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1. Introduction

A finite (partially) ordered set without isolated points can be partitioned into an
initial segment containing the minimal elements and a final segment containing the
maximals – and every maximal chain intersects both parts. Countable ordered sets
also admit a partition into an initial and final segment so that both intersect every
maximal chain [2]. This result does not generalize to higher cardinals. In fact, for
any cardinalκ there is an ordered setPκ for which every coloring byκ colors
results in a monochromatic maximal chain [2]. The examplesPκ , however, did not
resolve all of the questions. The following remained open [2].

PROBLEM 1. Does every finite product of chains have a 2-coloring of its ele-
ments so that no monochromatic maximal chains are present?

PROBLEM 2. Are there ordered sets of sizeℵ1 such that every 2-coloring leaves
some monochromatic maximal chain?

[1] provides a product of two linear orders of cardinality 2ℵ0 such that every 2-
coloring leaves a monochromatic chain. This settles both problems but only with
the aid of the continuum hypothesis (2ℵ0 = ℵ1). By sharpening some of the tools
we introduced there and making a more thorough analysis of maximal chains, in
this paper we avoid use of the continuum hypothesis and definitively settle the
problems.
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The paper is organized as follows. Section 2 contains the terminology and ob-
servations required to construct the counterexample and provides the statement of
the Main Theorem. Section 3 contains two lemmas which demonstrate the exis-
tence of maximal chains in “sufficiently dense” subsets of the example. Section 4
is comprised of four lemmas which exploit the notion of an “expandable chain”.
Section 5 knits these lemmas with a Ramsey-style argument that completes the
proof of the Main Theorem. Finally, open problems and conclusions are collected
in Section 6.

2. The Main Theorem

To present the counterexample, we need two types of products of chains (linearly
ordered sets), both defined on the Cartesian product of the ground sets. For (par-
tially) ordered setsX and Y , X × Y denotes thedirect productwith ordering
〈x, y〉 ≤ 〈x′, y′〉 iff x ≤ x′ in X andy ≤ y′ in Y . We useX · Y to denote the
lexicographic productwith ordering〈x, y〉 < 〈x′, y′〉 iff x < x′ in X, or x = x′ in
X andy < y′ in Y . In case that bothX andY are chains,X · Y is a chain as well;
it may be useful to think of this chain as obtained by replacing every element of
X with a copy ofY . While this use ofX · Y is nonstandard for ordinal arithmetic
(contrast with the definition in [5] and earlier comments on p. 21 of [5]), it is better
for our purposes. All other notation is standard and can be found in [5] (for linear
orders), [4] (for partial orders), and [3] (for set theory).

LetC0 = (ω∗1 + ω1) · (−1,1) where(−1,1) denotes the countable dense chain
without endpoints. Let us take elements ofC0 to be of the form〈α, x〉 with α ∈
ω∗1+ ω1 andx a rational number,−1< x < 1. We identify the maximum element
of ω∗1 with the minimum ofω1 and label this 0. We also use 0 to denote the rational
zero; to avoid at least some confusion, we set0̂ = 〈0,0〉 ∈ C0 in the construction
below. Observe thatC0 has cofinalityω1, coinitiality ω∗1, and all gaps〈A,B〉, with
A andB nonempty, have cofinalityω and coinitialityω∗.

LetC be the set of allω-sequences of elements ofC0 with all but finitely many
of the terms equal tô0, ordered by

〈〈αn, xn〉 : n < ω〉 < 〈〈βn, yn〉 : n < ω〉 iff 〈αn, xn〉 < 〈βn, yn〉
at the leastn for which 〈αn, xn〉 6= 〈βn, yn〉. So,C is the (ω-fold) lexicographic
product ofC0 restricted to sequences “of finite support” and has cardinalityℵ1.

