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MAXIMAL CHAINS AND ANTICHAINS IN BOOLEAN LATTICES*

D. DUFFUSf, B. SANDS:I:, AND P. WINKLERf

Abstract. The following equivalent results in the Boolean lattice 2 are proven.
(a) Every fibre of 2 contains a maximal chain.
(b) Every cutset of 2 contains a maximal antichain.
(c) Every red-blue colouring of the vertices of 2 produces either a red maximal chain or a blue maximal

antichain.
(d) Given any n antichains in 2 there is a disjoint maximal antichain.
Statement (a) is then improved to:
(a’) Every fibre of 2 contains at least n!/2"- maximal chains.
One conjecture of Lonc and Rival is supported, and another conjecture disproved, by showing:
(i) Every fibre of 2" has order r( 1.25 n) elements.
(ii) There is a minimal fibre of 2 "(n >_- 4) of size 2 + 2.
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1. Introduction. A cutset of a finite partially ordered set P is a subset of P that
intersects all maximal chains, and afibre of P is a subset intersecting all maximal anti-
chains. The reader may consult [2 for more information on these concepts.

A simple example ofa cutset is the set of all minimal elements (or maximal elements)
of P. More generally, if all maximal chains ofP have the same length, then the levels of
P are cutsets. (Here the kth level ofP is the set of all elements x E P such that all maximal
chains through x contain exactly k elements less than x. Thus the 0th level is just the
set of minimal elements of P.)

For fibres, there is also a natural example. The cone of an element x E P is the set
of all elements comparable to x (i.e., either =<x or >_-x). It is a simple exercise to see that
every cone is a fibre (e.g., see [2 ]).

Both of these constructions reinforce the intuitive idea of a cutset as something
stretching "horizontally" through P and a fibre as something stretching "vertically"
through P. In particular, every level contains (in fact, is) a maximal antichain, and every
cone contains a maximal chain. This will not be the case for every cutset or fibre ofevery
poset P; for example in the poset of Fig. 1, { a, d is a cutset with no maximal antichain
and { b, c } a fibre with no maximal chain. The main result of this paper shows that
intuition holds for one familiar family of finite posets: finite Boolean lattices.

We denote by 2 the Boolean lattice with n atoms, that is, the lattice of all subsets
of an n-element set.

THEOREM 1. (a) Everyfibre of2 contains a maximal chain.
(b) Every cutset of2 contains a maximal antichain.
In fact these two statements are equivalent for any poset P; it is easy to see that if

F were a fibre of P containing no maximal chain, then P F would be a cutset of P
containing no maximal antichain, and conversely. We may even note a third equivalent
statement of Theorem 1:
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c If the elements of2" are coloured red and blue, there is either a red maximal
chain or a blue maximal antichain.

The equivalence again follows for arbitrary posers P since, for example, if the red
elements do not contain a maximal chain, then by (a) of Theorem they cannot be a
fibre, and therefore must be disjoint from some maximal antichain which is necessarily
all blue. Conversely, assuming (c) and given a fibre F ofP, colour the elements ofF red
and everything else blue; then there cannot be a blue maximal antichain, so by (c) F
contains a maximal chain.

We give one more equivalent formulation of Theorem 1.
(d) Given any n antichains in 2 n, there is a maximal antichain disjoint from all

ofthem.
Note that this is best possible, as 2 is the union of its n + levels. This time we

do not get equivalence for arbitrary posers P. Let the shortest maximal chain in P have
+ elements and the longest have L + elements; then we have the following impli-

cations:

For any L antichains i [’"Every fibre of P
in P there is a disjoint has a maximal
maximal antichain chain

For any antichains
in P there is a disjoint
maximal antichain

For the first implication, if a fibre F ofP does not have a maximal chain, then every
chain ofF has at most L elements. Thus F is the union of at most L antichains, so there
is a maximal antichain disjoint from F, a contradiction. For the second implication, the
union of antichains in P cannot contain a maximal chain, so cannot be a fibre, so there
is a disjoint maximal antichain.

