (Problem 3)
recorded in §6.

Also note that, as we observed in [3], the vectors nk can be arranged in a Pascal-like
triangle (defining n0 = (1) as the first row):

1
1 1

1 1 1
1 2 2 1

1 2 3 2 1
1 2 5 5 2 1

1 2 5 7 5 2 1
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5 Uniqueness of nk for k odd

Here we establish that for odd k, the vector nk defined in the previous section is unique
up to scalar multiples. As mentioned in §1, this will mean that a grid k × n for fixed k
and “large” n has, in a sense, only one maximal antichain with the minimum splitting
number. We will need the following standard results from matrix theory.

Lemma 3 (a) For all matrices A, B of the same size, rank(A+B) ≤ rank(A)+rank(B).

(b) Consider a square block-matrix

[
A B
C D

]
, where A and D are square and A is

nonsingular. Then

det

[
A B
C D

]
= det(D − CA−1B)det(A).

For example, see [4], Proposition 2 page 96 for (a) and Exercise 15 page 46 for (b).

Suppose that A is a k-element antichain in L = k × n, where k is odd, and that n
is its associated (k + 1)-vector. Suppose also that for all 2k orientations of A, at most
sk|L| = skkn elements of L are captured by each orientation. From §2 the number of
elements of L captured by any orientation is at least vo · n, and so vo · n ≤ skkn for all
orientations of A. From (1) we have constants λi > 0 so that

k+1∑
i=1

λi(voi
· n) = skkn

k+1∑
i=1

λi (8)

for all orientations oi in the family O defined in Section 3. It follows from the last two
sentences that voi

· n = skkn for all oi ∈ O. Thus

Mkn = skkJn

for the capture matrix Mk of O defined in §3, and where now we consider n to be a column
vector.

We claim that n is a scalar multiple of the vector nk defined in Section 4, and so the
corresponding antichain A defined there is the only antichain in L whose splitting number
is sk. In other words,

Theorem 2 For any odd integer k, the vector nk is, up to scalar multiples, the unique
solution of Mkx = skkJx.

Proof. First we check that nk is a solution of Mkx = skkJx. We know that (8) holds for
n = nk. We also know from §4 that n =

∑
nk = yk and that for all i

voi
· nk ≤ skkyk (9)

by (5). So as above, we have equality in (9) for all i, and Mknk = skkJnk by the definition
of Mk.
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We wish to show that for odd integers k, rank(Mk − skkJ) = k. Since from §3

Mk − skkJ = Ck + ((k − 1) − skk)J = Ck − 1

yk

J

and rank(cJ) = 1 for any nonzero scalar c, rank(Mk − skkJ) is within 1 of rank(Ck) by
Lemma 3(a). Thus, Theorem 2 will follow once we prove that det(Ck) is nonzero.

To do this, we prove in fact that det(Ck) is an odd integer! Simple computations show
that

det(C1) =

∣∣∣∣ 0 1
1 0

∣∣∣∣ = −1 and det(C3) =

∣∣∣∣∣∣∣∣
0 1 −1 1
−1 0 1 0
0 1 0 −1
1 −1 1 0

∣∣∣∣∣∣∣∣
= 3,

so the claim holds for k = 1 and 3. Proceed by induction on k.
The matrices Ck, displayed in Section 3, have an obvious recursive structure, once a

few rows and columns are moved. Notice that if rows 2 and k and columns (k + 1)/2 and
(k + 3)/2 are deleted from Ck, what we get is just Ck−2, in both of the cases k ≡ 1 mod 4
and k ≡ 3 mod 4. This prompts us to define the matrix C ′

k from Ck by moving rows 2
and k to rows k and k + 1 [respectively] and moving columns (k + 1)/2 and (k + 3)/2 to
columns k and k + 1 [respectively]. Then

C ′
k =

(
Ck−2 B
C D

)

where B is (k − 1) × 2, C is 2 × (k − 1) and D is 2 × 2. In fact, for k ≡ 1 mod 4,

Bt =

(−1 1 −1 1 . . . −1 1 −1 1
1 −1 1 −1 . . . 1 −1 1 −1

)
, D =

(
0 1
1 0

)
, and

C =

(
1 −1 1 −1 · · · 1 −1 1

k−1
2

−2 −1 1 −1 · · · 1 −1 1
1 −1 1 −1 · · · 1 −1 1 −1 −2 1 −1 · · · 1 −1 1

)
,

For k ≡ 3 mod 4, the results are similar: D is again

(
0 1
1 0

)
,

Bt =

(
1 1 −1 1 −1 1 . . . −1 1 −1 1 −1 −1
−1 −1 1 −1 1 −1 . . . 1 −1 1 −1 1 1

)
,

and (for k > 3)

C =

(
0 1 −1 1 −1 · · · 1 −1 1

k−1
2

−2 −1 1 −1 · · · 1 −1 1 0
0 1 −1 1 −1 · · · 1 −1 1 −1 −2 1 −1 · · · 1 −1 1 0

)
.

