
EIGENVALUE PROBLEMS FOR EXPONENTIAL TYPE
KERNELS

DIFENG CAI AND PANAYOT S. VASSILEVSKI

Abstract. We study approximations of eigenvalue problems for integral opera-
tors associated with kernel functions of exponential type. We show convergence
rate |λk − λk,h| ≤ Ckh

2 in the case of lowest order approximation for both
Galerkin and Nyström methods, where h is the mesh size, λk and λk,h are the
exact and approximate kth largest eigenvalues, respectively. We prove that the

two methods are numerically equivalent in the sense that |λ(G)
k,h − λ

(N)
k,h | ≤ Ch2,

where λ
(G)
k,h and λ

(N)
k,h denote the kth largest eigenvalues computed by Galerkin

and Nyström methods, respectively, and C is a eigenvalue independent constant.
The theoretical results are accompanied by a series of numerical experiments.

1. Introduction

In this paper we are interested in the eigenvalue problem associated with inte-
gral operators Af :=

∫
D
K(x, y)f(y)dy defined from kernel functions K(x, y) of

exponential type (cf. (1.1)) and D is a bounded Lipschitz domain in Rd.
Our approach is general, but driven by practical applications we focus on kernels

K(x, y), x, y ∈ Rd of the following particular (exponential) form

(1.1) K(x, y) = e−ρ(x−y) with ρ(x) := (|x1|s/ωs1 + · · ·+ |xd|s/ωsd)
γ ,

where s ∈ {1, 2}, γ = 1 or 1/s, ωi(i = 1, . . . , d) > 0. Examples of such kernel

functions include e−|x−y|
2
, e−|x−y|, etc. The kernel defines the integral operator

(1.2) Af(x) :=

∫
D

K(x, y)f(y)dy, x ∈ D.

Of our main interest is the numerical approximation of the eigenvalue problem
associated with A, namely, Aφ = λφ, for some λ, φ.

Eigenproblems of the above type, arise frequently in various research areas such
as geology [8, 7], uncertainty quantification [3, 10, 19], machine learning [16], etc.
The analysis of the underlying eigenvalue problem is beneficial in the derivation of
the error control, algorithm design, and overall numerical practice, etc.

Mathematically, the problem is usually formulated in either the space of con-
tinuous functions or the space of L2-integrable functions. The corresponding dis-
cretizations are the Nyström method and Galerkin method, respectively.
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For Nyström method, though various error estimates were derived, e.g., in [12,
25, 2, 18, 21, 22], it is not known if they are consistent with actual numerical
results, especially when the kernel function is not smooth enough, for example,
not continuously differentiable. Additionally, the proofs require the mesh size to
be sufficiently small.

For Galerkin method, which generally requires to use certain quadrature rule
to evaluate the double integrals when assembling the matrix, the impact of the
quadrature error to the computed eigenvalues is of practical interest and needs
special investigation especially when the integrand is not sufficiently smooth (for
example, functions with unbounded derivatives). This is the case of the kernels of
the form (1.1) studied in the present paper.

1.1. Contributions. Our aim is to present a comprehensive study of the eigen-
value problems for integral operators associated with kernel functions of exponen-
tial type as defined in (1.1). Those kernel functions are not necessarily smooth,
i.e., they may not have continuous (partial) derivatives. Theoretically, we focus
on the analysis of two formulations of the operator eigenvalue problem in terms
of L2-integrable functions and continuous functions. In the first case we use the
Galerkin method whereas in the second case the Nyström method is used. We uti-
lize piecewise constant approximation in the Galerkin method and midpoint rule
in the Nyström method. Numerical experiments were conducted to illustrate and
sometimes to complement the theoretical results.

The contributions are listed below (see Section 4 for details).
Firstly, we present a new framework to analyze the Nyström discretization. To

obtain the Nyström discretization error, we show that it is numerically equivalent
to the Galerkin discretization, and thus the error estimate for Galerkin discretiza-
tion immediately carries over, which reads

|λk − λk,h| ≤ Ckh
2,

where h is the mesh size, λk and λk,h denote the kth largest exact and approximate
eigenvalues (counted with multiplicity), respectively. To the best of our knowledge,
it is the first result that captures theO(h2) convergence rate of the Nyström method
when the kernel function is not continuously differentiable, while existing results
(cf. [12, 25, 2, 18, 21, 22]) can only yield O(h) convergence rate (see Section
5.3). For the nonsmooth kernel function considered in (1.1), for example, when
ρ(x − y) = |x − y|, the O(h2) convergence rate is known as superconvergence in
[5]. Moreover, unlike existing results, our proof does not require the mesh size to
be sufficiently small.

Secondly, to the best of our knowledge, we prove for the first time that the
Galerkin method and Nyström method are numerically equivalent in the sense
that

|λ(G)
k,h − λ

(N)
k,h | ≤ Ch2,

where λ
(G)
k,h and λ

(N)
k,h denote the kth largest eigenvalues (counted with multiplicity)

computed by Galerkin and Nyström discretizations, respectively, and C is a con-
stant independent of any eigenvalue. The estimate indicates that the convergence
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rates for two methods are the same up to a generic constant independent of the
eigenvalues. Also, the result guarantees that the error induced by numerical inte-
gration in the practical implementation of the Galerkin method does not affect the
final convergence rate, and it provides a theoretical foundation for the use of the
more implementation-friendly Nyström discretization, while maintaining the same
rate of convergence. Numerical results are presented to confirm the claim.

Thirdly, we perform several numerical experiments to examine various theo-
retical estimates, including the convergence rate, dependence of the asymptotic
constant on λ, approximation of eigenfunctions, etc. Our numerical results indi-
cate that the eigenvalue convergence rate is quadratic with respect to the mesh
size and for different eigenvalues, the approximation error is roughly independent
of the eigenvalue magnitude. A detailed discussion relating our estimates and the
ones from [12, 2, 18, 21] is presented.