Of course, when P 2 n we have L n, whence (a) and (d) are equivalent.
In the next section we prove Theorem in form (a), or actually a stronger version

which will enable us to deduce the following corollary.
COROLLARY. Everyfibre of2 contains at least n / 2 maximal chains.
In the final section we give some results beating on tqo conjectures of Lonc and

Rival [2 on the sizes of minimal fibres (i.e., fibres none of whose proper subsets is a
fibre) of 2 ". In particular we prove in the following theorem that all fibres of 2 n are of
size exponential in n.

THEOREM 2. If is a fibre of2 n then I1 f(1.25").

2. Proof of Theorem 1. We take the elements of 2 n to be all subsets of
n { l, 2, n }, and shall denote them by capitals. Subsets of 2" will be denoted
by script letters, so a fibre shall be denoted ’, for example. If 6

_
2n we write

6e-= {X2"lXS for some
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and

St’+ {x2nl X_S for some S6 }.

Let a be an arbitrary total ordering of the elements of [n]. For X 2 we let
X { x, x2, xk where x <, x2 < < xk (<. being determined by a), and
we also put [n] X { y, Y2, Yn-} where y <, Y2 <, <. yn-. Define the
a-lexical chain through X, denoted co.(X), to be the chain oS(X) tO t’ + (X) where

e(x) {x,x- x ,x- {x ,x },... ,x- {x ,x, ,x }= },
a+(X) {X,X U Yl },X U {Yl,Y2 }, ,X U {Yl,Y2, ,Yn-k} [n] }.

That is, o2(X) is constructed by removing elements from X one at a time, smallest to
largest according to a; +(X) is constructed by adding elements to X one at a time,
smallest to largest according to a; and o(X) is just these two chains put together.
Clearly qo(X) is a maximal chain of 2 for each a and X. If r is a subset of 2 ,
we write

()=W{(X):X },

with similar definitions for &t’+ (r) and 0’(2). If a is the usual ordering < 2 <
< n, we drop the a’s, writing t’(X) instead ofq(X), for instance.
We will prove that

(.) everyfibre of2 contains the lexical chain q(X) for someX2,
and in particular form (a) of Theorem holds. To do this we need the following
somewhat awkwarddefinition. Call a subset of a fibre of 2 critical if there do
not exist subsets , 2 of 2 satisfying

[J is an antichain disjoint from ,
(2)

__
-tO 2+, and

(3)
_

&t’+(5), 2 ’-().
The idea behind this definition is as follows. Since is a fibre, every antichain avoiding, when extended to a maximal antichain, must meet . A subset 9v of ." for which
there is no 1 and 2 satisfying and (2) will by itself prevent any antichain outside

from being extended to a maximal antichain outside , in that any such maximal
antichain must contain an element of o(. It can be assumed, without violating or
(2), that 6e / and 2

_
St’-; condition 3 ), found necessary for our proof to work,

requires further that each element of be on the upper half of some lexical chain
through an element of 9, and dually for 2.

Note that itself is critical; even if , 2
_

2 n were to satisfy just and (2) for
oct , to 2 could be extended to a maximal antichain which would necessarily
avoid .’, a contradiction. On the other hand the empty set is trivially not critical, as is
witnessed by the choice 1 2 .

The proof of(.) is by contradiction. Suppose is a fibre of 2 containing no lexical
chain. By the above we may choose a nonempty critical subset //of which is minimal,
that is, no proper subset of////is critical. For each X e /define the rank r(X) ofX to
be the least positive integer r such that either X LJ 1, 2, r} or X { 1, 2, ..-, r}
is not in . Note that r(X) exists for each X since the entire lexical chain ov (X) is never
in . Choose M//J such that r(M) -< r(X) for all X e /.

Since ’ is minimally critical, /- {M} cannot be critical, so there exist subsets, ’ of 2 satisfying ), (2), and 3 for 6 ///- M}. Since ///is critical, 1 and
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must fail one of (1)-(3) for 5’ ///. As is easy to see, the only possibility is that
Md-U+.

