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1. Introduction

A finite (partially) ordered set without isolated points can be partitioned into an
initial segment containing the minimal elements and a final segment containing the
maximals — and every maximal chain intersects both parts. Countable ordered sets
also admit a partition into an initial and final segment so that both intersect every
maximal chain [2]. This result does not generalize to higher cardinals. In fact, for
any cardinalc there is an ordered sdét, for which every coloring by colors
results in a monochromatic maximal chain [2]. The examplghowever, did not
resolve all of the questions. The following remained open [2].

PROBLEM 1. Does every finite product of chains have a 2-coloring of its ele-
ments so that no monochromatic maximal chains are present?

PROBLEM 2. Are there ordered sets of sikesuch that every 2-coloring leaves
some monochromatic maximal chain?

[1] provides a product of two linear orders of cardinalitye Zuch that every 2-
coloring leaves a monochromatic chain. This settles both problems but only with
the aid of the continuum hypothesis*{2= RX,). By sharpening some of the tools
we introduced there and making a more thorough analysis of maximal chains, in
this paper we avoid use of the continuum hypothesis and definitively settle the
problems.

* Research supported in part by ONR Grant N00014-91-J-1150.
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The paper is organized as follows. Section 2 contains the terminology and ob-
servations required to construct the counterexample and provides the statement of
the Main Theorem. Section 3 contains two lemmas which demonstrate the exis-
tence of maximal chains in “sufficiently dense” subsets of the example. Section 4
is comprised of four lemmas which exploit the notion of an “expandable chain”.
Section 5 knits these lemmas with a Ramsey-style argument that completes the
proof of the Main Theorem. Finally, open problems and conclusions are collected
in Section 6.

2. The Main Theorem

To present the counterexample, we need two types of products of chains (linearly
ordered sets), both defined on the Cartesian product of the ground sets. For (par-
tially) ordered setsX andY, X x Y denotes thairect productwith ordering
(x,y) < (xr,ynyiff x < xrinXandy < yrin Y. We useX - Y to denote the
lexicographic productvith ordering(x, y) < (x/, y/) iff x < x/in X, orx = x7in
X andy < y7in Y. In case that botlX andY are chainsX - Y is a chain as well;
it may be useful to think of this chain as obtained by replacing every element of
X with a copy ofY. While this use ofX - Y is nonstandard for ordinal arithmetic
(contrast with the definition in [5] and earlier comments on p. 21 of [5]), it is better
for our purposes. All other notation is standard and can be found in [5] (for linear
orders), [4] (for partial orders), and [3] (for set theory).

Let Co = (0] + w1) - (—1, 1) where(—1, 1) denotes the countable dense chain
without endpoints. Let us take elements@f to be of the form(a, x) with o €
w; + w1 andx a rational number-1 < x < 1. We identify the maximum element
of @} with the minimum ofw, and label this 0. We also use 0 to denote the rational
zero; to avoid at least some confusion, webet (0, 0) € Cq in the construction
below. Observe thaf has cofinalityw;, coinitiality », and all gapsA, B), with
A and B nonempty, have cofinality and coinitiality w*.

Let C be the set of allo-sequences of elements G§ with all but finitely many
of the terms equal t6, ordered by

({otn, xn) 1 < @) < (B, yu) 10 < @) iff (o, x0) < (Bus yn)

at the least: for which (o, x,,) # (B, ya). S0O,C is the @-fold) lexicographic
product ofCy restricted to sequences “of finite support” and has cardinlity

For convenience,ierf = (—1,1) - C. Note thatC has uncountable cofinality
and coinitiality whileC has countable cofinality and coinitiality. Both chains are
clearly of cardinalityX, (even under ZFC, independent of the continuum hypoth-
esis). Gaps are dense in bathandC: that is, for every pait: < b there is a gap
(A, B) such thatz € A andb € B. We useX, y, ... to denote elgments af and
C; in particular,0 denotes the sequencedhwith all component®, and the same
symbol labels the element @f obtained by adding the rational O to the front of
this sequence.
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THEOREM 2.1. Any2-coloring of the direct producxt‘xf leaves monochromatic
maximal chains.

