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Abstract—Hierarchical matrices are scalable matrix represen-
tations particularly suited to the case where the matrix entries
are defined by a smooth kernel function evaluated between pairs
of points. In this paper, we present a new scheme to alleviate the
computational bottlenecks present in many hierarchical matrix
methods. For general kernel functions, a popular approach to
construct hierarchical matrices is through interpolation, due to
its efficiency compared to computationally expensive algebraic
techniques. However, interpolation-based methods often lead to
larger ranks, and do not scale well to higher dimensions. We
propose a new data-driven method to resolve these issues. The
new method is able to accomplish the rank reduction by using a
surrogate for the global distribution of points. The surrogate is
generated using a hierarchical data-driven sampling. As a result
of the lower rank, the construction cost, memory requirements,
and matrix-vector product costs decrease. Using state-of-the-
art dimension independent sampling, the new method makes it
possible to tackle problems in higher dimensions. We also discuss
an on-the-fly variation of hierarchical matrix construction and
matrix-vector products that is able to reduce memory usage by
an order of magnitude. This is accomplished by postponing the
generation of certain intermediate matrices until they are used,
generating them just in time. We provide results demonstrating
the effectiveness of our improvements, both individually and in
conjunction with each other. For a problem involving 320,000
points in 3D, our data-driven approach reduces the memory
usage from 58.75 GiB using state-of-the-art methods (762.9 GiB
if stored dense) to 18.60 GiB. In combination with our on-the-
fly approach, we are able to reduce the total memory usage to
543.74 MiB.

I. INTRODUCTION

Many scientific and data applications are bottlenecked by
a large scale matrix whose entries are defined by a kernel
function evaluated at pairs of points from a given dataset.
For many kernel functions, the resulting kernel matrices are
dense. Therefore, with typical dense linear algebra methods,
the storage cost associated with an n-by-n kernel matrix would
be O(n2) and the cost of computing a matrix-vector product
would be O(n2) as well. Hierarchical matrices provide a
representation that can be used to provide asymptotically better

storage and evaluation costs. In this paper, we discuss various
bottlenecks associated with the construction and evaluation of
hierarchical matrices, without requiring an analytical expan-
sion of the kernel function.

A. Motivation

It is well known that hierarchical matrix methods can
provide asymptotic speedup when compared with dense linear
algebra methods. However, the cost of deriving hierarchical
representations can be significant, especially when the ap-
proximation rank is much larger than the actual rank. This
paper will focus on H2 matrices, which can be constructed,
stored, and applied in optimal O(n) time and space enabled by
the nested basis property [1], [2], [3]. A simpler hierarchical
structure, associated with H matrices [4], [5], [2], [3], does not
require nested bases and has a suboptimal cost of O(n log n)
in storage and matrix-vector products. Among these two types
of hierarchical matrices, it is particularly difficult to create a
black-box high performance implementation of H2 matrices.

In practice, the construction of a hierarchical matrix is much
more expensive than multiplying it by a vector. As an example,
the construction cost using algebraic techniques is at least
quadratic, while the cost of computing a matrix-vector product
associated with the resulting hierarchical format is near linear.
Interpolation-based methods provide a general, yet efficient,
way to construct H2 matrices. They can bring the construction
costs down to O(n) and are used to solve a wide range of
problems [6], [7]. However, one issue with interpolation-based
methods is that their costs have very large prefactors. This
is because the low-rank factors in the resulting hierarchical
matrices have much larger rank than needed for a given
approximation accuracy. The other issue with interpolation-
based methods is that their costs scale exponentially with
respect to the number of spatial dimensions. Thus, these
methods rapidly lose their efficiency in higher dimensions.
The primary motivation of the data-driven method proposed



in this paper is to achieve more efficient scaling while being
able to handle equally as general problems as interpolation-
based methods.

A commonality among hierarchical matrix implementations
is that all the low-rank factors are calculated and stored during
the construction, and are later used in performing matrix-
vector products. This is in contrast to the fast multipole method
(FMM) where the hierarchical low-rank format is generated
just in time for use, and discarded after use [8]. This, on the
other hand, makes FMM less efficient when a large number
of matrix-vector multiplications need to be performed, for
example, in the iterative solution of linear systems. In this
case, the hierarchical representation has to be computed from
scratch in each iteration. In order to trade off the memory and
computation involved, we take advantage of the special struc-
ture of low-rank factors produced by the SMASH algorithm [9]
and propose an on-the-fly approach when using the hierarchical
format. Since most factors produced by this algorithm are
submatrices of the kernel matrix, instead of storing these
factors explicitly, we only store the corresponding row and
column indices. This significantly reduces the memory cost
and these submatrices can be rapidly assembled in parallel
whenever needed.

We propose new methods to alleviate the bottlenecks that
arise in H2 matrices and hierarchical matrices in general. In
summary:
• We introduce a new data-driven sampling method, which

produces lower ranks for H2 matrices and achieves a
speedup up to 104 in high dimensions when compared
to the interpolation-based method;

• We discuss an on-the-fly handling of the matrix-vector
products, which reduces memory consumption by an
order of magnitude;

• We provide parallel numerical experiments, demonstrat-
ing the effectiveness of the above contributions.