By the definition of r(M) either
(i) M’=MU{1,2,...,r(M)}go

or
(ii) M" M- {1, 2, ..., r(M)} g .

We may suppose (i), by a duality argument we now give. For a set S 2 n, let
S [n S be the complement. If ,9 is a subset of 2 we write

(Note carefully that =f 2" 9!) 9 is the image of 9 under the dual automorphism
S -+ S of 2". Thus it is clear that if 9 is a maximal antichain (or maximal chain, or
fibre), so is 9 In particular, if 9 is a fibre with no maximal chain, so is 6#. Furthermore,
ifX e 2 then

and so

qt’-(X) ’+(X) and #+(X) e-(X),

all as sets; as chains they are dual to each other in each case. It now follows that a subset
6t’ of a fibre is (minimally) critical if and only if St’ is a (minimally) critical subset
of . Moreover if is a fibre containing no lexical chain, then also contains no
lexical chain, and for each X , r(X) r(X), where r(X) denotes the rank ofX in
the fibre . Thus, if (ii) holds for the element M of the fibre , then (i) will hold for
the (equally minimal) element M of the fibre . Hence we may assume (i) holds for
the given element and fibre.

Now let

a’ (ad- {M’}-) U {M’}
(see Fig. 2 for a schematic).

We claim that the sets a/’, satisfy ), (2), and 3 for 6t’ //. This is impossible
since /is critical, and (,) follows.

FIG. 2
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First, (3) is trivially true since has not changed, 5 has been enlarged (from
J//- M} to /) so o Oo and o+ (Oo) could only get bigger, and the only element
of ’ not in s’ is M’ which is an element of o+(M) and thus of o+(/). (2) is
immediate also; 3 + is unchanged, and it is easy to see that /’- contains /-, therefore
we need only observe that M s/’- follows from M =< M’ and M’ ’.

For ), ,/’ U is of course disjoint from o since M’ o. Thus it remains to
check that M’ is incomparable to all elements of ’- { M’} ’ M’}- and of .
IfA 6 { M’}-, then by definition A ; M’, and M’ A since M /-. Finally let
B 3. Then by (3) B o-(X) for some X g {M}, and r(X) >= r(M) by the
choice of M. Thus B cannot contain any of the elements { 1, 2, r(M) if in X at
all, they were the first to be deleted from X in forming the chain -(X). But since
MN+,BM, andhenceB;MU{1,2,’",r(M)} =M’.Since leM’-B, we
also have M’ ; B, and we are done. [5

The reader should note the following examples before attempting to extend this
theorem.

If extreme points 0, are added to the poser of Fig. 1, we obtain a poset iso-
morphic to the product of a two- and a three-element chain, with a fibre { 0, b, c, }
which does not contain a maximal chain. Thus Theorem cannot be extended to arbitrary
finite products of finite chains.

(2) We now describe a minimal fibre o of 2 6 containing an element X but not
containing any maximal chain through X. To simplify notation we will denote elements
of 26 by strings of integers, writing 123 instead of { 1, 2, 3 }, for example. Let

= { 12, 13, 14,25,26, 156,234,345,346,356,456 }.

It can easily be checked that ,/is a maximal antichain of 2 6 (first check that no two- or
three-element subset of 1, 2, ..-, 6 } can be added; it then follows that no other subset
can be added either). However there is no maximal antichain of 2 6 contained in

3=(U {123, 124, 125,126})- {12}.

(To avoid our adding 12 to such an antichain, it would have to contain, say, 123; this
means that 13 cannot be in the antichain, and now nothing can prevent 135 from being
included in the antichain.) This means that 2 6 is a fibre containing 12 but no
upper cover of 12, and hence no maximal chain through 12. Let " be any minimal
fibre contained in 26 ; then X 12 o, since otherwise the maximal antichain
misses o.

(3) We modify a construction of Nowakowski [3] to find a minimal cutset qq of
2 containing an element X but no maximal antichain containing X. Using a notation
analogous to that of the previous example, for n >_- 4 let

c= {12k: 3 <=k<=n} U lk: 3 <_k<_ n} U { 2k: 3 <=k<=n} U { k: 3 <=k<=n}.