For convenience, let̂C = (−1,1) · C. Note thatC has uncountable cofinality
and coinitiality whileĈ has countable cofinality and coinitiality. Both chains are
clearly of cardinalityℵ1 (even under ZFC, independent of the continuum hypoth-
esis). Gaps are dense in bothC andĈ: that is, for every paira < b there is a gap
〈A,B〉 such thata ∈ A andb ∈ B. We usex, y, . . . to denote elements ofC and
Ĉ; in particular,0 denotes the sequence inC with all componentŝ0, and the same
symbol labels the element of̂C obtained by adding the rational 0 to the front of
this sequence.
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THEOREM 2.1. Any2-coloring of the direct productC×Ĉ leaves monochromatic
maximal chains.

3. Constructing Maximal Chains

Given a sequencex = 〈x0, x1, x2, . . . 〉, let

x|n = 〈x0, x1, x2, . . . , xn−1〉, and

πn(x) = xn,

for n = 0,1, . . .. So,πn is the usualnth projection map defined on a Cartesian
product, with indexing beginning at 0.

It is convenient to treatn-tuples andω-sequences as strings. Indeed, the chains
C andĈ can be thought of as strings described as follows. For eacha ∈ C, a =
α0x0α1x1 . . . where eachαk ∈ ω∗1 + ω1, eachxk ∈ (−1,1), andαk = 0, xk = 0
for all k ≥ k0. The ordering onC defined above is just the lexicographic ordering
on these strings. The chain̂C is the same except that its strings commence with an
element from(−1,1), that is, for eachy ∈ Ĉ, y = xα0x0α1x1 . . . .

We shall concatenate strings and concatenate segments of elements fromC or
Ĉ. For instance, given

g = 〈〈α0, p0〉, 〈α1, p1〉, . . . , 〈γ, r〉,0〉 and

z = 〈r−1, 〈γ0, r0〉, 〈γ1, r1〉, . . .〉,
with 0 ∈ ω∗1 + ω1 andr−1 ∈ (−1,1) the concatenationgz is an element ofC:

gz= 〈〈α0, p0〉, 〈α1, p1〉, . . . , 〈γ, r〉, 〈0, r−1〉, 〈γ0, r0〉, 〈γ1, r1〉, . . .〉.
For subsetsA andB of some ordered set, we writeA < B if a < b for each

a ∈ A and eachb ∈ B. A subset of a productG ⊆ P ×P ′ is crookedif π0x 6= π0y

andπ1x 6= π1y for any two elementsx, y ∈ G (we usually refer to crooked chains).
A subsetI of an ordered setP is convexif x1 < x < x2 andx1, x2 ∈ I imply

thatx ∈ I . A productI × J of two setsI andJ convex in ordered setsP andQ,
respectively, is called ablockof P ×Q if both I andJ have at least two elements.
GivenA ⊆ B ⊆ P ×Q, callA block-densein B if every block ofP ×Q contained
in B contains an element ofA.

Each of the lemmas that follows deals with the construction of a maximal chain
within some subsetA ⊆ P , the structure ofA depending on the lemma. In the
concluding argument,A will play the role of a color-class.

LEMMA 3.1. Let 〈u0, v0〉 belong to a subsetA block-dense inC × C. ThenA
contains a crooked chain extending〈u0, v0〉 that is maximal inC × C.
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Proof.As a preliminary observation, we show that any element〈a, b〉 ∈ C0×C0

can be extended to a crooked chain maximal inC0 × C0. Since bothω∗1 + ω1 and
(−1,1) are transitive chains, so isC0. Also, order isomorphisms of a product of the
formφ = 〈φ0, φ1〉 preserve crookedness. Thus, we may assume that〈a, b〉 = 〈0̂, 0̂〉
and just observe that the diagonal ofC0× C0 is a crooked chain containing〈0̂, 0̂〉,
and is maximal becauseC0 is dense.

