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Abstract 

Let L be a finite distributive lattice, and let J(L) denote the set of all join-irreducible elements 
of L. Set j (L) = IJ(Z)l. For each a C J(L), let u(a) denote the number of elements in the prime 
filter {x C L: x >~a}. Our main theorem is 

Theorem 1. For any finite distributive lattice L, 

4 "(a) ~>j(L)41q ,'2. 
aEJ(L) 

The base 4 here can most likely be replaced by a smaller number, but it cannot be replaced by 
any number strictly between 1 and 1.6159. We also make a few other observations about prime 
filters and the numbers u(a), a C J(L), among which is: every finite distributive non-Boolean 
lattice L contains a prime filter of  size at most ILl/3 or at least 21LI/3. 

The above inequality is certainly not true for all finite lattices. However, we give another 
inequality, equivalent to the above for distributive lattices, which might hold for all finite lat- 
tices. If so, this would give an immediate proof of a conjecture known as Frankl's conjecture. 
(~) 1999 Elsevier Science B.V. All rights reserved 
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1. Introduction 

Let L be a finite distributive lattice, and let J ( L )  and M ( L )  denote the sets o f  all 

join-irreducible and all meet-irreducible elements o f  L, respectively. It is well-known 

that J ( L )  and M ( L )  have the same number o f  elements (in fact they are isomorphic as 
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partially ordered sets), so we may put j ( L ) =  [J(L)[ = IM(L)[. For each a EJ(L),  let 
u(a) denote the number of elements in the prime filter {x EL: x>>.a}. Our interest in 
this paper is to study these numbers u(a), in particular to investigate them in relation 

to the size ILl of  L. 
Our main theorem is 

Theorem 1. For any finite distributive lattice L, 

4 u(a) >~j(L)4FLI/2. 
aEJ(L) 

(1) 

The base 4 here can most likely be replaced by a smaller number, but we shall see 
in the last section that it cannot be replaced by any number strictly between 1 and 
1.6159. 

We also make a few other observations about prime filters and the numbers u(a), 
a E J(L),  among which is: every finite distributive non-Boolean lattice L contains a 
prime filter o f  size at most ILl/3 or at least 2[L1/3. (See Section 2, Theorem 2.) 

Inequality (1) is certainly not true for all finite lattices: the modular nondistributive 
lattice M3, with 5 elements {O,a,b,c, 1} where 0 and 1 are the usual bounds and 
{a, b, c} is an antichain, is a quick counterexample, as it is easy to check that (1) fails, 
even if the base 4 is replaced by any fixed c >  1. However, inequality (2) below is 
closely related to (1) and might hold for all finite lattices, and in the last section we 
give two results supporting this possibility. (See the problems and Theorems 3 and 4 
in Section 4.) 

2. Background 

This paper began with our attempt to wrestle with an old problem which has become 
known as Frankl's conjecture, i.e., 

For every (nonempty) fn i te  union-closed family of  finite sets, there is an element 
contained in at least half o f  them. 

For references see [1,6-8,10,11,13-16].  
There is an equivalent statement in terms of intersection-closed systems, and two 

equivalent lattice-theoretic formulations (e.g., [5,11]). We shall focus on this one: 

every finite lattice L contains a join-irreducible a such that u(a) <<. ILl~2. 

We have not solved this problem! And in fact, for distributive lattices L, it is known 
to be true and is easy to prove. Just let a be any maximal element of J(L);  the set 
L -  {xEL: x>>,a} has a largest element a t (which is meet-irreducible), and the map 
x - + x A a '  is one-to-one from {xEL:  x>~a} into L - {x E L: x>~a}, whence we are 
done. Similar arguments establish the same fact for the classes of modular, geometric 
and lower semimodular lattices, among others [11]. 
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Theorem 1 grew out of attempts to verify Frankl's conjecture by an averaging ar- 
gument, although at first glance it might appear to establish just the opposite! For (1) 
says that the average size of the quantities 4 "(a) over all a EJ(L)  is at least 4ILl/2, so 
some 4 u(a) >~41LI/2, which means u(a)>~iL[/2, and the inequality is going the wrong 

way. 
Nevertheless, Theorem 1 does imply Frankl's conjecture for finite distributive lattices. 