It is easy to see that c is a minimal cutset of 2 (consider the smallest element of a given
maximal chain of 2 n which is not contained in 12). We claim that, for instance, c
contains no maximal antichain containing 13. For if /were such an antichain, then
for each k >- 4, to avoid adding 3k to /we must have k e /, and now nothing can stop
12 from joining /, a contradiction.

In proving above that every fibre of 2 contains the lexical chain co (X) for some
X e 2 n, by relabeling we have actually shown thatfor every ordering c of 1, 2, n },
every fibre of 2 n contains (X) for some X e 2. With this observation and a little
counting, form (a) of Theorem can be strengthened considerably.
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COROLLARY. Everyfibre of2 contains at least n!/2- maximal chains.
Proof. We first count the number of lexical chains 99 (X) in 2 n. It is clear that the

generating setXofa lexical chaino(X) must either be the smallest set in (X) containing
or the largest set in &’ (X) missing 1, since is either the first element added to X or

the first element deleted, depending on whether E X or not. Thus each lexical chain
t’(X) is generated by two of the 2 subsets of[n], so there are exactly 2 lexical
chains.

By symmetry, there are exactly 2 a-lexical chains for each ordering a. Since
there are n! orderings of[n] and n! maximal chains in 2 , by symmetry each maximal
chain must be of the form 9,(X) (for some X) for exactly 2n- different orderings a.
Therefore, since every fibre must contain an a-lexical chain for each a, every fibre must
contain at least n! / 2 different maximal chains. V1

To end this section, we note the following stronger version of form (b) of Theorem
1. For an ordering a of[n], call a subset cg of 2 an a-generalized cutset if cg intersects
every a-lexical chain (’(X), X E 2. Obviously every cutset is an a-generalized cutset
for each a. Thenfor each a, every a-generalized cutset of2 contains a maximal antichain.
This follows simply because if an a-generalized cutset did not contain a maximal
antichain, then its complement 2" c would be a fibre and thus by the above observation
must contain some a-lexical chain qo,(X). But then o,(X) would be disjoint from c,
a contradiction.

Here is an application. Consider 2 as the disjoint union of posets and 2,
where

= {x2n:X[n 1]}, 2 {Xe2":neX}.
Note that both and 2 are isomorphic to 2- Let c and 2 be cutsets of O
and 2, respectively. Then we claim that Cgl U cg2 contains a maximal antichain of 2 .
For let a be any ordering of[n] ending in the element n (for example, a could be the
usual ordering). Then for any X e 2, if n e X the upper cover of in o,(X) will be
n }, while if n X the lower cover of n in z(X) will be n ]. Hence for each
X e2" either -q(X)-{}

_
2 or (X)-{[n]}

__
’l, which means that

U 2 is an a-generalized cutset, and the claim follows.

3. Sizes of minimal fibres of 2". In [2], Lonc and Rival made the following con-
jectures:

(i) The minimum size of a fibre of 2 is

2(n+ 1)/2

_
2(- 1)/2_ 1, n odd,

2 n/2 + 1, n even.

(ii) The maximum size of a minimal fibre of 2 is 2 n-1 + 1.
Both sizes are attained by cones, (i) by the cone of an element in the middle level (s) of
2 n, (ii) by the cone of an atom or co-atom of 2 .

Regarding (i), we can show at least that every fibre of 2 is of size exponential in n.
THEOREM 2. If is a fibre of 2 then Il ( 1.25 ).
Proof. Let k be an integer, =< k < n/2, and let S be an element of 2 of size

2k 1. Let - be the family of all k-element subsets of S. We claim that - tO " is
a maximal antichain in 2 . - tO - is certainly an antichain; given T, U -, T and
U have at least one element of S in common, so T , and T t2 U 4: [n] so T .
To show - t2 - is maximal, let X 6 2 n; then X either contains at least k elements of S
and thus contains some member of -, or misses at least k elements of S and thus is
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contained in some member of -. Hence X cannot be added to d- U d- to get a larger
antichain.