Using the preliminary observation and denoting the empty string by3, let
D(3,3) be a crooked maximal chain inπ0[C] × π0[C] (a copy ofC0 × C0)
which contains the element〈π0u0, π0v0〉. For each〈d0, d1〉 ∈ D(3,3) other than
〈π0u0, π0v0〉 we consider the set of elements ofC × C of the form〈d0x, d1y〉 and
incomparable with〈d00, d10〉. Since this set is the union of two blocks ofC×C and
A is block-dense inC × C, we can choosex(d0), y(d1) so that〈d0x(d0), d1y(d1)〉
is an element ofA incomparable with〈d00, d10〉. For 〈d0, d1〉 = 〈π0u0, π0v0〉 we
let 〈d0x(d0), d1y(d1)〉 = 〈u0, v0〉. The set

M0 = {〈d0x(d0), d1y(d1)〉 : 〈d0, d1〉 ∈ D(3,3)}
is a crooked chain inC×C, becauseD(3,3) is a crooked chain, and is contained
in A.

Now suppose that the chainMn−1 is already constructed inC × C. For each
〈u, v〉 ∈ Mn−1, use the preliminary observation to extend〈πnu, πnv〉 to a crooked
maximal chainD(u|n, v|n) in πn[C]×πn[C]. Then for each〈d0, d1〉 ∈ D(u|n, v|n)
other than〈πnu, πnv〉 choosex(u|nd0), y(v|nd1) so that 〈u|nd0x(u|nd0), v|nd1y
(v|nd1)〉 is an element ofA and is incomparable to〈u|nd00, v|nd10〉. Again, this
is possible asA is block-dense and the set of incomparables of〈u|nd00, v|nd10〉 is
the union of two blocks. For〈d0, d1〉 = 〈πnu, πnv〉 we make the selection

〈u|nd0x(u|nd0), v|nd1y(v|nd1)〉 = 〈u, v〉
in order thatMn−1 ⊆ Mn. Observe that the set

Mn =
⋃

〈u,v〉∈Mn−1

{〈u|nd0x(u|nd0), v|nd1y(v|nd1)〉 : 〈d0, d1〉 ∈ D(u|n, v|n)}

is a crooked chain contained inA.
SetM =

⋃
Mn.

CertainlyM is crooked and is contained inA. To prove that it is maximal in
C × C, let 〈u′, v′〉 ∈ C × C and assume that〈u′, v′〉 /∈ M. Let k be least such that
〈πm(u′), πm(v′)〉 = 〈0̂, 0̂〉 for all m ≥ k.

First suppose that there exists〈u, v〉 ∈ M such thatu|k = u′|k and v|k =
v′|k. By the construction of the setsMn we know there is a pair inMk which
agrees with〈u, v〉 in its first k positions, so we may assume that〈u, v〉 ∈ Mk.
Chooser ≥ k least possible so that〈πr(u), πr(v)〉 6= 〈πr(u′), πr(v′)〉 or, equiv-
alently, 〈πr(u), πr(v)〉 6= 〈0̂, 0̂〉. We used the crooked chainD(u|r , v|r ) maximal
in πr[C] × πr [C] to defineMr . Either 〈0̂, 0̂〉 is incomparable to some element of
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D(u|r, v|r ) (and〈u′, v′〉 is consequently incomparable to the associated element of
Mr ) or 〈0̂, 0̂〉 belongs toD(u|r , v|r ). In this latter case we have an element ofMr

of the form〈u|r 0̂x(u|r 0̂), v|r 0̂y(v|r 0̂)〉 incomparable to〈u|r 0̂0, v|r 0̂0〉 = 〈u′, v′〉.
We may now suppose that there is a largestn such that〈u|n, v|n〉 = 〈u′|n, v′|n〉

for some〈u, v〉 ∈ M and thatn < k. So, 〈πnu′, πnv′〉 is incomparable to some
element ofD(u|n, v|n), by the maximality ofD(u|n, v|n) in πn[C] × πn[C].

ThusM is maximal inC × C. 2
DEFINITION 3.2. A sequence of intervals{Iα : α < κ} is calleddoubly decreas-
ing if for eachβ > α there are non-endpointsx, y ∈ Iα so thatIβ ⊆ (x, y) ⊆
Iα.