To see this, begin with the dual of (1): 

4 a(a') >~j(L)41LI/2, 
at EM(L) 

where d(a ' )=  I{x EL: x<~a'}] is the size of the prime ideal determined by a' EM(L).  
This is equivalent to (1) when quantified over all finite distributive lattices, because 
the dual of a distributive lattice is another distributive lattice in which the join- 
irreducibles and meet-irreducibles have switched places. Then divide both sides by 4ILl, 
getting 

1 j (L)  
Z 41Ll--d(a"----------~) >~ - -  4Lzl/2" 

at EM(L ) 

Since, for each a ~ EM(L),  [L ] -  d ( d )  is the size of the prime filter generated by the 
corresponding join-irreducible a, this can be rewritten as 

>_ j (L)  
Z 4u(~) ~'41LI/2" (2) 

aEJ(L) 

As above, this last inequality implies that the average size of the quantities 1/4 "(a) 
over all a EJ(L)  is at least 1/4ILl/Z, which this time implies that some u(a)<<.lL[/2. 
Therefore a will do as the desired join-irreducible in Frankl's conjecture. 

We can see that both (1) and (2) are comparing ILl/2 with a certain mean of  the 
numbers {u(a): a E J(L)}. Given c > 0  with c ~ 1, and real numbers Xl . . . . .  x,, define 

Mc(xl . . . . .  x ,)  = log c c xi . 
\n i=l ] 

This is a particular kind of  quasiarithmetic mean, as defined in Example 1 on pp. 
218 of [3]. (See also Eq. (3) and Section 4 of [4], or pp. 231-232 of [2] for a more 
general definition.) Using this notation (1) can be written 

M4({u(a): a E J(L)})>~ ILl/2. 

Note that the usual arithmetic mean of the u(a)'s does not have this property, and in 
fact might be arbitrarily small in relation to ILl. For example, let t be a fixed positive 
integer, and let L be the distributive lattice 2 n G C, where n is sufficiently large, C 
is a chain of 2 n - t  elements, 2 n denotes the Boolean lattice with n atoms, and X ~3 Y 
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denotes the linear sum of the lattices X and Y. Then the average of the prime filter 
sizes in L, divided by the size of  L, is 

1 + 2 + 3 + • • • + 2 n-t + n(2 n-I + 2 n-t) 
(n + 2n-t)(2" + 2 ~-t) 

which simplifies to 

2n-t + 2n(2 t -  l + 1 ) + 1 

2n+t(1 + 2  - t )  + n 2  t+l + 2 n '  

and this can be made less than any preselected e > 0 as n ~ oc, by choosing t large 
enough. (See Section 4 for some remarks on other means.) 

Whereas (1) gives a mean of the u(a) 's  which is at least ILl~2, (2) does the opposite, 
because (2) can be rewritten as 

Ml/4({u(a): a E J(L)})~< ILl/2. 

These two inequalities can be considered as strengthenings of  the facts that every finite 
distributive lattice contains some prime filter of size at least half the lattice, and some 
prime filter of  size at most half the lattice. They also agree with the known property 

of the Mn's that Mc~Md whenever 0 < c < d  and c ¢  1, d ¢  1 (see Remark (8), p. 227 
of [3], or Section 4 of  [4]). Thus it will follow from Theorem 1 that, for all c~>4 and 
for all finite distributive lattices L, 

M1/c({U(a): a EJ(L)})~< ILI/2~M~({u(a): a E J(L)}) ,  

or in other words, 

1 j (L)  
Z cU(a~ ~> ~ and ~ c u(a) >~j(L)c ILl/2. 

aGJ(L) aEJ(L) 

It is interesting to note that while M~ as defined above does not exist for c = 1, 
the limit of Mc as c approaches 1 does, and is just the usual arithmetic mean. Thus, 

as we have seen above, limc~l Mc is not comparable to ILl/2 over the class of  all 
finite distributive lattices. We will see in Section 4 that Mc and Ml/c, where c is 

any number in the interval (1, 1.6159), are not comparable to ILl/2 over this class 
either. 

To describe some other known results about the numbers u(a), in particular as they 
relate to [L I, we introduce one further bit of notation. For L a finite distributive lattice 
and aEJ(L),  let v(a)=u(a)/[L[. So o(a) is between 0 and 1 for every aEJ(L),  and 
the above example shows that we could have the average of  the o(a) 's arbitrarily close 
to 0. Likewise, by dualizing this example we obtain a distributive lattice where the 
average is arbitrarily close to 1. 
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Not much is known about the numbers v(a). A theorem of Linial and Saks [9], 
when written in the language of distributive lattices, says that 

every finite distributive lattice L contains a prime filter of  size between Uo ILl and 
(1 - o0)[L], where v0 = (3 - log 2 5)/4 ~ 0.17. 