3. Constructing Maximal Chains

Given a sequence = {(xg, x1, X2, ... ), let

X|n = (x0, X1, X2, ..., X,—1), and
ﬂn(X) = Xn,

forn = 0,1,.... So,m, is the usuakth projection map defined on a Cartesian
product, with indexing beginning at 0.

It is convenient to treat-tuples ando-sequences as strings. Indeed, the chains
C andC can be thought of as strings described as follows. For eachC, a =
agxoo1x1 . .. Where eachy, € o] + w1, eachx, € (—=1,1), andey = 0,x, = 0
for all k > k. The ordering orC defined above is just the lexicographic ordering
on these strings. The chalhis the same except that its strings commence with an
element from(—1, 1), that is, for eacly 5, Y = XQpXoo1Xy .. ..

We shall concatenate strings and concatenate segments of elements fnrom
C. For instance, given

g = <<(X0, p0>’<a1v Pl)»---»(%”)»o) and
zZ = (rflv (VO»VO>,<V1, rl)a'”)a

with 0 € w} + w1 andr_; € (—1, 1) the concatenatiogzis an element o€:

gZ: ((aO’ PO)» (O[lv Pl)» RN (J/» r)v (O’ r*l)v (J/O» r0>’ (Vl, rl)a .- >

For subsetsA and B of some ordered set, we writé < B if a < b for each
a € A and eaclb € B. A subset of a produat C P x P’ is crookedif mox # 7oy
andmx # w1y for any two elements, y € G (we usually refer to crooked chains).

A subset/ of an ordered seP is convexif x; < x < x, andxy, x, € I imply
thatx € 1. A product/ x J of two sets/ andJ convex in ordered set8 and Q,
respectively, is called bBlockof P x Q if both 7 andJ have at least two elements.
GivenA C B C P x Q, call A block-densén B if every block of P x Q contained
in B contains an element of.

Each of the lemmas that follows deals with the construction of a maximal chain
within some subsefd C P, the structure ofdA depending on the lemma. In the
concluding argument4 will play the role of a color-class.

LEMMA 3.1. Let (u° v° belong to a subset block-dense irC x C. ThenA
contains a crooked chain extendikig’, v°) that is maximal inC x C.
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Proof. As a preliminary observation, we show that any elemenb) € Cox Cy
can be extended to a crooked chain maximal'snx Cop. Since bothw] + w1 and
(—1, 1) are transitive chains, so . Also, order isomorphisms of a product of the
form¢ = (0. ¢1) preserve crookedness. Thus, we may assumédhay = (0, 0)
and just observe that the diagonal@f x Cy is a crooked chain containing, 0),
and is maximal becaud&, is dense.

Using the preliminary observation and denoting the empty stringAbyet
D(A, A) be a crooked maximal chain img[C] x mo[C] (a copy of Co x Cp)
which contains the elemeiitou®, 7ov°). For eachdy, di) € D(A, A) other than
(mou®, mev®) we consider the set of elements®fx C of the form(dox, d1y) and
incomparable withdg0, d10). Since this set is the union of two blocks®@# C and
A is block-dense irC x C, we can choos&(dp), Y(d1) so that(dox(dp), d1y(d1))
is an element ofA incomparable withdo0, d10). For (do, d1) = (mou®, mev°) we
let (dox(dp), d1y(d1)) = (u%, V0. The set

Mo = {{doX(do), d1y(d1)) : (do, d1) € D(A, N)}

is a crooked chain i@ x C, becauséD (A, A) is a crooked chain, and is contained
in A.