As a bit of shorthand in what follows, when we refer to a chain-indexed sequence
of subsets of an ordered setX (for instance, anω-sequence of convex sets{In :
n < ω}), we are indicating that these sets are ordered as subsets ofX (so in our
example,I0 < I1 < I2 . . .). Also, saying that{In : n < ω} is cofinal or coinitial in
X means just that

⋃
In is a cofinal or cointial subset ofX.

LEMMA 3.3. LetA contain a union of blocks of the form(⋃
I ′n × J ′n

)
∪
(⋃

In × Jn
)
,

whereI0 < I ′0, {In} and {I ′n} are both doubly decreasing inC, {Jn} is an ω∗-
sequence of convex sets coinitial in̂C, {J ′n} is anω-sequence of convex sets cofinal
in Ĉ, andJ0 = J ′0. ThenA contains a maximal chain.

Proof (see Figure 1). We build, in a piecewise fashion, the chain illustrated in
Figure 1.

SinceIn is doubly decreasing, let{xn : n < ω} be a strictly descending sequence
in C for which xn ∈ In and{xn} > In+1 ( n < ω). Using the density of gaps inC
and the sequence just chosen, select a sequence of gaps{〈An,Bn〉 : n < ω} so that
xn ∈ Bn andxn+1 ∈ An (for eachn < ω). Now define anω∗-sequence of convex
setsKn by:

K0 = [x0,→) ∩ B0,

Kn = An−1 ∩ Bn.
Then

⋃
Kn is convex and has a maximum elementx0. Dually, select anω-sequence

of convex sets without endpoints{K ′n} (except forK ′0 which has a minimum ele-
mentx′0) with the end result that

⋃
K ′n is convex and for eachn < ω, K ′n ⊆ I ′n,

K ′n ∩ I ′n+1 6= ∅, andK ′n < I ′n+2. Now we must adjust in the middle. Selecty0 < y′0
in J0 = J ′0. Then take two convex setsL ∪ L′ = [y0, y

′
0] that determine a gap in

[y0, y
′
0]. Selectingyn ∈ Jn andy′n ∈ J ′n for eachn < ω we form the maximal chain(⋃

Kn × {yn}
)
∪ ({x0} × L) ∪ ({x′0} × L′) ∪

(⋃
K ′n × {y′n}

)
. 2
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Figure 1. A maximal chain in(
⋃
I ′n × J ′n) ∪ (

⋃
In × Jn).

4. Expandable Chains

DEFINITION 4.1. A chainG ⊆ P is calledexpandableif there is a family of
convex sets{Xg : g ∈ G} satisfying:

g ∈ Xg,

g > g′ ⇒ Xg > Xg′,

p ∈ P \
⋃
g∈G

Xg ⇒ p is incomparable to someg ∈ G.

The import of the expandable chain idea is captured by the following observation:
if for eachg ∈ G we have a chainCg containingg and maximal inXg, then

⋃
Cg

is a maximal chain.
The next lemma uses the previous observation and some special properties of

C × C to allow us to construct a maximal chain within the given setA.
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LEMMA 4.2. Let G ⊆ A ⊆ C × Ĉ be an expandable chain for whichXg is
isomorphic toC×C for eachg ∈ G. Then, ifA is block-dense in

⋃
Xg,A contains

a chain extendingG that is maximal inC × Ĉ.
Proof. Extend each elementg of the expandable chain to a piece of a maximal

chain inXg via Lemma 3.1. 2
Now we are ready to construct several types of maximal chains inC × Ĉ using
expandable chains and Lemma 4.2. By way of introduction, consider the following
lemma.

LEMMA 4.3. LetA be block-dense in the blockI × Ĉ ⊆ C× Ĉ. ThenA contains
a chain maximal inC × Ĉ.