Thus every finite distributive lattice L contains a E J(L) such that 0.17 <v(a )<0 .83 .  
As reported in [9], an unpublished construction by James Shearer produces a distribu- 
tive lattice in which no v(a) lies between 0.197 and 0.803. This is an improvement 
over the bounds in an earlier paper of  the second author [12]. To our knowledge 
this is where this problem stands today, with the gap between 0.17 and 0.197 still 
waiting to be closed, the best value of v0 in the Linial-Saks result still not known 

exactly. 
The above result tells to what extent every distributive lattice will contain a prime 

filter of  'about'  half the elements. What about the other extreme - -  when will a 

distributive lattice contain either a 'small '  or a 'large' prime filter? Of  course, for 
every Boolean lattice the prime filters are all exactly half the lattice. But in all other 
cases the situation is quite different, as the following easy result demonstrates. 

Theorem 2. Every finite distributive non-Boolean lattice L contains either a prime 
filter of  size at most ILl~3 or a prime filter of  size at least 2[L1/3. 

Proof. Since L is not Boolean, its poset of  join-irreducibles is not an antichain, so we 

can choose a minimal and b maximal in J(L) so that a<b. Then each order ideal I 
of  J(L) that contains b also contains a and, in addition, I - {b} is another order ideal 

of  J(L) containing a. Moreover, it is clear that i f /1  and 12 are distinct order ideals 

containing b then I1 - (b} and 12 - {b} are also distinct. Thus the number of  order 

ideals of  J(L) which contain a is at least twice the number that contain b. The set of  
order ideals of  J(L) which contain a corresponds to the prime filter in L generated by 
a, and similarly for b, so the above fact translates in L as: the prime filter [a, 1] is at 
least twice as large as the prime filter [b, 1]. Now either [b, 1] is of  size at most ILl/3, 
or [a, 1] is of  size at least 21L[/3. [] 

In other words, no non-Boolean distributive lattice can have all its o(a) 's strictly 
between 1/3 and 2/3. This result is best possible in that the distributive lattice 3 (the 
3-element chain) contains prime filters of  sizes 1 and 2 only. (Or we could take the 
lattice 2 n × 3 where 2 n is any Boolean lattice.) 

3. Proof of Theorem 1 

Given a distributive lattice L, let the minimals of J(L) be al . . . . .  at. For each ai, let 
ni be the number of  elements of  J(L) which are greater than ai. Then 

t 

t + ~ ni >/j(L). 
i = 1  
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The number of  order ideals of  J(L) which contain ai is just u(ai). Note that for 

each of the ILl- u(ai) order ideals I of  J(L) which do not contain ai, 1 U {ai} is an 
order ideal of  J(L) containing ai, and I---~lU{ai} is a one-to-one map into the set 
of  order ideals containing ai. Moreover, if  we choose one such order ideal 1U {ai}, 
then for every a EJ (L)  satisfying a>ai we can form I U  {x E J(L):  x<~a} to get yet 
another order ideal of  J(L) containing ai. Since there are ni such order ideals, we have 

u(ai)>~ ILl - u(ai)  Jr- ni, or 

~ ni 
u(ai)>>. + 2 "  

By ignoring all terms 4 ~(~) in (1) where a EJ(L) is not minimal, it would be enough 

to prove 

t 
4 u(a') >/j(L)41LI/2, 

i=1 

and the above shows that it is enough to prove 

t 

2", >. j (L) .  
i = 1  

From t + ~-~'~i=1 ni >>.j(L) it is enough to prove 

t 

~-~(2 n ' -  1 -ni)>~O, 
i = 1  

which holds for all integral values of ni since 

2X~>l + x ,  

is true for all integers x. [] 

4. On lattices in general 

Problem. Is there a constant c >  1 such that Ml/c({U(a): a EJ(L)})~IL[/2, that is, 

1 j (L)  
cU( a--- 3 >>. - -  (3) clLI/2 

aEJ(L) 

holds for every finite lattice L? 

I f  so, then Frankl's conjecture would follow as in the distributive case. In Section 2 
we saw that the ordinary arithmetic mean does not yield an inequality from which we 
could deduce Frankl's conjecture. Indeed, it fails 'arbitrarily badly' even for distributive 
lattices of  the form C @ 2 n, where C is an appropriately sized chain. The argument 
given in Section 2 shows that the average size of  a prime filter of  this lattice, in 
proportion to the size of  the lattice, can be arbitrarily close to 1. 
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More general means such as weighted arithmetic means, or the rth power mean 

(j_.~ / 1/r 
M[r]({u(a): aEJ(L)} )= 1 Z [u(a)]r ' 

~eJ(L) / 

where r ~ 0, do not have the desired property for all finite distributive lattices ei- 
ther. (Indeed, the lattice 1 • 2 n shows that M [r] cannot be used to deduce that some 
u(a)<<. ILl/2.) These failures led us to consider the inequality in (3). 