1.2. Outline. The rest of the paper is organized as follows. In Section 2, we
study the integral operator associated with kernel functions of exponential type
and state the positive (semi-)definiteness of the operator as well as the related
matrices. Section 3 presents abstract estimates for the Galerkin approximation to
the underlying eigenvalue problem. The main results are presented in Section 4,
including convergence rates of Galerkin and Nyström discretizations, the equiva-
lence between the two discretizations, etc. Section 5 provides a numerical study of
various theoretical results in Section 4 and in existing literature [12, 2, 18, 21]. The
proof for the positive (semi-)definiteness of the operator and the related matrices
is given in the appendix (Section 7).

2. Integral Operators with Kernel Functions of Exponential Type

For notational convenience, for any given bounded Lipschitz domain in Rd, when
working with Sobolev spaces L2(D), H1(D) := {f ∈ L2(D) : ∇f ∈ L2(D)d}, etc.,
we assume D is open; while for C(D) - the Banach space of continuous functions
with the supremum norm ‖f‖sup := supx∈D |f(x)|, D is assumed to be closed. In
this section, unless otherwise stated, we use ‖·‖ without subscript to denote the
usual L2 norm.

2.1. Some auxiliary estimates. The following result is immediate using straight-
forward calculation.

Proposition 2.1. The kernel function K(x, y) defined in (1.1) satisfies

|K(x, y)−K(x, y′)| ≤ CK |y − y′| with CK =

(
d∑
i=1

ω−2i

)1/2

.

Consequently, if A is the integral operator defined in (1.2), then for each f ∈
L1(D), Af is Lipschitz continuous over Rd with |Af(x)− Af(x′)| ≤ CK‖f‖L1(D)|x− x′|.
In particular, Af ∈ H1(D) and ‖∇Af‖ ≤ ‖∇xK‖L2(D×D)‖f‖, ∀ f ∈ L2(D).

Next we estimate the second derivatives of the kernels of our interest, which is
needed in the error analysis that we provide later on. Let K(x, y) = e−ρ(x−y) with
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ρ =
(∑d

i=1 x
2
i /ω

2
i

)1/2
. A direct calculation shows that the second order partial

derivatives of K are unbounded at x = y. More specifically, we have

∂2

∂x2i
K(x, y) = −ρ

2(x− y)− (xi − yi)2/ω2
i

ω2
i ρ

3(x− y)
K(x, y) +

(xi − yi)2

ω4
i ρ

2(x− y)
K(x, y),

∂2

∂xj∂xi
K(x, y) =

(xi − yi)(xj − yj)
ω2
i ω

2
jρ

3(x− y)
K(x, y) +

(xi − yi)(xj − yj)
ω2
i ω

2
jρ

2(x− y)
K(x, y), i 6= j,

and

(2.1) |∂αK(x, y)| ≤ C max{1, 1/ρ(x− y)}, |α| = 2,

where α is a multi-index and C is a generic constant depending only on ωi.

2.2. Mapping properties. The following well-known mapping properties of in-
tegral operators associated with continuous kernel functions are collected below
(e.g., [14]).

Proposition 2.2. Let A be defined in (1.2). Then (1). A : L2(D) → L2(D) is
compact; (2). A : C(D)→ C(D) is compact; (3). A : L2(D)→ C(D) is compact.

The above proposition ensures that the theoretical results presented in Section 3
apply to our particular case of kernels of exponential type.

2.3. Positive definiteness. Define Φ(x) = e−ρ(x) with ρ in (1.1). Then K(x, y) =
Φ(x−y). The main result in Theorem 2.1 asserts that the function Φ(x) is positive
definite in the sense below (cf. [26]).

Definition 2.1 (positive definite functions). A continuous function Φ : Rd → R
is called positive (semi-)definite if for any n distinct points x1, . . . , xn ∈ Rd (n =
1, 2, . . . ), the matrix ai,j = Φ(xi − xj) is positive (semi-)definite.

For bounded continuous functions, the positive semi-definiteness is equivalent to
that of the associated integral operator (cf. [26]).

Proposition 2.3. A bounded continuous function Φ : Rd → R is positive semi-
definite if and only if

∫
Rd
∫
Rd Φ(x − y)v(x)v(y)dxdy ≥ 0 for all functions v in the

Schwartz spacev ∈ C∞(Rd) : sup
x∈Rd

(1 + |v|)M
∑
|α|≤m

|∂αv(x)| <∞ for any integers m,M ≥ 0

 .

Theorem 2.1. For ωi > 0 (i = 1, . . . , d) and x ∈ Rd, let ρ take one of the

following forms: (1). ρ(x) =
d∑
i=1

|xi|/ωi; (2). ρ(x) =
d∑
i=1

x2i /ω
2
i ; (3). ρ(x) =(

d∑
i=1

x2i /ω
2
i

)1/2

. Then Φ(x) = e−ρ(x) is positive definite. Namely, for any distinct

points x1, . . . , xn ∈ Rd, the matrix ai,j = Φ(xi − xj) is positive definite.



EIGENVALUE PROBLEMS FOR EXPONENTIAL TYPE KERNELS 5

The proof of Theorem 2.1 is given in the appendix (see Section 7). The result
below follows immediately from Proposition 2.3 and Theorem 2.1.

Corollary 2.1. Let K(x, y) be the kernel function defined in (1.1) and A be the
corresponding integral operator defined in (1.2). Then (Av, v) ≥ 0 for all v ∈
L2(D).

3. Abstract Results

In this section, V will be assumed to be a complex Hilbert space with inner
product denoted by (·, ·). The theoretical results in this section are developed for
the Galerkin discretization. We use boldface symbols to denote matrices. The
norm on V is denoted by ‖·‖ and ‖M‖2 denotes the L2 operator norm for a matrix
M . We use Ker and Ran to denote the kernel(or nullspace) and the range of an
operator, respectively.

We use A to denote a positive compact operator on V , where the definition of a
positive operator (cf. [20, 15]) is given below.

Definition 3.1. An operator A on a Hilbert space V is called positive if (Av, v) ≥
0, ∀ v ∈ V.

Note that a positive operator is necessarily self-adjoint, i.e., A = A∗ (cf. [20,
Theorem 12.32]).