Proof (see Figure 2). First selectg so thatgz ∈ I for eachz ∈ Ĉ. Such a prefix
g can be found by considering any two distinct elements〈〈α0, p0〉, 〈α1, p1〉, . . .〉 <
〈〈β0, q0〉, 〈β1, q1〉, . . .〉 in I that differ first for, say,〈αn, pn〉 6= 〈βn, qn〉. Let 〈γ, r〉
lie between〈αn, pn〉 and 〈βn, qn〉 and setg = 〈〈α0, p0〉, 〈α1, p1〉, . . . , 〈γ, r〉,0〉.
The concatenationgz is an element ofC since the last entry ofg belongs toω∗1+ω1;
for example, recall that ifz= 〈r−1, 〈γ0, r0〉, 〈γ1, r1〉, . . .〉 then we have

gz= 〈〈α0, p0〉, 〈α1, p1〉, . . . , 〈γ, r〉, 〈0, r−1〉, 〈γ0, r0〉, 〈γ1, r1〉, . . .〉.
For all q ∈ (−1,1) consider the block isomorphic toC × C, Xgq = {〈gqx, qy〉 :
x, y ∈ C}. By the block-density ofA in I × Ĉ, we may definex(q) andy(q) so
that

G = {gq = 〈gqx(q), qy(q)〉 : q ∈ (−1,1)}
is contained inA. To see thatG is an expandable chain, we must observe every
element outside of

⋃
Xgq is incomparable to some element ofG, so suppose that

p = 〈p0,p1〉 is comparable to every element ofG. If p0 6= gqp′0, p must dominate
or be dominated by every element ofG, and this is not possible. Therefore,p is
of the form 〈gq0p′0, q1p′1〉. If q0 6= q1, thenp is incomparable to the element of

Figure 2. A maximal chain inI × Ĉ.
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G 〈gqx(q), qy(q)〉 whereq is any element of(−1,1) betweenq0 andq1. Thus
q0 = q1; but thenp ∈ Xgq (whereq = q0). Hence,G is an expandable chain.

Since each of the blocksXgq is isomorphic toC × C, an application of Lem-
ma 4.2 completes the proof. 2

The proofs of the remaining lemmas in this section are quite similar to that
of the lemma just presented, and differ only in the particular expandable chain
constructed therein. Because of this similarity, we suppress those details that are
easily filled in by consideration of the proof of Lemma 4.3.

LEMMA 4.4. LetA be block-dense in a blockI0× J ′, whereJ ′ is a final segment
of Ĉ, and letA contain the union of blocks

⋃
In×Jn, where{Jn} is anω∗-sequence

of convex sets coinitial in̂C, and the sequence{In} is doubly decreasing. ThenA
contains a chain maximal inC × Ĉ.

Proof (see Figure 3). In general, the method is to combine the final segment of a
chain from the previous lemma with an initial segment of the chain obtained from
Lemma 3.3.

First selectg so thatgz ∈ I0 and{gz} > I1 for eachz ∈ Ĉ. The concatenation
gz is an element ofC provided that the last entry ofg belongs toω∗1 + ω1. Let
q0 ∈ (−1,1) be large enough thatq0x ∈ J ′ for all x ∈ C. For allq > q0 consider
the setXgq = {〈gqx, qy〉 : x, y ∈ C}; this is isomorphic toC × C and a block of
I0 × J ′. Then, by the block-density ofA in I0 × J ′, we may definex(q) andy(q)
so that

G0 = {gq = 〈gqx(q), qy(q)〉 : q > q0}

is contained inA. SetK ′ = {gqx : q > q0, x ∈ C}. Observe thatK ′ has no
minimum element and the set of elements below inC, {x ∈ C : K ′ > {x}}, has no
maximum element.

Figure 3. A maximal chain in(
⋃
In × Jn) ∪ (I0× J ′).
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Now, just as in Lemma 3.3, select the sequence of gaps{〈An,Bn〉 : n < ω}
based on the doubly decreasing sequence{In}. Set

K0 = B0 \K ′,
Kn = An−1 ∩ Bn (0< n < ω).

It is possible thatK0 is empty in the case thatK ′ andI1 define a gap, but this does
not damage the construction. Next, selectyn ∈ Jn for eachn < ω and set

G1 =
⋃
Kn × {yn}.