The number of consecutive transpositions needed to move row 2 of Ck to the bottom
of the matrix is k − 1, an even number, and two more transpositions are then needed
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to move (original) row k to the bottom. The number of transpositions needed to move
column (k +1)/2 to the right edge of Ck is the same as the number subsequently required
to move column (k + 3)/2 to the right edge. Thus an even number of row or column
transpositions are required to change Ck into C ′

k, so det(C ′
k) = det(Ck).

Suppose k ≥ 5 and that det(Ck−2) is an odd integer. Using Lemma 3(b) and noting
that Ck−2 is invertible from the induction hypothesis, we have

det(Ck) = det(C ′
k) = det(Ck−2)det(S)

where S = D − CC−1
k−2B. To simplify notation, let A = Ck−2, and

CA−1 =

(
a1 a2 . . . ak−1

b1 b2 . . . bk−1

)
.

Then for j = 1, 2, . . . , k − 1,

bj − aj = row2(C) · colj(A
−1) − row1(C) · colj(A

−1)

= [row2(C) − row1(C)] · colj(A
−1)

= (0 . . . 0

k−1
2

1 −1 0 . . . 0) · colj(A
−1)

= (A−1) k−1
2

,j − (A−1) k+1
2

,j

= αj, say,

so each bj = aj + αj .
For odd indices k, it is immediate from the definition of the matrices Ck that rowk−i(A)

is the reverse of rowi(A) (or, more picturesquely, that A is unchanged if rotated 180◦). It
follows by symmetry that A−1 must have the same property. Thus

αj = (A−1) k−1
2

,j − (A−1) k+1
2

,j

= (A−1) k+1
2

,k−j − (A−1) k−1
2

,k−j

= −αk−j.

Therefore, CA−1 =(
a1 . . . aj . . . ak−1

2
ak+1

2
. . . ak−j . . . ak−1

a1+α1 . . . aj +αj . . . ak−1
2

+α k−1
2

ak+1
2
−α k−1

2
. . . ak−j−αj . . . ak−1−α1

)
.

Now we give the complete argument that det(Ck) is an odd integer in case k ≡ 1 mod 4
— the other case is almost identical. We wish to find CA−1B, which is a 2× 2 matrix. If
we let

a =
k−1∑
i=1

(−1)iai and α = 2


(k−1)/2∑

i=1

(−1)iαi
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then

CA−1B =

(
a −a

a + α −(a + α)

)
and

S =

(
0 1
1 0

)
−
(

a −a
a + α −(a + α)

)
=

( −a 1 + a
1 − (a + α) a + α

)
.

Therefore
det(S) = −a(a + α) − (1 + a) + (1 + a)(a + α) = α − 1.

We need to take a closer look at αj to show that det(Ck) is an odd integer. For each
1 ≤ j ≤ (k − 1)/2,

αj = (A−1) k−1
2

,j − (A−1) k+1
2

,j =
1

det(A)

[(
adj(A)

)
k−1
2

,j
−
(
adj(A)

)
k+1
2

,j

]
.

[We are using standard notation: adj(A) is the classical adjoint of A.] Observe that

rj =
(
adj(A)

)
k−1
2

,j
−
(
adj(A)

)
k+1
2

,j

is an integer since A and thus adj(A) is an integer matrix, so r =
∑(k−1)/2

i=1 (−1)iri is an
integer. Now we have

α = 2


(k−1)/2∑

i=1

(−1)iαi


 =

2

det(A)


(k−1)/2∑

i=1

(−1)iri


 =

2r

det(A)
.

Apply the induction hypothesis: det(A) = 2s − 1 for some integer s, so

det(Ck) = det(A)det(S)

= (2s − 1)(α − 1)

= (2s − 1)

(
2r

2s − 1
− 1

)
= 2r − (2s − 1)

= 2(r − s) + 1,

an odd integer. This completes the proof of Theorem 2.

Incidentally, from the above proof we have

(Mk − skkJ)nk =

(
Ck − 1

yk
J

)
nk = Cknk − 1,

so the property Mknk = skkJnk is equivalent to

Cknk = 1.

Compare this to the property Ct
kλ = 1 which we derived in §3.
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6 Nonuniqueness of nk for k even; the set of capture

vectors; open problems

In §5 we proved that, for odd k, the vector nk of §4 is, up to scalar multiples, the unique
vector satisfying Mkx = skkJx and so it determines the unique (up to proportions)
antichain in k × n with minimal splitting number. However, this is not true for all even
k. One difference is that the matrices Ck do not appear to be invertible for even k.