Consider all such maximal antichains d- tO d- corresponding to elements S E 2 n,
IS] 2k- 1. Any fibre o of 2 must intersect each of these maximal antichains, of
which there are (2kL 1), one for each S. Consider a k-element set T in o; Tis a k-element
subset of exactly (-) sets S of size 2k and so can be the representative in o of
only this many maximal antichains W tO ’. Similarly, an (n k)-element set iP in o
can only belong to (the ’-part of) (-) maximal antichains -- tO . Thus " must
contain at least

(2kn-- 1) / (-)
elements of size k or n k. This turns out to be optimized for k n 5. The above
quotient can then be estimated by Stirling’s approximation to yield that [o[ is of order
at least

n (n/5)/5(3n/5)3n/5
(5/4)(2n/5)2n/s(3n/5) 3n/ (4n/5)4n/s

Any family of (2k )-element subsets of[n] with the property that no two
members of ,9 intersect in k or more elements will yield I1 pairwise disjoint maximal
antichains U " of 2. Consider the graph whose vertices are all (2k )-element
subsets of n (where k is a fixed proportion of n to be chosen later), two such subsets
being adjacent it" they have at least k elements in common. Then the degree of any ver-
tex is

22(2k-1)(n-ak+l)= 2k-l-

If k < n/4, it can easily be checked that the first term of this sum is the largest and,
exponentially, will dominate the sum. Thus there will exist an independent set of order
at least

2k-

Putting k Xn and applying Stirling’s approximation, this quotient is exponentially
equal to

(16X)x(1 --’-;j- 4X

which is maximized for X the real root of

112x3- 88X2 -1- 20x- 1,

i.e., ), 0.0692304. Plugging this value of ), into the above expression, we obtain: there
exists a family of2( 1.0674422 ") pairwise disjoint maximal antichains in 2 .



204 D. DUFFUS, B. SANDS, AND P. WINKLER

Of course 2 cannot have more than O(V) pairwise disjoint maximal antichains
since there is a fibre of this size, namely the cone of a middle-level element.

Problem. Find better bounds for the maximum number ofpairwise disjoint maximal
antichains in 2".

The base 1.25 in Theorem 2 compares quite well with the base V in conjecture
(i) above. Further evidence in support ofconjecture (i) might be presumed from the corol-
lary to Theorem 1, as the cone of a middle-level element of 2 contains (n/2)!2
7rn( n / 2e) maximal chains, scarcely more than the n / 2- 2 2fn n/2e) maximal
chains known to exist in every fibre from the corollary.

On the other hand, we can disprove conjecture (ii) for all n >= 4, although not
resoundingly: the following is an example of a minimal fibre o of 2 of size 2-1 + 2,
one more than the conjectured maximum size!

We use the notation of example (2) following the proof of Theorem 1, so that 12
means { 1, 2 }, etc. Let

(Fig. 3). Then Il 2 n-2 -Jr 2 n-2
__

2 2-1 + 2. Why is o a fibre? If were a
maximal antichain missing ff then we must have N, since is the only element of
the cone of 12 missing from . Similarly 2 6 s’ by considering the cone of 12. But this
is nonsense since c 2. Finally, why is o minimal? o [n] } is obviously not a fibre
of 2 since n } is itself a maximal antichain, and o 2 is not a fibre of 2 because
the maximal antichain 2, 2 } misses o { 2 }. So to finish the proof, by symmetry we
need only show that o {X is not a fibre whenever 12

_
X c [n]. To do this we

claim that

= { 2,X} U { 2yl yX}

is a maximal antichain. Since (for n > 4) , intersects o only in the element X, we
would be done. It is easy to check that s# is an antichain. Moreover, if Y e 2 with
Y ; 2 and Y X then 2 e Y and there is y Y, y q X. Thus 2y c__ y, so Y cannot be
added to

12 i2

FIG. 3
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Recently Ftiredi, Griggs, and Kleitman [1 have found minimal cutsets of 2 which
contain almost all elements of 2 n. We withhold judgment on whether or not the above
minimal fibre is largest.
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