A crucial tool we use in the estimate of eigenvalues is the Courant-Fischer min-
max (or max-min) principle (cf. [15]).

Theorem 3.1 (min-max principle). Let A be a compact, self-adjoint operator on V
with nonnegative eigenvalues listed in decreasing order (counted with multiplicity):
λ1 ≥ · · · ≥ λk ≥ · · · ≥ 0. Then

λk = max
Sk

min
v∈Sk
‖v‖=1

(Av, v),

where Sk is any linear subspace of V of dimension k.

In this paper, we are interested in positive eigenvalues of A, and the eigenvalue
problem is to find (λ, φ) such that

(3.1) λ ∈ R+, φ ∈ V\{0}, Aφ = λφ.

Let Vh be a finite dimensional subspace of V . The Galerkin method for (3.1) is to
find (λh, φh) such that

(3.2) λh ∈ R+, φh ∈ Vh\{0}, (Aφh, vh) = λh(φh, vh), ∀ vh ∈ Vh.
Let Ph : V → Vh be the projection from V onto Vh. Then (3.2) is essentially the
eigenvalue problem of the operator PhAPh on V . Since A is a positive compact
operator, so is PhAPh. We can then list the eigenvalues of the Galerkin approxi-
mation in (3.2) in decreasing order (counted with multiplicity): λ1,h ≥ · · · ≥ λn,h.
Theorem 3.1 implies that the eigenvalues have the following characterization:

λk,h = max
Sk

min
v∈Sk
‖v‖=1

(PhAPhv, v) = max
Sk,h

min
v∈Sk,h
‖v‖=1

(PhAPhv, v) = max
Sk,h

min
v∈Sk,h
‖v‖=1

(Av, v),
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where Sk and Sk,h are k-dimensional subspaces of V and Vh, respectively. The
min-max characterizations of λk and λk,h immediately yield the following.

Proposition 3.1. λk,h ≤ λk. Consequently, 0 ≤ λk − λk,h ≤ λk.

Eigenvalue approximations with Galerkin methods have been studied over the
past few decades (cf. [5, 13]). The following result can be easily derived using the
min-max principle (cf. [24]).

Theorem 3.2. Let φ1, . . . , φk be orthonormal eigenfunctions associated with eigen-
values λ1, . . . , λk, respectively. Then

(3.3) |λk − λk,h| ≤ 2 max
v∈Wk
‖v‖=1

‖(I − Ph)Av‖‖(I − Ph)v‖,

where Wk := span{φ1} ⊕ · · · ⊕ span{φk}.

Corollary 3.1. Under the assumptions in Theorem 3.2,

|λk − λk,h| ≤ 2

(
k∑
i=1

‖(I − Ph)φi‖2
)1/2( k∑

i=1

λ2i ‖(I − Ph)φi‖2
)1/2

.

Proof. By writing v =
∑k

i=1 αiφi ∈ Wk in (3.3), we can obtain the estimate above
via the triangle inequality and the Cauchy-Schwarz inequality. �

The scaling of |λk − λk,h| and ‖(I − Ph)φk‖ will be investigated via numerical
experiments in Section 5.

Remark 3.1. Note that if the multiplicity of λk is greater than 1, then the subspace
Wk may be different for a different choice/ordering of basis functions in Ker(A−
λkI).

4. Eigenvalue Problems

For the integral operator A defined in (1.2), we present two formulations for its
eigenvalue problem based on V = L2(D) and V = C(D), respectively. It can be
seen later that the two formulations are actually equivalent. Corresponding the
two formulations at the continuous level, two discretizations are discussed, and it
is shown later (in Section 4.4) that the two discretizations are also numerically
equivalent.

4.1. Two formulations: V = L2(D) and V = C(D). Recall that A is compact
on both V = L2(D) and V = C(D). For the Hilbert space V = L2(D), the
eigenvalue problem reads:

(4.1) find (λ, φ) such that Aφ = λφ, φ ∈ L2(D)\{0}.
For the Banach space V = C(D) with supremum norm, the eigenvalue problem
reads:

(4.2) find (λ, φ) such that Aφ = λφ, φ ∈ C(D)\{0}.
From the mapping property of A in Proposition 2.2, it is easy to see that the

two formulations in (4.1) and (4.2) are equivalent in the sense below.
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Proposition 4.1. An eigenpair (λ, φ) satisfies (4.1) if and only if it satisfies (4.2).

In addition to being compact on L2(D), it was shown in Corollary 2.1 that A is
a positive operator on L2(D). Therefore, we know from Proposition 4.1 and the
spectral theory of self-adjoint compact operators that:

Proposition 4.2. The eigenvalues of A in (4.1) or (4.2) are nonnegative and can
be listed in decreasing order (counted with multiplicity):

λ1 ≥ · · · ≥ λk ≥ · · · ≥ 0 with lim
k→+∞

λk = 0,

where the algebraic multiplicity is equal to geometric multiplicity for any λk > 0.

4.2. Galerkin discretization for V = L2(D). In this section, we consider the
Galerkin discretization of the eigenvalue problem in (4.1). Let T = {τi}ni=1 be a
subdivision of D of maximum mesh size h := max

τ∈T
diam(τ), where diam(τ) denotes

the diameter of τ . Introduce the space of piecewise constant functions

Vh := {v ∈ L2(D) : v|τ is a constant, ∀ τ ∈ T }
and let the projection Ph : L2(D)→ Vh be given by

(4.3) Phf |τ =
1

|τ |

∫
τ

fdx, ∀ f ∈ L2(D).

The result below is standard.

Proposition 4.3. Let Ph be the projection defined in (4.3). Then

‖(I − Ph)f‖ ≤ CPh‖∇f‖, ∀ f ∈ H1(D),

‖(I − Ph)Af‖ ≤ CP‖∇xK‖L2(D×D)h‖f‖, ∀ f ∈ L2(D),

where CP comes from the Poincaré constant, depending only on the shape regularity
of T . In particular, if (λ, φ) is an eigenpair of A with λ > 0, then

‖(I − Ph)φ‖ ≤ CP‖∇xK‖L2(D×D)λ
−1h‖φ‖.