Note that, unlike (1), (3) holds easily for every c > 1 for the modular nondistributive 
lattice L=M3,  for the very good reason that all u ( a ) = 2  while ILl----5, so all u(a)'s 
are less than ILl/2! (This is also the real reason why (1) fails when L=M3, as men- 
tioned in Section 1.) And we know from Section 2 that (3) holds for all c~>4 i f L  is 
distributive. As further (weak) evidence for an affirmative answer to this problem, we 
close by showing that two basic constructions preserve this inequality for finite lattices 
in general. 

Theorem 3. I f ( 3 )  holds (for some c > l ) f o r  finite lattices A and B, then it holds 
for the direct product A x B. 

Proof.  It is well known that 

J(A x B) = {(a, 0B): a E J(A)} U {(0A, b): b E J(B)}. 

Note that u((a, OB))=u(a). ]B I and u((OA,b))=u(b). [A I for all aEA, bEB. By 
assumption, 

1 j ( A )  ~ 1 ~> >/ 
z . ,  cu<o---7 c,I/2' 2--, cu<b--7 

aEJ(A) bEJ(B) 

Thus, by the power mean inequality, 

J~::" aeJ(A) " ) 

Hence 

Z xEJ(A ×B) 

j(B) 
clW2" 

1 1 1 

aEJ(A) cIA]/2 ' 

1 1 1 

beJ(B) 

1 1 1 

a EJ(A) bEJ(B) 

j(A) j(B) j(A) + j(B) 
(cIAI/Z)IB~[ - [ - ( c lB[ /2 ) IA[ -  CIAI'IBI/2 

j(A × B) 
elA×BI/2 ' 

and the result follows. [] 
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I f  A and B are lattices on disjoint vertex sets, let the short linear sum A OrB of  

A and B be the linear sum A G B with the elements 1A and 0B identified. In the 

statement of  Theorem 4, r ~ 1.271187623 is the largest real root o f  the polynomial 
3x 8 - 4x 7 + 1 = 0. 

Theorem 4. I f  (3) holds for  finite lattices A and B, where c/> r 2 ~ 1.615917973, then 

it holds for  A @~ B. 

Proof.  For clarity in this proof, we denote [[x, 1A][ by uA(x) for x EJ (A) ,  and similarly 

define UB(X) for x E J(B) ,  and reserve the notation u(x) for elements o f  J(A  @~ B). We 

are given that 

1 j(A) 1 j (B)  
clAI/2 ' ~ "  ~ 

aEJ(A) bEJ(B) 

Clearly J(A  G ~ B)  = J (A )  U J(B) .  Also, for x E J(A @' B), 

uA(x)+ IBI- 1 i f  x E J ( A ) ,  
u(x) ~ 

UB(X) if X E J(B) .  

Thus we want to prove that 

1 1 >~J(A)+j (B)  
Z cuA(a)+IBI-I + Z c~B(b) r~c([A[+IB]-I)/2 " 

aCJ(A) bCJ(B) 

By the assumption it is enough to prove that 

j ( A )  j ( B )  >~ ( j ( A )  + j ( B ) ) c  1/2 
cIBI_IcIAI/2 + ~ ~ eIAI/2elBI/2 ' 

which simplifies to 

j (  B )clSI/2( c lal/2 - x/c ) >~ j (  A )( clBI/2x/~ -- c ). (4) 

First we handle the special case ]A] = 2 .  Then j ( A ) =  1, and (4) says 

j (  B )clBI/2 ( c -- V/ C ) ~ cIBI/2%/~ - C, 

which can be written 

clBI/2(j(B)(c -- x/~) -- x,/-c) + c>~O. (5) 

Case (i): j ( B ) =  1. Then ]B] = 2  and (5) becomes c - 2 x / ~ +  1 t>0, or ( x / ~ -  1) 2 ~>0, 

which is true for all c. 
Case (ii): j ( B )  = 2. Then ]B] = 3 or 4. I f  [B] = 3 then (5) becomes 2c 3/2 - 3 e +  1 t>0. 