Now suppose that the chai¥,_; is already constructed i@ x C. For each
{(u,Vv) € M,_,, use the preliminary observation to extefaju, x,v) to a crooked
maximal chainD (u|,, v|,,) in 7,[C] x 7,[C]. Then for eacRdy, d1) € D(u|,, vl|,)
other than(m,u, m,v) choosex(u|,dp), Y(V|,d1) so that{(u|,doX(U|,do), V|.d1y
(v|.dy)) is an element ofA and is incomparable téu|,dy0, v|,,d10). Again, this
is possible ast is block-dense and the set of incomparablesudfdy0, v|,d.0) is
the union of two blocks. Foldy, d1) = (m,u, 7,v) we make the selection

(Ul doX(Uldo), Vlnd1y(Vlnd1)) = (U, V)

in order thatM,,_; € M,,. Observe that the set

M,= | ((uladox(Uludo), VIndryY(V]nd)) : (do, d1) € DUy, Vi)

(uvyeM,_1

is a crooked chain contained in

SetM = U M,.

Certainly M is crooked and is contained . To prove that it is maximal in
C x C,let(u, V') € C x C and assume that’, V') ¢ M. Letk be least such that
(7T (W), Tn(V)) = (0, 0) for all m > k.

First suppose that there existis, v) € M such thatu|, = u'|; andv|, =
V'|x. By the construction of the set®, we know there is a pair i, which
agrees with(u, v) in its first k positions, so we may assume tHatv) € M.
Chooser > k least possible so thatr, (u), 7, (V)) # (7. (U), 7. (V)) or, equiv-
alently, (z, (u), 7, (v)) # (0, 0). We used the crooked chaid(ul,, v|,) maximal
in 7.[C] x 7,[C] to defineM... Either((), @) is incomparable to some element of
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D(ul,, v|,) (@and(Uu’, V') is consequently incomparable to the associated element of
M,) or O 0) belongs toD(u|,, vl,). In this latter case we have an elementigf
of the form(u|,0x(u|,0), v|, 0y(v| 0)) incomparable tdu|, 00, v|,00) = (u’, v').

We may now suppose that there is a largestich thatu|,, v|,) = (U|,, V'|.)
for some(u,Vv) € M and thatn < k. So, (m,U, 7,V') is incomparable to some
element ofD(ul,, v|,), by the maximality ofD(u|,, v|,) in 7,[C] x 7,[C].

ThusM is maximal inC x C. a

DEFINITION 3.2. A sequence of intervalg, : « < «} is calleddoubly decreas-
ing if for eachp > « there are non-endpoints y € I, so thatlz € (x,y) €
I,.

As a bit of shorthand in what follows, when we refer to a chain-indexed sequence
of subsets of an ordered s¥t (for instance, anv-sequence of convex sefs, :

n < w}), we are indicating that these sets are ordered as subs&tgsuf in our
example,lp < I; < I>...). Also, saying thaf/, : n < w} is cofinal or coinitial in

X means just thdt ) 1, is a cofinal or cointial subset of.

LEMMA 3.3. Let A contain a union of blocks of the form

(Un < a)u (U< ).

wherely < I}, {I,} and {I,} are both doubly decreasing i@, {J,} is an w*-
sequence of convex sets comltlalﬂ”n{J } is anw-sequence of convex sets cofinal
in C, andJo = J;. ThenA contains a maximal chain.

Proof (see Figure 1)We build, in a piecewise fashion, the chain illustrated in
Figure 1.

Sincel, is doubly decreasing, ¢k, : n < w} be a strictly descending sequence
in C for whichx, € I, and{x,} > I,.1 (n < w). Using the density of gaps i@
and the sequence just chosen, select a sequence of(gaps8,) : n < w} so that
X, € B, andx,,1 € A, (for eachn < w). Now define anv*-sequence of convex
setsk,, by:

Ko = [x0, =) N Bo,
Kn = Anflm Bn-

ThenlJ K, is convex and has a maximum elemegtDually, select am-sequence
of convex sets without endpoin{X, } (except forK,; which has a minimum ele-
mentx() with the end result thdt) K, is convex and for each < w, K| C I,
K, NI ., #%, andK, < I, ,. Now we must adjust in the middle. Selggt< y;
in Jo = Jg. Then take two convex sefsU L' = [yo, y;l that determine a gap in
[yo, ¥pl. Selectingy, € J, andy, € J, for eachn < » we form the maximal chain

(UKo x ) U ol x 1) U (@h x 29 U (UK x 001). o
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Figure 1. Amaximal chainin((J 1, x J,) U (J In x Jn).