We look at the case k = 4 as an example. Here, the splitting number is s4 = 7/9,
and any vector x = (2 − t, 4 − 2t, 3, 2t, t), where 3/5 ≤ t ≤ 7/5, turns out to satisfy
vo · x ≤ s4(4y4) = 4(7/9)9 = 28 for all 24 orientations o of A. (Since

∑
x = 9 = y4, this is

(5) for k = 4 and with n4 replaced by x.) Therefore scalar multiples of each such vector
will yield, in the corresponding grid, a maximal antichain which can capture at most 7/9
of the grid in the limit.

To show this we can mimic the methods of §4, although the lack of symmetry in x
means we have more work to do. To establish the counterpart of (7) when k = 4, we need
to prove that va · x = 28 for each of the two alternating orientations a. For a = a↑ we get

va↑ · x =
[
3 + (0, 1,−1, 1, 0)

] · (2 − t, 4 − 2t, 3, 2t, t) = 9 · 3 + 1 = 28,

and similarly for a = a↓ we get

va↓ · x =
[
3 + (1,−1, 1,−1, 1)

] · (2 − t, 4 − 2t, 3, 2t, t) = 9 · 3 + 1 = 28.

To prove that vo ·x ≤ 28 for all orientations o, we could just do the calculation for each
of the remaining 14 orientations separately. However for the most part we can use the
same idea as in §4. That is, we define, for every non-alternating orientation o, another
orientation ô which is “closer” to being alternating, and prove the counterpart of (6),
namely that

(vô − vo) · x ≥ 0.

Again we will write vo = (a1, . . . , a5) and vô = (b1, . . . , b5). We consider the orientations
in groups.
Case (i): o = ↑↑ †‡ (where each of † and ‡ will mean either ↑ or ↓, so this case handles
four orientations at once). Then we let ô = ↓↑ †‡, where only the first symbol has been
changed. It is easy to check that b1 ≥ a1 + 2, b2 = a2 − 1, and bi = ai for i ≥ 3, so

(vô − vo) · x ≥ (2,−1, 0, 0, 0) · (2 − t, 4 − 2t, 3, 2t, t) = 0.

Case (ii): o = ↓↓†‡. Then we similarly let ô = ↑↓†‡, and we get b1 = a1 − 1, b2 = a2 + 1,
b3 = a3 + 1, and bi ≥ ai for i ≥ 4. Thus

(vô − vo) · x ≥ (−1, 1, 1, 0, 0) · (2 − t, 4 − 2t, 3, 2t, t) = 5 − t ≥ 0.

Case (iii): o = ↓↑↑‡. Let ô = ↑↓↑‡, for which b1 = a1 − 1, b2 ≥ a2 + 3, b3 = a3 − 1, and
bi ≥ ai for i ≥ 4. Thus

(vô − vo) · x ≥ (−1, 3,−1, 0, 0) · (2 − t, 4 − 2t, 3, 2t, t) = 7 − 5t ≥ 0,
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since t ≤ 7/5.
Case (iv): o = ↑↓↓ ‡. Let ô = ↓↑↓ ‡, and we get b1 = a1 + 1, b2 = a2 − 2, b3 = a3 + 1,
b4 = a4 + 1, and b5 ≥ a5. Thus

(vô − vo) · x ≥ (1,−2, 1, 1, 0) · (2 − t, 4 − 2t, 3, 2t, t) = 5t − 3 ≥ 0,

since t ≥ 3/5.
This leaves two remaining orientations, which we handle directly:

Case (v): For o = ↑↓↑↑, we have

vo · x = (3, 4, 1, 3, 4) · (2 − t, 4 − 2t, 3, 2t, t) = 25 − t ≤ 28.

Case (vi): For o = ↓↑↓↓, we have

vo · x = (4, 2, 4, 3, 2) · (2 − t, 4 − 2t, 3, 2t, t) = 28.

This shows that x = (2− t, 4− 2t, 3, 2t, t) for 3/5 ≤ t ≤ 7/5 always defines a maximal
antichain with minimum splitting number. If we set t = 1, then we get the symmetric
vector n4 = (1, 2, 3, 2, 1) given in §4 and included as row 5 of the triangular array at the
end of §4. But other values of t give nonsymmetric solutions.

We did not consider the case k = 2 in this paper, as the matrix Mk is not defined for
k = 2. But the value s2 = 2/3 was derived in [3], and the reader can easily check that, for
any vector (t, 1, 2− t) where 1/2 ≤ t ≤ 3/2, at most 2/3 of the 2× n grid is captured by
any of the four orientations of the corresponding two-element maximal antichain. When
t = 1 we get the symmetric vector (1, 1, 1) which makes up the third row of the triangular
array at the end of §4. However, other permissible values of t give nonsymmetric vectors
(and thus antichains) with the same splitting number.

Problem 1. For k even, is nk the only vector x (up to scalar multiples) which is
symmetric (that is, xr = x) and satisfies Mkx = skkJx?