Associate eachg ∈ G1 with its singleton convex setXg = {g}. ThenG0 ∪ G1 is
an expandable chain and we are done by Lemma 4.2. 2
As a point of notation in the following lemmas, we useα∗ to denote elements of
ω∗1 + ω1 that are less than 0 (the element obtained by identifying the minimum of
ω1 and the maximum ofω∗1). For instance, 1∗ is the predecessor of 0.

LEMMA 4.5. LetA be block-dense in a union of blocks of the form
⋃
Iα×J where

J is an initial segment of̂C and{Iα} is anω1-sequence of convex sets cofinal inC.
ThenA contains a maximal chain.

Proof (see Figure 4). First selectq ∈ (−1,1) so thatqz ∈ J for everyz ∈ C.
Choosegα so thatgαz ∈ Iα for everyz ∈ C. Then define

G′ =
⋃
α<ω1

{〈gα0rx, qαry〉 : r ∈ (−1,1)},

choosingx = x(gα0r) andy = y(qαr) so thatG′ ⊆ A.
Letψ : (−1,1)→ (−1, q) be an order isomorphism. Then take

G = {〈g01∗rx, ψ(r)y〉 : r ∈ (−1,1)},

Figure 4. A maximal chain in
⋃
Iα × J .
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Figure 5. A maximal chain inI ′ ×⋃ Jn.

choosingx = x(r) andy = y(r) so thatG ⊆ A.
The unionG∪G′ is an expandable chain provided we take the associated convex

sets determined by simply allowingx andy in the above chain to range over all
possible values ofC. An application of Lemma 4.2 then completes the proof.2
LEMMA 4.6. Let A be block-dense in a union of blocks of the formI ′ × ⋃ Jn
whereI ′ is a final segment ofC and{Jn} is anω∗-sequence of convex sets coinitial
in Ĉ. ThenA contains a maximal chain.

Proof (see Figure 5). For eachn < ω choosegn ∈ Ĉ so thatgnx ∈ Jn for every
x ∈ C. Chooseu0 ∈ C0 so thatu0z ∈ I ′ for everyz ∈ C. Now define

G =
⋃
n<ω

{〈u0n
∗rx(u0n

∗r),gnu0n
∗ry(u0n

∗r)〉 : r ∈ (−1,1)} ∪

{〈u0vx(u0v),g0u0vy(u0v)〉 : v = 〈α, x〉 ∈ C0, α > 0} ∪
{〈vx(v),g0vy(v)〉 : v ∈ C0, v > u0},

where we define〈x(b), y(b)〉 ∈ C × C so that〈bx(b),gby(b)〉 ∈ A.
As usual, we observe thatG is an expandable chain by taking the convex sets

determined by simply allowingx andy in the above chain to range over all possible
values ofC. An application of Lemma 4.2 then completes the proof. 2

5. The Ramsey-style Part of the Proof

We are ready to complete the proof of the main theorem.
Suppose on the contrary thatC × Ĉ is colored with two colors (say red and

blue) in such a way that no maximal chain is monochromatic. Let us first consider
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conditions that allow us to apply Lemma 3.3. Suppose that there exist a final seg-
mentK ′ of C and an initial segmentL of Ĉ such that for every non-trivial convex
setI0 ⊆ K ′, and every non-trivial convex setJ0 ⊆ L, the blocks

(a) I0× J (for initial segmentsJ ⊆ Ĉ),
(b) I0× J ′ (for final segmentsJ ′ ⊆ Ĉ),
(c) I ′ × J0 (for final segmentsI ′ ⊆ C),

each contain a blue block. We argue that these suppositions ensure there is a region
as described in Lemma 3.3 colored entirely blue. Following the notation of that
lemma, use (a) to obtain a blue blockI0×J0 whereJ0 ⊆ L. Apply (c) to the direct
product of the final segment ofC generated byI0 with the convex setJ0. We obtain
a blue blockI ′0× J ′0 whereI0 < I

′
0 and, we may assume,J0 = J ′0. Iteratively apply

(a) to obtain a sequence of blue blocksIn × Jn with In doubly decreasing and the
ω∗-sequence{Jn} coinitial in Ĉ. Iteratively apply (b) to define a sequence of blue
blocks I ′n × J ′n with I ′n doubly decreasing and theω-sequence{J ′n} cofinal in Ĉ.
Then(

⋃
I ′n× J ′n)∪ (

⋃
In× Jn) is the claimed region colored blue. Hence there is

a blue maximal chain. This is a contradiction, so red must be block-dense in some
of the blocks of types (a), (b), and (c).