4. Expandable Chains

DEFINITION 4.1. A chainG C P is calledexpandabléf there is a family of
convex set$X, : g € G} satisfying:

g8 € X,
g > & =X;> Xy,

p € P\ U X, = pisincomparable to somge G.
geG

The import of the expandable chain idea is captured by the following observation:
if for eachg € G we have a chailf’, containingg and maximal inX,,, then J C,
is a maximal chain.

The next lemma uses the previous observation and some special properties of
C x C to allow us to construct a maximal chain within the given et
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LEMMA4.2. LetG € A C C x C be an expandable chain for whicki, is
isomorphic toC x C for eachg € G. Then, ifﬁl is block-dense it X,, A contains
a chain extendings that is maximal inC x C.

Proof. Extend each elementof the expandable chain to a piece of a maximal
chain inX, via Lemma 3.1. 0

Now we are ready to construct several types of maximal chairs inC using
expandable chains and Lemma 4.2. By way of introduction, consider the following
lemma.

LEMMA 4.3. LetA be block-dense in the blodkx C € C x C. ThenA contains
a chain maximal irC x C.

Proof (see Figure 2)First selecy so thatgz € I for eachz C.Sucha prefix
g can be found by considering any two distinct eleméfus, po), (@1, p1),...) <
{{Bo, g0, {B1, q1), . ..) Iin I that differ first for, say{a,, p.) # (B, g.). Let{y,r)
lie between(an, pn) and (ﬂnv qn> and Setg = ((Olo, p0>, (Oll, Pl)v RN (J/» r), 0)
The concatenatiogzis an element o€ since the last entry af belongs tav; +ws;
for example, recall that it = (r_1, (o, ro), {¥1, 1), ...) then we have

gZ: ((aO’ PO)» (O[lv Pl)» RN (J/» r)v (O’ r*l)v (J/O» r0>’ (Vl, rl)a .- >

For allg € (-1, 1) consider the block isomorphic ©6 x C, X, = {(dgX, qy) :
X,y € C}. By the block-density ofd in I x C, we may definex(¢) andy(g) so
that

G ={g; = (99X(q). qY(q)) : q € (=1, D}

is contained inA. To see thaG is an expandable chain, we must observe every
element outside df ) X, is incomparable to some element@f so suppose that

P = (Po, P1) is comparable to every element@f If po # ggp;, p must dominate

or be dominated by every element Gf and this is not possible. Therefore,is

of the form (gqopy, ¢1P7)- If g0 # g1, thenp is incomparable to the element of

O

Figure 2. A maximal chain in/ x C.
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G (ggx(q), q¥(q)) wheregq is any element of—1, 1) betweengy and¢;. Thus

go = q1; but thenp € X, (whereq = go). Hence,G is an expandable chain.
Since each of the blockk,, is isomorphic toC x C, an application of Lem-

ma 4.2 completes the proof. O

The proofs of the remaining lemmas in this section are quite similar to that
of the lemma just presented, and differ only in the particular expandable chain
constructed therein. Because of this similarity, we suppress those details that are
easily filled in by consideration of the proof of Lemma 4.3.

LEMMA 4.4. Let A be block-dense in a blodg x J/, whereJ' is a final segment
of C, and letA contain the union of blocKs) 1, x J,, where{J, } is anw*-sequence
of convex sets coinitial i€, and the sequencd,,} is doubly decreasing. Thef
contains a chain maximal i x C.

Proof(see Figure 3)Iin general, the method is to combine the final segment of a
chain from the previous lemma with an initial segment of the chain obtained from
Lemma 3.3.