Applying Proposition 4.3 to Corollary 3.1 yields the following estimate of the
eigenvalue convergence rate with respect to the mesh size h.

Theorem 4.1. Assume Ph is defined in (4.3) and Ah = PhAPh. Let λk and λk,h
be the kth largest positive eigenvalues of A and Ah (counted with multiplicity) ,
respectively. Then

(4.4) |λk − λk,h| ≤ 2C2
P‖∇xK‖2L2(D×D)Ckh

2,

where Ck =
√
k
(∑k

i=1 λ
−2
i

)1/2
and CP is the constant in Proposition 4.3, depend-

ing only on the shape regularity of T .

Remark 4.1. In addition to (4.4), an O(h2) error bound can also be found in [5,
Chapter 7], but it is an asymptotic estimate valid only for small enough mesh size
h. [13, Section 18] provides a non-asymptotic estimate but will result in an O(h)
error bound.
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4.2.1. The matrix eigenvalue problem. Given a subdivision T = {τi}ni=1, let χτi(x)
denote the characteristic function on τi. The Galerkin method seeks a nonzero
function φh(x) =

∑n
i=1 ciχτi(x) ∈ Vh such that

(Aφh, vh) = (λ
(G)
h φh, vh), ∀ vh ∈ Vh

for some λ
(G)
h > 0. This yields the matrix eigenvalue problem below:

(4.5) M
(G)
h c = λ

(G)
h Dhc,

where

M
(G)
h =

[∫
τi

∫
τj
K(x, y)dydx

]n
i,j=1

, Dh = diag(|τ1|, . . . , |τn|), c = [c1, . . . , cn]T .

Here diag(. . . ) denotes a diagonal matrix with diagonal entries (. . . ). By intro-

ducing q = D
1/2
h c and multiplying both sides of (4.5) by D

−1/2
h on the left, we

convert (4.5) into a standard eigenvalue problem below.

A
(G)
h q = λ

(G)
h q with A

(G)
h = D

−1/2
h M

(G)
h D

−1/2
h .

In practice, for the ease of implementation, we use certain quadrature rule to
compute the double integral of the kernel function K(x, y). For example, since
K(x, y) ∈ C(Rd × Rd), we may simply use the mid-point rule to evaluate the
integral on each element, i.e.,

(4.6)

∫
τi

∫
τj

K(x, y)dydx ≈ K(xi, xj)|τi||τj|,

where xi is the centroid of τi. The resulting linear system of c1, . . . , cn reads

(4.7) M
(N)
h c = λ

(N)
h Dhc with M

(N)
h =

[
K(xi, xj)|τi||τj|

]n
i,j=1

.

Again, using q = D
1/2
h c, (4.7) can be transformed into

(4.8) A
(N)
h q = λ

(N)
h q with A

(N)
h = D

−1/2
h M

(N)
h D

−1/2
h .

The approximation error introduced by the quadrature in (4.6) will be analyzed
in Section 4.4.

4.3. Nyström discretization for V = C(D). In this section, we consider Nyström
discretization for the eigenvalue problem in (4.2) with V = C(D). Based on the
mid-point rule applied to the integral in (1.2), we define the finite-rank operator:

(4.9) Ahφ(x) :=
n∑
j=1

K(x, xj)|τj|φ(xj), x ∈ D, φ ∈ C(D),

where xj is the centroid of τj. The eigenvalue problem for Ah is to find λ
(N)
h and

φh ∈ C(D)\{0} such that Ahφh = λ
(N)
h φh. Evaluating the equation at quadrature

nodes x1, . . . , xn yields the following equivalent matrix eigenvalue problem (cf.

[17, 2]): D−1h M
(N)
h φh = λ

(N)
h φh, which is identical to (4.7). The eigenfunction can

then be recovered from nodal values φh = (φh(x1), . . . , φh(xn)) by using (4.9).
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The substitution q = D
1/2
h φh transforms the above matrix problem into a stan-

dard symmetric eigenvalue problem identical to (4.8): A
(N)
h q = λ

(N)
h q. Therefore,

we see that, the Galerkin method coincides with the Nyström method up to quad-
rature errors from (4.6). We will show in Section 4.4 (see Theorem 4.3) that the
quadrature error does not dominate the discretization error in the eigenvalue com-
putation. Therefore, the convergence result for the Nyström method below can be
obtained with the help of Theorem 4.1 for the Galerkin method.

Theorem 4.2. Let K(x, y) = e−(|x1−y1|
2/ω2

1+···+|xd−yd|2/ω2
d)
γ

(γ = 1/2 or 1) and T
be a quasi-uniform subdivision in D ⊂ Rd (d = 1, 2, 3) with maximum mesh size h.
With quadrature approximation Ah defined in (4.9), let λk and λk,h denote the kth

largest positive eigenvalues of A and Ah (counted with multiplicity) , respectively.
Then

(4.10) |λk − λk,h| ≤ C‖∇xK‖2L2(D×D)Ckh
2,

where C is a constant that only depends on the shape parameter of the mesh T and
Ck is the constant defined in Theorem 4.1.

4.4. Equivalence of Galerkin and Nyström discretizations. We have shown
in Proposition 4.1 that at the continuous level the two formulations in (4.1) and
(4.2) are equivalent. In this section, we build the discrete counterpart of such
an equivalence. Namely, we estimate the error in computed eigenvalues from two
discretizations discussed in Section 4.2 and Section 4.3. The main result is stated
below.

Theorem 4.3. Let K(x, y) = e−(|x1−y1|
2/ω2

1+···+|xd−yd|2/ω2
d)
γ

(γ = 1/2 or 1) and T =
{τi}ni=1 be a quasi-uniform subdivision in D ⊂ Rd (d = 1, 2, 3) with maximum mesh

size h. If λ
(G)
h and λ

(N)
h are the ith largest eigenvalues (counted with multiplicity)

of A
(G)
h and A

(N)
h , respectively. Then∣∣∣λ(G)

h − λ(N)
h

∣∣∣ ≤ Ch2,

where the constant C is independent of any eigenvalue.