In this paper we have determined the number sk(Gk), which tells us how much of the
k × n grid can be captured by splitting a k-element maximal antichain. It seems to us,
however, that other maximal antichains of k × n, which must necessarily contain fewer
elements, should split so as to capture even more elements, for instance since they are
“further away” from the middle of the lattice. We have not succeeded in proving this, so
the following is a second open question:

Problem 2. Is s(Gk) = sk(Gk) for all k?

Finally, let’s look briefly at what we could call the full set of capture vectors for each
positive integer k. For each of the 2k orientations o of an antichain in Gk = k×n, there is
an associated (k +1)-element capture vector vo. Let Ok denote the set of all orientations,
and let Vk denote the set of 2k (k + 1)-element capture vectors.

While it is easy to generate the 2k vectors in Vk recursively, we do not have a pleasing
characterization of these integer vectors. We do have a couple of observations about this
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family of vectors that are worth recording, particularly as they lead to some interesting
open problems.

As was noted at the beginning of §2, any member o of Ok can be regarded as a k-
sequence of ↑’s and ↓’s. Identify ↑ with 0 and ↓ with 1, so Ok is the set of all binary
sequences of length k. Let ≺ denote the usual lexicographic ordering of Ok. Let’s also
take ≺ to be the usual lexicographic ordering on the integer vectors in Vk. We claim the
following:

o′ ≺ o in Ok if and only if vo′ ≺ vo in Vk. (10)

We should say that an orientation is easily recovered from its capture vector: if vo =
(a1, . . . , ak+1) then the ith arrow in o is ↑ if and only if ai > ai+1. To establish (10), let’s
consider the value ai. Note that ai = au

i +ad
i where au

i is the position of the closest ↑ to the
left of, or at, position i− 1 and ad

i is k + 1 minus the position of the closest ↓ to the right
of, or at, position i. Let vo′ = (b1, . . . , bk+1) and suppose that o′ ≺ o. Suppose that the
first difference occurs in position i: thus, o′ has ↑ in position i and o has ↓. Then bu

i = au
i ,

since the sequences o and o′ are identical to the left of position i, and ad
i = k + 1− i > bd

i ,
so bi < ai. It is easy to see that for j < i, bj ≤ aj , establishing (10).

The componentwise order on vectors is likely the most familiar. Using ≤ to denote
this, Ok under ≤ is just the usual Boolean k-cube. On the other hand, we assert that

Vk, under ≤, is an antichain. (11)

To prove (11), let o and o′ be exactly as in the verification of (10). In particular, o ≺ o′

and bi < ai. Consider ai+1 and bi+1. Then bu
i+1 = i and au

i+1 < i, so either bi+1 > ai+1, or
bd
i+1 < ad

i+1, that is, the nearest ↓ to the right of position i is closer in o than in o′. If the
latter, say this ↓ in o is in position r. If r = k then o′ has ↑ in position k and o does not,
meaning bk+1 = k + 1 > ak+1. If r < k, bu

r+1 = r and au
r+1 < r, so we can replace i by r

and continue. In some coordinate vo′ is greater than vo, proving (11).

We know (see the remark at the end of §4) that given any capture vector vo for o in
either of the families O defined in §3, and vector nk as defined in §4,

vo · nk = sk(kn) ≥ v · nk

for all v ∈ Vk. We wonder if this is true more generally, particularly as (11) does not
militate against it.

Problem 3. Given any capture vector v in Vk, will there always exist a vector n of
positive integers so that v · n ≥ w · n for all capture vectors w ∈ Vk, w 6= v?

If true, this would say that for every orientation o there is some maximal antichain (as
defined by the vector n) of some grid k × n for which o captures at least as much of the
grid as any other orientation.

Problem 4. Given any capture vector v in Vk, can there ever exist nonnegative

real numbers µ1, . . . , µ2k−1 satisfying
∑2k−1

i=1 µi = 1 so that v ≤ ∑2k−1
i=1 µiwi, where

{w1, . . . , w2k−1} is the set of all vectors in Vk not equal to v?
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This asks whether any capture vector can be dominated by a convex combination of the
other capture vectors. A negative answer would seem a considerable strengthening of the
observation in (11); for k ≤ 4, we have obtained a negative answer.

Actually, these last two problems may be related. The following may turn out to be
a somewhat reckless combination of both.

Problem 5. For arbitrary vectors v, v1, v2, . . . , vk in R
n, is it always true that either

(i) there are nonnegative real numbers ci, 1 ≤ i ≤ k, such that

k∑
i=1

ci = 1 and v ≤
k∑

i=1

civi,

or
(ii) there exists a nonnegative nonzero vector u ∈ R

n such that v · u ≥ vi · u for all i?

This is easily proved for k = 1 and for n = 1 and we have a proof in the case k = 2.

References
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