But 

2C 3/2 - - 3 c +  1 = ( x / c -  1 f ( 2 V ~  + 1), 
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SO the inequality follows in this case. I f  IB[ = 4 then (5) becomes 

c2(2c - 3X/~) + c>~0, 

which by putting x = x/~ can be written 

2 X  4 - -  3X 3 q- 1 ~> 0, 

which is true for x >/5/4 and thus for c t> 1.6. 

Case (iii): j ( B ) = 3 .  Then 4~1B1~8. Put z=lBI/2 so that (5) becomes 
d ( 3 c  - 4v/C) + c >t 0. Letting 

9c(z) = d (3c  - 4v/~) + c, 

it is enough to show that 9c ( z )~0  for all 2~<z~<4 and for c>~r2= 1.61 . . . .  Note that 

9c(Z) is increasing for z > 2  as long as 3 c > 4 v ~ ,  that is, c >  16/9. Thus for c >  16/9, 

9~.(z)>~9c(2) = c2(3c - 4 v ~ )  + c=c(v/-c - 1)2(3c + 2v/'C + 1 ) > 0  

as claimed. On the other hand, if  r 2 < c <  16/9 then 9c(Z) is decreasing, so we need 
only show that g~(4)>~0 for c in this range. But by putting x =  v~ ,  

9c(4) = c4(3c - 4 v ~ )  + c=x2(3x  8 - 4x 7 q- 1), 

which is greater than 0 for c > r a by the definition of  r. 

Case (iv): j(B)~>4. Then from (5) it would be enough to prove 

4(c - v/-~) - v ~  ~> 0, 

or v ~ > 5 / 4 ,  or c~>25/16, which is true. 

Now we can assume that ]A] t> 3. In fact note that if  IAI= 3, then A must be a 
three-element chain, which means that 

A e '  B~--2G' (2G'  B), 

and is therefore (in two steps) also handled above. Thus we can in fact assume that 

IAI~>4. 
Now j (A)<~ I A I -  1 (with equality when A is a chain), so it is enough to prove that 

j (B)clBi/2(c iAI/2 -- v ~ )  >i (IAI - l)(¢iBl/2v/-c - c). (6) 

I f  IBI = 2 then j ( B ) =  1 and (6) becomes 

c ( c t ~ l / 2  _ v ~ ) > ~ ( I A  I _ 1 ) ( c v ~  - c )  

which simplifies to 

ctAI/2_ lAIr7 + IAI- 1>~o. 

Letting 9 ( x ) = x  IAI - I A [ x  + IAI-  1, we see that # ( 1 ) =  0 and # ' (x )=  IAIxl~'l-1 -I~1 t>o 
for all x~> 1, so 9(x)>~O for all x~> 1. Putting x =  v ~  shows (6) in this case. 
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So we now may assume IB[ ~>3 and hence [B[ t>4 as well, which means j(B)~>3, 
and so it is enough to prove that 

3clBI/2(C IAI/2 -- W ~ )  ~ (IAI - 1 )(cIBI/2v~ - c), 

which simplifies to 

(1.41 4- 2)clBI/2v/c~3cI~I/2clBt/2 -k- c ( 1 . 4 1  - 1). 

Thus it is enough to prove [A] + 2 ~ 3 c  (IA1-1)/2, or that cX>>.2x/3 + 1 where x =  

(1.4[-  1)/2~>3/2. Put h ( x ) = c  x - 2 x / 3  - 1; then h ( 3 / 2 ) = c  3/2 - 2 > 0  for c >  1.6, and 
h ' ( x )  = c x In c - 2/3 so that h ' (3 /2)  = c 3/2 ln(3/2) - 2/3 > 0 again for c > 1.6. Therefore 

h ( x ) > 0  for all x>~3/2 and all c > r  2. This finishes the proof. [] 

Note that equality holds in (3) when c = r  2 for the distributive lattice L = I  @ 2 3, 

as is suggested by Case (iii) above. Thus, via the same technique as in Section 2, 

equality will hold in 

E ¢u(a) >~j(L)clLI/2 ( 7 )  
aEJ(L) 

when L is the dual lattice 23 @ 1 and for c = r  2 .~ 1.6159, and (7) with this L wi l l  f a i l  

for any e less than this value. This is the largest value of  c yet shown to be necessary 
for (7) to hold. 

Problem. Find better bounds, if  not the best value, for c such that (7) holds for all finite 
distributive lattices. It is now known that the best value co satisfies 1.6159 <co ~<4. 

In fact the lattice 23 q3 1 is the only one known to require a value o f  c as large as 

1.6159, and we do not know the answer to the following: 

Problem. For each fixed c >  1, does (7) hold for all suf f ic ient ly  large finite distributive 

lattices L? 
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