To prove Theorem 4.3, we first analyze the quadrature error in (4.6).

Lemma 4.1. Let T = {τi}ni=1 be a quasi-uniform mesh with maximum mesh size
h.

• If K(x, y) ∈ C2(τi × τj), then

(4.11)

∣∣∣∣∣
∫
τi

∫
τj

K(x, y)dydx−K(x∗, y∗)|τi||τj|

∣∣∣∣∣ ≤ C1|τi||τj|h2 max
|α|=2

max
τi×τj
|∂αK|.

• If K(x, y) ∈ C(D ×D) is Lipschitz continuous, then

(4.12)

∣∣∣∣∣
∫
τi

∫
τj

K(x, y)dydx−K(x∗, y∗)|τi||τj|

∣∣∣∣∣ ≤ C2|τi||τj|h.
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Here α is a multi-index, C1, C2 are generic constants independent of i, j, x∗ and
y∗ are centroids of τi and τj, i.e., |τi|x∗ =

∫
τi
xdx and |τj|y∗ =

∫
τi
ydy.

Proof. The Taylor expansion of K(x, y) over τi × τj reads

(4.13) K(x, y) = K(x∗, y∗)+∇xK(x∗, y∗)·(x−x∗)+∇yK(x∗, y∗)·(y−y∗)+R(x, y),

where the remainder satisfies

|R(x, y)| ≤ C1h
2 max
|α|=2

max
(x,y)∈τi×τj

|∂αK(x, y)|.

Since x∗, y∗ are centroids, it follows that∫
τi

∇xK(x∗, y∗) · (x− x∗)dx = 0 and

∫
τj

∇yK(x∗, y∗) · (y − y∗)dy = 0.

Hence (4.11) can be obtained by taking double integrals of the equation in (4.13)
over τi × τj. (4.12) can be proved similarly by integrating

K(x, y) = K(x∗, y∗) + [(K(x, y)−K(x∗, y)) + (K(x∗, y)−K(x∗, y∗))],

where the summands in the bracket are estimated using the Lipschitz condition.
�

The error ‖A(G)
h −A(N)

h ‖2 can be estimated as below.

Proposition 4.4. Under the assumptions in Theorem 4.3, Eh := A
(G)
h − A(N)

h

satisfies

(4.14) ‖Eh‖2 = O(h2), d = 1, 2, 3.

Proof. Without loss of generality, assume D = [0, 1]d. It suffices to prove (4.14)

for the following three cases: (1). d ≥ 2; (2). d = 1 and K(x, y) = e−(x−y)
2/ω2

; (3).
d = 1 and K(x, y) = e−|x−y|/ω.

Case 1. In this case, we illustrate the proof for a uniform rectangular mesh and
the same idea applies to the general case. For Eh = [ei,j]i,j with

ei,j = |τi|−
1
2 |τj|−

1
2

(∫
τi

∫
τj

K(x, y)dydx−K(xi, xj)|τi||τj|

)
,

we estimate for each fixed i the quantity
∑n

j=1 |ei,j|. By first partitioning the
elements into consecutive layers centered at τi, we can evaluate the contribution
layer by layer.

The 0th layer is τi itself. The 1st layer contains elements that share a vertex
with τi. In general, the kth(k ≥ 1) layer is composed of elements outside layer
k − 1 that share a vertex with layer k − 1. See Figure 1 for an illustration in one
and two dimensions.

Next we estimate |ei,j| layer by layer. We use C to denote a generic constant
independent of i, j. The assumption on T = {τi}ni=1 yields

(4.15) n = O(h−d) and |τ | = O(hd), ∀ τ ∈ T .
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Note that for each τj in layer k ≥ 2, K(x, y) ∈ C2(τi × τj) and (2.1) implies that

max
|α|=2

max
τi×τj
|∂αK| ≤ C(kh)−1, ∀ τj in layer k ≥ 2.

Together with (4.15) and Lemma 4.1, it can be deduced that

|ei,j| ≤ Chd+1, ∀ τj in layer 0, 1, and |ei,j| ≤ Ck−1hd+1, ∀ τj in layer k ≥ 2.

The number of elements in layer k ≥ 1 is (2k+1)d−(2k−1)d ≤ 26kd−1. Therefore,

n∑
j=1

|ei,j| ≤ Chd+1 + C

L∑
layer k=1

26kd−1k−1hd+1 = O(h2), d = 2, 3,

where L denotes the maximal number of layers and obviously L ≤ 1/h.
Since Eh is symmetric, it follows from Gershgorin’s Circle Theorem that

‖Eh‖2 = max
i
|λi(Eh)| ≤ max

i

n∑
j=1

|ei,j| = O(h2),

which completes the proof of Case 1. The inequality above can also be shown
via the following argument: since Eh is symmetric, ‖Eh‖2 is equal to its spectral
radius, which is bounded by any matrix norm (cf. [11, Theorem 5.6.9]), and the

quantity max
i

n∑
j=1

|ei,j| is the l∞ matrix norm of Eh.

Case 2. In this case, K ∈ C∞(D×D) and there exists a constant C such that

max
|α|=2
‖∂αK‖L∞(D×D) ≤ C.

Hence Lemma 4.1 implies

|ei,j| ≤ Ch3, ∀ i, j.
Then the same argument as in Case 1 yields the desired estimate:

‖Eh‖2 ≤ max
i

n∑
j=1

|ei,j| = O(h2).

Case 3. In this case, K(x, y) = e−
|x−y|
ω , x, y ∈ [0, 1]. Let hi denote the length

of the ith interval τi = [ti−1, ti] and recall that xi is the center of τi. We estimate
|ei,j| as follows. When i = j, it can be computed that∫ ti

ti−1

∫ tj

tj−1

e−
|x−y|
ω dydx = ω(2hi + 2ωe−

hi
ω − 2ω) = h2i +O(h3),

where the last identity follows from the Taylor expansion:

e−
hi
ω = 1− hi

ω
+

h2i
2ω2

+O(h3).