First selecig so thatgz € Iy and{gz} > I, for eachz € C. The concatenation
gz is an element ofC provided that the last entry af belongs tow] + w;. Let
qo € (—1, 1) be large enough thapx € J' for all x € C. For allg > g consider
the setX,, = {(ggX, qy) : X,y € C}; this is isomorphic taC x C and a block of
Iy x J'. Then, by the block-density of in Iy x J/, we may define(g) andy(q)
so that

Go = {gg = (99x(q), 9Y(q)) : ¢ > qo}

is contained inA. SetK’ = {ggX : ¢ > qo,X € C}. Observe thak’ has no
minimum element and the set of elements belowjix € C : K’ > {x}}, has no
maximum element.

Figure 3. A maximal chain in(lJ I, x J,) U (Ip x J').
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Now, just as in Lemma 3.3, select the sequence of gaps, B,) : n < w}
based on the doubly decreasing sequdiige Set

Ko = Bo\ K/,
K, = A,_.1NB, (0O<n<w).

It is possible thaKy is empty in the case tha&’ and; define a gap, but this does
not damage the construction. Next, selecke J, for eachn < w and set

G1 = Kn x {3}

Associate eaclg € G1 with its singleton convex seX, = {g}. ThenGo U G is
an expandable chain and we are done by Lemma 4.2. O

As a point of notation in the following lemmas, we ugéto denote elements of
w; + w1 that are less than 0 (the element obtained by identifying the minimum of
w1 and the maximum ab}). For instance, “lis the predecessor of 0.

LEMMA 4.5. LetA be block-dense in a union of blocks of the farji, x J where
J is an initial segment of and{/,} is anw;-sequence of convex sets cofinalin
ThenA contains a maximal chain.

Proof (see Figure 4)First selecly € (—1, 1) so thatgz € J for everyz € C.
Chooseg, so thatg,z € I, for everyz € C. Then define

G = U {(8.0rx, gary) : r € (=1, 1)},

a<wi

choosingx = x(g,0r) andy = y(gar) so thatG’ C A.
Lety : (—1,1) — (-1, g) be an order isomorphism. Then take

G = {{Qol'rx, (r)y) : r € (1, 1)},

Figure 4. A maximal chain in_J Iy x J.
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Jo

J1
Jo

J3
Ja

Figure 5. A maximal chain inl’ x | J,.

choosingx = x(r) andy = y(r) so thatG C A.

The unionGUG' is an expandable chain provided we take the associated convex
sets determined by simply allowingandy in the above chain to range over all
possible values of'. An application of Lemma 4.2 then completes the proofa

LEMMA 4.6. Let A be block-dense in a union of blocks of the forfmx | J J,
wherel’ is a final segment af and{J,} is anw*-sequence of convex sets coinitial
in C. ThenA contains a maximal chain.

Proof (see Figure 5). For each< w choosgg, € C so thatg,x € J, for every
x € C. Choosetg € Cq so thatugz € I’ for everyz € C. Now define

G = U{(uon*rx(uon*r), Quuon ry(uon®r)) : r € (=1, D} U

n<w

{{uovX(ugv), douovy(ugv)) : v = {«, x) € Co, ¢ > 0} U

{{vx(v), Qovy(v)) : v € Co, v > uo},

where we definéx(b), y(b)) € C x C so that(bx(b), gby(b)) € A.

As usual, we observe that is an expandable chain by taking the convex sets
determined by simply allowing andy in the above chain to range over all possible
values ofC. An application of Lemma 4.2 then completes the proof. O

5. The Ramsey-style Part of the Proof

We are ready to complete the proof of the main theorem.
Suppose on the contrary th@t x C is colored with two colors (say red and
blue) in such a way that no maximal chain is monochromatic. Let us first consider
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conditions that allow us to apply Lemma 3.3. Suppose that there exist a final seg-
mentK'’ of C and an initial segment of C such that for every non-trivial convex
setly C K’, and every non-trivial convex sép C L, the blocks