Suppose that red is block dense in a family of blocks{Iα × Jα} where{Iα} is an
ω1-sequence of convex sets cofinal inC and eachJα is an initial segment of̂C. By
the countable coinitiality of̂C, we may assume thatJ =⋂ Jαβ is nonempty for an
ω1-subsequence{Iαβ } cofinal inC. Thus,{Iαβ × J } contains a red maximal chain
by Lemma 4.5. Hence, there exists a final segment ofK ′ ⊆ C such that for all
initial segmentsJ ⊆ Ĉ and for all convexI0 ⊆ K ′, I0× J contains a blue block.

Suppose that red is block-dense in a family of blocks{I ′n×Jn} where eachI ′n is
a final segment ofC and{Jn} is anω∗-sequence of convex sets coinitial in̂C. Let
I ′ = ⋂ I ′n; I ′ is a nonempty final segment by the uncountable cofinality ofC. By
Lemma 4.6, the family{I ′ × Jn} contains a red maximal chain. Hence, there exists
an initial segmentL ⊆ Ĉ such that for all final segmentsI ′ ⊆ C and for all convex
setsJ0 ⊆ L, I ′ × J0 contains a blue block.

Now, the only obstacle to constructing a blue region like that needed by Lem-
ma 3.3 is a complete absence of blue blocks (thereby making red block-dense) in
blocks of the formI0 × J ′ whereI0 ⊆ K ′. This must happen for eachI0 selected
from someω1-sequence of convex sets cofinal inC, as otherwise the absence of
blue blocks would be bounded and we would simply invoke the construction of
Lemma 3.3 beyond the bound. Consider such anI0. If every blockI1×J contains a
red block forI1 ⊆ I0 andJ an initial segment of̂C, then we may construct a region
satisfying Lemma 4.4 to obtain a red maximal chain. Thus, for anyI1 selected from
someω1-sequence of convex sets cofinal inC, we have blocksI1× J that contain
no red blocks. But by Lemma 4.5 this is all that we need for a blue maximal chain.
The proof is complete – there can be no 2-coloring that 2-colors every maximal
chain.
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6. Concluding Remarks and Open Problems

Since every countable ordered set can be colored with two colors so that no maxi-
mal chain is monochromatic and our example in Theorem 2.1 is of absolute sizeℵ1,
there is little room for questions about minimal examples for 2-coloring maximal
chains, unless one asks about specific order-theoretic conditions. For instance, our
construction is minimal with respect to dimension and cardinality, but there may
be other measures that are of interest.

We wish to note that the chainC is not the only suitable starting point for
the example constructed in this paper. Robert Woodrow pointed our attention to
the following chain. Considerω1-sequences on{−1,0,1} with only finitely many
nonzero terms, ordered lexicographically (−1 < 0 < 1). Call this chainC ′. C ′
has the property that no element is the limit of a countable sequence. UsingC ′ ×
((ω∗1 + ω1) · C ′), we can prove that all of the lemmas from Lemma 3.3 onward
hold, but the maximal chains must be constructed differently (a little more effort
is required). We chose to useC andĈ because we believed that the proofs of the
lemmas would be clearer and more explicit through the use of expandable chains.

Perhaps the most dramatic open question for coloring maximal chains in or-
dered sets of sizeℵ1 is the following.

QUESTION. Is there an ordered set of cardinalityℵ1 that contains monochromatic
maximal chains under any countable coloring?

As well, many questions remain with regard to coloring maximal antichains, as
even for countable ordered sets the situation is not resolved [1].
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