Then

(4.16) |ei,i| = h−1i (h2i +O(h3)−K(xi, xi)|τi|2) = O(h2).
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When i 6= j, since K(x, y) = K(y, x), assume without loss of generality that

ti−1 ≥ tj. Then K(x, y) = e
y−x
ω for (x, y) ∈ τi × τj and we deduce that∫ ti

ti−1

∫ tj

tj−1

e
y−x
ω dydx = −ω2(e

hi
ω − 1)(e−

hj
ω − 1)e

tj−ti
ω

= −ω2

(
hi
ω

+
h2i

2ω2
+O(h3)

)(
−hj
ω

+
h2j

2ω2
+O(h3)

)
e
tj−ti
ω

= hihj(1 +
hi − hj

2ω
)e

tj−ti
ω +O(h4)

and

K(xi, xj)|τi||τj| = hihje
hi−hj

2ω e
tj−ti
ω = hihj(1 +

hi − hj
2ω

)e
tj−ti
ω +O(h4).

Therefore,

(4.17) |ei,j| = h
−1/2
i h

−1/2
j O(h4) = O(h3), ∀ i 6= j.

We conclude from (4.16) and (4.17) that

‖Eh‖2 ≤ max
i

n∑
j=1

|ei,j| = O(h2).

The proof of the theorem is complete. �

layer 1

layer 2

Figure 1. Partition of D into layers with respect to τi (left: 1D;
right: 2D).

Theorem 4.3 follows readily from Proposition 4.4 and Weyl’s inequality [27, 4,
23].

Lemma 4.2 (Weyl’s inequality). Let A and B be n-by-n Hermitian matrices with

eigenvalues λ
(A)
1 ≥ · · · ≥ λ

(A)
n and λ

(B)
1 ≥ · · · ≥ λ

(B)
n , respectively. Then

max
i=1,...,n

∣∣∣λ(A)i − λ
(B)
i

∣∣∣ ≤ ‖A−B‖2.
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4.4.1. Numerical illustration. To show that the O(h2) error bounds in Proposi-
tion 4.4 and Theorem 4.3 are attainable, we perform a numerical experiment
with K(x, y) = e−|x−y|, x, y ∈ D = (0, 1), so the integrals in the Galerkin ma-

trix A
(G)
h can be evaluated exactly. Uniform meshes are used and by varying

the mesh size h, we compute the corresponding eigenvalue errors measured by

maxk≤1000

∣∣∣λ(G)
k,h − λ

(N)
k,h

∣∣∣. The matrix errors ‖A(G)
h −A(N)

h ‖ are also computed. It

can be seen from Figure 2 that both errors are O(h2).

mesh size h ×10-4
2 3 4 5 6 7 8 9 10

e
rr

o
r

10-9

10-8

10-7

10-6

reference line: slope = 2

max
k≤  1000

|λ
k,h

(G)
-λ

k,h

(N)
| and ||A

h

(G)
-A

h

(N)
||

2
 -- mesh size h

max|λ
k,h

(G)
-λ

k,h

(N)
|

||A
h

(G)
-A

h

(N)
||

2

Figure 2. maxk≤1000 |λ(G)
k,h − λ

(N)
k,h | (blue line) and ‖A(G)

h − A(N)
h ‖

(red line) v.s. h.

5. Numerical Experiments

We perform various numerical tests for the integral operatorAf :=
∫
D
K(x, y)f(y)dy.

We use piecewise constant approximation in the Galerkin method and midpoint
rule in the Nyström method. Also, uniform triangular meshes are used in the two
dimensional case. In Section 5.1, the actual eigenvalue convergence rates com-
puted by Nyström method are shown. Section 5.2 investigates the eigenfunction
approximation. Section 5.3 presents a comparison of our error bounds with the
ones from [12, 2, 18, 21], etc.

Example 1. We first consider an example with known eigenpairs from [9]

K(x, y) = e−‖x−y‖1 , x, y ∈ D = (0, 1)d (d = 1, 2).

If d = 1, the exact eigenpairs of the integral operator A are given by

(5.1) λk =
2

w2
k + 1

, φk(x) = Bk(sin(wkx) + wk cos(wkx)),

where wk(k = 1, 2, . . . ) are positive solutions of the equation tan(w) = 2w
w2−1 and

Bk is chosen such that ‖φk‖L2(D) = 1. The decay rate of eigenvalues is known
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to be λk = O(k−2). If d = 2, the exact eigenvalues/eigenfunctions are the tensor
products of eigenvalues/eigenfunctions in one dimensions, i.e.,

λk1,k2 = λk1λk2 , φk1,k2(x) = φk1(x1)φk2(x2), x = (x1, x2) ∈ R2.

Example 2. We consider in this example the kernel function associated with
the L2 norm in two dimensions.

K(x, y) = e−‖x−y‖2 , x, y ∈ D = (0, 1)2.

Since the exact eigenvalues are not known, we use the computed eigenvalues over
a finer mesh with mesh size h =

√
2/200 as reference eigenvalues to evaluate

the errors of approximate eigenvalues derived from much coarser meshes(h =√
2/25,

√
2/50).

5.1. Rate of convergence. The results for Example 1 are shown in Figure 3 –
4. The results for Example 2 are shown in Figure 5 – 6, which are similar to those
in Example 1.

The log-log plots in Figure 3 and Figure 6 indicate the convergence rate:

|λ− λh| = O(h2).

From Figure 4 and Figure 5 (with fixed mesh size in each plot), we see that (for
leading eigenvalues) the error |λ − λh| is roughly independent of λ. Hence we
deduce that there is a constant C independent of λ such that

(5.2) |λ− λh|/h2 ≤ C, ∀λ.