() Io x J (for initial segments/ < C),
(b) Iy x J’ (for final segmenty’ C C),
(c) I’ x Jo (for final segmentg’ C C),

each contain a blue block. We argue that these suppositions ensure there is a region
as described in Lemma 3.3 colored entirely blue. Following the notation of that
lemma, use (@) to obtain a blue blofkx Jo whereJy C L. Apply (c) to the direct
product of the final segment af generated by, with the convex sef,. We obtain

a blue blockig x Jywherely < Iy and, we may assumeéy = J;. Iteratively apply

(a) to obtain a sequence of blue blodksx J, with I, doubly decreasing and the
w*-sequencdJ,} coinitial in C. Iteratively apply (b) to define a sequence of blue
blocks I/ x J/ with I/ doubly decreasing and the-sequencg.J/} cofinal in C.
Then(U 1, x J)) U (U I, x J,) is the claimed region colored blue. Hence there is

a blue maximal chain. This is a contradiction, so red must be block-dense in some
of the blocks of types (a), (b), and (c).

Suppose that red is block dense in a family of blogksx J,} where{l,} is an
w1-sequence of convex sets cofinaldrand eachy, is an initial segment of. By
the countable coinitiality of, we may assume thdt= (1 J,, is nonempty for an
ws1-subsequencel,,} cofinal inC. Thus,{l,, x J} contains a red maximal chain
by Lemma 4.5. Hence, there exists a final segmenkofC C such that for all
initial segments/ C C and for all convexly € K, Iy x J contains a blue block.

Suppose that red is block-dense in a family of bloKsx J,} where eachi; is
a final segment o€ and{J,} is anw*-sequence of convex sets coinitialGh Let
I’ = 1; I'is a nonempty final segment by the uncountable cofinalit§ .oBy
Lemma 4.6, the family/’ x J,} contains a red maximal chain. Hence, there exists
an initial segmentL. C C such that for all final segments C C and for all convex
setsJy C L, I’ x Jg contains a blue block.

Now, the only obstacle to constructing a blue region like that needed by Lem-
ma 3.3 is a complete absence of blue blocks (thereby making red block-dense) in
blocks of the formly x J' wherely C K'. This must happen for eady selected
from somew;-sequence of convex sets cofinal@n as otherwise the absence of
blue blocks would be bounded and we would simply invoke the construction of
Lemma 3.3 beyond the bound. Consider suclialf every block/; x J contains a
red block forl; C Iy andJ an initial segment o, then we may construct a region
satisfying Lemma 4.4 to obtain a red maximal chain. Thus, forlasglected from
somewi-sequence of convex sets cofinalinwe have blockd; x J that contain
no red blocks. But by Lemma 4.5 this is all that we need for a blue maximal chain.
The proof is complete — there can be no 2-coloring that 2-colors every maximal
chain.



238 D. DUFFUS AND T. GODDARD

6. Concluding Remarks and Open Problems

Since every countable ordered set can be colored with two colors so that no maxi-
mal chain is monochromatic and our example in Theorem 2.1 is of absolute;size
there is little room for questions about minimal examples for 2-coloring maximal
chains, unless one asks about specific order-theoretic conditions. For instance, our
construction is minimal with respect to dimension and cardinality, but there may
be other measures that are of interest.
We wish to note that the chai@ is not the only suitable starting point for
the example constructed in this paper. Robert Woodrow pointed our attention to
the following chain. Consideb;-sequences ofi-1, 0, 1} with only finitely many
nonzero terms, ordered lexicographicallyl( < 0 < 1). Call this chainC’. C’
has the property that no element is the limit of a countable sequence. Using
((wf + w1) - C'), we can prove that all of the lemmas from Lemma 3.3 onward
hold, but the maximal chains must be constructed differently (a little more effort
is required). We chose to ugeandC because we believed that the proofs of the
lemmas would be clearer and more explicit through the use of expandable chains.
Perhaps the most dramatic open question for coloring maximal chains in or-
dered sets of siz®, is the following.

QUESTION. Is there an ordered set of cardinalitythat contains monochromatic
maximal chains under any countable coloring?

As well, many questions remain with regard to coloring maximal antichains, as
even for countable ordered sets the situation is not resolved [1].
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