We then examine the magnitude of the constant C. For the four problems shown
in Figure 4 and Figure 5, the maximal approximation errors maxk |λk − λk,h| are
bounded by 5 × 10−8, 3 × 10−4, 3 × 10−5, 2 × 10−4, respectively. Hence it can
be computed that the constant C ≤ 0.1. That is to say, we have |λ− λh| ≤
0.1h2, ∀λ, for the above four experiments.

mesh size h ×10-4
2 3 4 5 6 7 8 9 10

m
a
x
|λ

-λ
h
|

10-9

10-8

10-7

10-6

reference line: slope = 2

max|λ-λ
h
| over the first 1000 eigenvalues -- mesh size h in 1D

mesh size h
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

m
a
x
|λ

-λ
h
|

10-5

10-4

10-3

reference line: slope = 2

max|λ-λ
h
| over the first 500 eigenvalues -- mesh size h in 2D

Figure 3. Example 1 - Rate of convergence. Left: 1D; Right: 2D



EIGENVALUE PROBLEMS FOR EXPONENTIAL TYPE KERNELS 15

k
10

0
10

1
10

2
10

3
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

λk and |λk − λk,h| in 1D(h = 1/2000)

λ
k

|λ
k
-λ

k,h
|

k
10

0
10

1
10

2
10

3
10

-8

10
-6

10
-4

10
-2

10
0

λk and |λk − λk,h| in 2D(h =
√
2/25)

λ
k

|λ
k
-λ

k,h
|

Figure 4. Example 1 - λk and |λk−λk,h| for 1 ≤ k ≤ m. Left: 1D,

m = 1000, h = 1/2000; Right: 2D, m = 500, h =
√
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Figure 5. Example 2 - λk and |λk − λk,h| for 1 ≤ k ≤ 500. Left:

h =
√

2/50; Right: h =
√
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Figure 6. Example 2 - Rate of convergence.
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5.2. Eigenfunction approximation. Since all theoretical error bounds for eigen-
values are expressed in terms of certain approximation errors of eigenfunctions, we
compute the actual approximation error of the eigenfunctions in this section using
Example 1 with d = 1. In the Section 5.3, we insert it into the eigenvalue estimates
(in [2, 18] and (4.4)) to investigate the scalings with respect to λ (exact eigenvalue)
and h (mesh size).

Numerical observations: (5.1) and Figure 7 imply that
(5.3)

‖φ′k‖sup = O(λ−1k ), ‖φ′k‖ = O(λ−1k ) and ‖(I − Ph)φk‖ = O(kh) = O(λ
−1/2
k h).

Theoretical estimates: Proposition 4.3 implies that ‖(I − Ph)φk‖ ≤ Cλ−1k h,
which differs from the numerical observation in (5.3). This may indicate that
using Poincaré’s inequality to estimate the approximation error ‖(I −Ph)φ‖ is not
accurate enough.

k
0 100 200 300 400 500 600 700 800 900 1000

||
(I

-P
h
)φ

k
||

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

||(I-P
h
)φ

k
||  -- k  (φ

k
 is an eigenfunction of unit length for the k

th
 largest eigenvalue)

h ×10-4
2 3 4 5 6 7 8 9 10

||
φ

 -
 P

h
φ

||

×10-3

2

3

4

5

6

7

8

reference line: slope = 1

||φ  - P
h
φ || -- mesh size h (φ  is an eigenfunction of unit length for the 10

th
 largest eigenvalue)

Figure 7. ‖φk − Phφk‖ with respect to k (left) and h (right)

5.3. Comparison of existing theoretical estimates. Using the exact eigen-
pairs in Example 1, we compare different error estimates, e.g., in [12, 2, 18, 21]
and (4.10), to true errors in the eigenvalue computations. It will be seen that all
theoretical error bounds overestimate the true error by a large margin of various
degrees and the error bound in (4.10) is more accurate.

Estimates in (4.10). Now we compute the error bound in Theorem 4.2 (or
Theorem 4.1). With λk = O(k−2), it can be computed that the constant Ck in

Theorem 4.1 is Ck = O(k3) = O(λ
−3/2
k ). Hence the error estimate is

(5.4) |λ− λh| = O(λ−3/2h2),

where the scaling h2 is correct while the factor λ−3/2 is redundant compared to
(5.2).

Estimates from [12, 2, 18, 21]. Existing estimates for the Nyström discretiza-
tion are all asymptotic and more or less of the form: |λ − λh| = O(quadrature
error). For example, the estimates in [12, 2, 18] roughly say that

|λ− λh| ≤ C∗max
φ
‖Aφ− Ahφ‖sup if h is sufficiently small,

where Ah is the quadrature operator in (4.9), φ ∈ Ker(A− λI) is an eigenfunction
of unit length, C∗ is a constant that may (in [2, 18]) or may not (in [12]) depend
on λ. The quadrature error A − Ah corresponds to the operator Qn in [21] and
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was used in [21] to obtain the convergence rate. In Example 1, we deduce that
‖Aφ − Ahφ‖sup = O(‖φ′‖suph) = O(λ−1h). Hence those estimates give rise to the
convergence rate

|λ− λh| ≤ C∗λ
−1h if h is sufficiently small,

which is inconsistent with the O(h2) scaling observed in Section 5.1. Moreover,
in [2, 18], due to the use of spectral projection operator and an estimate of ap-
proximate resolvent in [1, Theorem 1], it can be deduced for Example 1 that
C∗ = O(λ−7/2), which gives |λ− λh| = O(λ−9/2h).

Remark 5.1. For smooth kernel functions like e−|x−y|
2

and the piecewise con-
stant Galerkin discretization, the numerical results in [24] indicate that |λ− λh| =
O(λh2).

5.4. A conjecture of a sharp bound. Following the investigation in Section 5.2
on the actual approximation error of eigenfunctions, we derive a similar estimate in
two dimensions and then propose a conjecture concerning the actual convergence
rate. With φk1,k2(x1, x2) = φk1(x1)φk2(x2) in Example 1, for simplicity, we consider
a tensor product mesh in [0, 1]2. Let P 1D

h and P 2D
h denote the projections defined

in (4.3) over [0, 1] and [0, 1]2, respectively. It follows that

P 2D
h φk1,k2 = P 1D

h φk1P
1D
h φk2 and ‖P 2D

h φk1,k2‖2[0,1]2 = ‖P 1D
h φk1‖2[0,1]‖P 1D

h φk2‖2[0,1].

Using the one dimensional result in (5.3), we deduce that

‖(I − P 2D
h )φk1,k2‖2[0,1]2 = ‖φk1‖2[0,1]‖φk2‖2[0,1] − ‖P 1D

h φk1‖2[0,1]‖P 1D
h φk2‖2[0,1]

= ‖(I − P 1D
h )φk1‖2‖φk2‖2 + ‖P 1D

h φk1‖2‖(I − P 1D
h )φk2‖2

= O
(
(λ−1k1 + λ−1k2 )h2

)
≤ Cλ−1k1,k2h

2

in accordance with the one dimensional counterpart in (5.3).
The numerical results lead us to the following conjecture:

Let λ and λh denote the exact and approximate kth largest eigen-
value, respectively. Then

‖(I − Ph)φ‖ ≤ C1λ
−1/2h, ∀φ ∈ Ker(A− λI), ‖φ‖ = 1,

and
|λ− λh| ≤ C2λ max

φ∈Ker(A−λI)
‖φ‖=1

‖(I − Ph)φ‖2

where the constants C1, C2 are independent of λ or h.

6. Conclusion

We obtain eigenvalue error estimates of second order for the lowest order Galerkin
and Nyström discretizations. The equivalence between the two discretizations is
established, which makes the analysis of the Nyström method a consequence of
the Galerkin one. The resulting estimates appear more accurate than the previ-
ously available ones. Numerical experiments illustrate and complement the new
and previously existing theoretical results.
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7. Appendix

To prove Theorem 2.1, some technical tools are needed, where the Schoenberg
Interpolation Theorem relates positive definiteness to completely monotone func-
tions (cf. [6]).

Definition 7.1 (completely monotone functions). A function f is called com-
pletely monotone on [0,∞) if f ∈ C[0,+∞) ∩ C∞(0,+∞) and (−1)kf (k)(t) ≥
0, ∀t > 0, k = 0, 1, . . . .

Theorem 7.1 (Schoenberg Interpolation Theorem). Let ‖·‖ denote a norm in-
duced by an inner product on Rd. If f is completely monotone but not con-
stant on [0,+∞), then for any n distinct points x1, . . . , xn ∈ Rd, the matrix
ai,j = f(‖xi − xj‖2) is symmetric positive definite.

The Bernstein-Widder Theorem shows that the Laplace transform of a nonneg-
ative L1(R+) function is completely monotone (cf. [6]).

Theorem 7.2 (Bernstein-Widder Theorem). A function f : [0,+∞) → [0,+∞)
is completely monotone if and only if there is a nondecreasing bounded function ξ
such that f(t) =

∫ +∞
0

e−stdξ(s).

Proposition 7.1 lists two completely monotone functions that are needed in the
proof.

Proposition 7.1. The following two functions are completely monotone on [0,∞):

(1). f(t) = e−t; (2). f(t) = e−
√
t.

Proof. f(t) = e−t is completely monotone from the definition. For f(t) = e−
√
t,

we show that f(t) satisfies the assumption in Theorem 7.2 with ξ(s) = −erf( 1
2
√
s
),

where erf(x) denotes the error function. In fact, it can be computed that∫ ∞
0

e−stdξ(s) = e−
√
t = f(t).

Hence f(t) is completely monotone according to Theorem 7.2 and the proof is
complete.

�

Now we are in a position to carry out the proof of Theorem 2.1.

Proof of Theorem 2.1. If ρ is the weighted L1 norm, then Φ(x) = e−ρ(x) can be
written as the inverse Fourier transform of a positive function in L1(Rd). In fact,
we have

Φ(x) = C

∫
Rd

(
Πd
k=1

1

ωky2k + ω−1k

)
eixydy = C

∫
Rd

Φ̂(y)eixydy

where C > 0 and Φ̂(y) = Πd
k=1

1
ωky

2
k+ω

−1
k

. For n points x1, . . . , xn in Rd and a

nonzero vector (c1, . . . , cn), we have

n∑
k=1

n∑
j=1

cjckΦ(xj − xk) = C

∫
Rd

Φ̂(y)

∣∣∣∣∣
n∑
j=1

cje
ixjy

∣∣∣∣∣
2

dy > 0.
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Thus the matrix ai,j = Φ(xi − xj) is positive definite.
For the rest two forms of ρ, the result follows from the Schoenberg Interpolation

Theorem and Proposition 7.1. �
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[3] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM review, 52(2):317–355, 2010.

[4] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues, volume 53. SIAM, 1987.
[5] F. Chatelin. Spectral approximation of linear operators. SIAM, 2011.
[6] E.W. Cheney and W.A. Light. A Course in Approximation Theory. Graduate studies in

mathematics. American Mathematical Society, 2009.
[7] G. Christakos. Modern spatiotemporal geostatistics, volume 6. Oxford University Press, 2000.
[8] L. W. Gelhar. Stochastic subsurface hydrology from theory to applications. Water Resources

Research, 22(9S), 1986.
[9] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach. Courier

Corporation, 2003.
[10] M. D. Gunzburger, C. G. Webster, and G. Zhang. Stochastic finite element methods for

partial differential equations with random input data. Acta Numerica, 23:521–650, 2014.
[11] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
[12] H. B. Keller. On the accuracy of finite difference approximations to the eigenvalues of dif-

ferential and integral operators. Numerische Mathematik, 7(5):412–419, 1965.
[13] M. A. Krasnosel’skii, G. M. Vainikko, R. P. Zabreyko, Ya. B. Ruticki, and V. Ya. Stetsenko.

Approximate solution of operator equations. Springer Science & Business Media, 2012.
[14] R. Kress. Linear Integral Equations. Applied Mathematical Sciences. Springer New York,

2013.
[15] P. D. Lax. Functional analysis. Pure and applied mathematics. Wiley, 2002.
[16] N. M. Nasrabadi. Pattern recognition and machine learning. Journal of electronic imaging,

16(4):049901, 2007.
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