B. Background

1) Hierarchical Matrices: There exists much literature dis-
cussing hierarchical matrices and their applications. Surveys
can be found in [3], [2], [10], [11]. A variety of packages are
described in [12], [13], [14]. The ideas behind hierarchical
matrices can be traced back to [4], [15], [8], [5], where
researchers sped up the evaluation of n-body gravitational
potentials [4] or Coulomb potentials [8], and the iterative
solution of boundary integral equations [15], [5]. Mathemat-
ically, the computational task boils down to computing the
matrix-vector product involving a dense matrix associated with
certain kernel function K(x, y) evaluated at a set of points
X = {x1, . . . , xn}:

A = [K(xi, xj)]i,j=1:n.

For large problems, a straightforward calculation suffers from
a prohibitive O(n2) complexity in time and space. The above
mentioned methods circumvent the computational bottleneck
by compressing certain blocks in the original matrix and
bring the cost to be near linear. The same principle has since

been generalized into the algebraic framework of hierarchical
matrices, in particular H and H2 matrices. The algebraic
counterparts can handle a larger class of kernel functions [2],
[3] and approximate A explicitly with a hierarchically low-
rank matrix Â. For a prescribed accuracy tolerance, storing
and multiplying a hierarchical matrix by a vector has near
linear scaling with the matrix dimension.

The construction of a hierarchical matrix representation for
a given kernel matrix involves several steps. For a general
dataset X where points may not be uniformly distributed,
an adaptive partitioning of the dataset is first performed,
to build up the hierarchy and identify low-rank blocks for
the associated kernel matrix. That is, the dataset is divided
geometrically and recursively until the number of points in
each resulting subset is small enough (such that performance
is optimized). Meanwhile, a tree is generated to encode the
hierarchical structure of the partitioning, where each node in
the tree corresponds to a subset of points in the partitioning.
For example, the root node corresponds to the entire set of
points, and its children correspond to subsets of points after
the initial partitioning. We use Xi throughout the paper to
denote the set of points associated with node i. Two nodes
i and j are called well-separated if the corresponding point
sets Xi and Xj are well-separated by a certain criterion (cf.
[2], [9]). The included experiments consider i and j to be
well-separated if the maximum diameter of Xi and Xj is
less than 0.7 times the distance between the midpoints of
Xi and Xj . Any submatrix associated with well-separated
clusters is assumed to be numerically low-rank and can be
well-approximated by a low-rank matrix. Such a submatrix
is often referred as a farfield block. A hierarchical matrix
approximation Â replaces the farfield blocks in the original
matrix A by low-rank approximations, i.e.,

Ai,j ≈ Âi,j = UiBi,jV
T
j (1)

for well-separated nodes i and j, where Ai,j and Âi,j denote
the submatrices of A and Â respectively, associated with
subsets Xi and Xj . The matrices Bi,j connecting two basis
matrices Ui and Vj are called coupling matrices. The above
structure gives rise to H matrices, which have O(n log n)
complexity in storage and matrix-vector products. To further
reduce the complexity to O(n), a more complicated structure
is needed, one using the nested basis property. That is, if node
p is the parent of nodes i, j, k, then the corresponding basis
matrices U, V are nested in the following way:

Up =

UiRi

UjRj

UkRk

 , Vp =

ViWi

VjWj

VkWk

 ,

where R and W matrices are called transfer matrices and
are of size O(1). This nested basis property enables one to
only store transfer matrices instead of all basis matrices ex-
plicitly, as a parent node can be constructed from its children.
Hierarchical matrices with such a nested basis property are
called H2 matrices. Meanwhile, when two sets of points are
close to each other, the corresponding matrix block is called



a nearfield block and is not approximated. The hierarchical
partitioning of the entire set of points ensures that the nearfield
blocks are only associated with leaf nodes and the submatrix
that consists of all the nearfield blocks is sparse (cf. [2], [3],
[16]). Therefore, a reduction in cost from O(n2) to O(n log n)
or O(n) is achieved by storing only the nearfield blocks and
the low-rank approximations for farfield blocks. All the basis
matrices, transfer matrices and nearfield blocks are called the
generators of H2 matrices.

To construct H2 representations, one needs a way to ap-
proximate farfield blocks and simultaneously maintain the
nested basis property. For FMM and its variants [15], [8],
[16], expansions such as Taylor expansions or spherical har-
monic expansions are used due to high accuracy and low
computational complexity. The so-called kernel independent
fast multipole method [17], [18] derives factorizations by
solving ill-posed integral equations. One limitation of these
methods is that they are only valid for special kernel functions,
i.e., the fundamental solutions of certain constant coefficient
partial differential equations, such as the Laplace equation,
low-frequency Helmholtz equations, the Stokes equation, etc.
To handle general kernel functions, a common technique that
allows for black-box kernel independent implementations is
polynomial interpolation. Due to the efficiency and generality
of interpolation, interpolation-based hierarchical matrix meth-
ods have been used for solving many types of problems [2],
[6], [19], [20], [3], [9].

2) Interpolation-Based Construction: Interpolation was
first introduced for H2 matrices in [2], [6] as a replacement
for Taylor expansions, as Taylor expansions require evaluation
of the derivatives of the desired functions which may have
numerical overflow or underflow issues (cf. [16]). Conversely,
interpolation only requires evaluations of the kernel function,
making it ideal for constructing hierarchical matrices for
arbitrary user-defined kernel functions. Compared to algebraic
techniques, interpolation is able to provide explicit formulas
for all low-rank factors in the hierarchical representations and
hence the total computational cost is small. We review the
basic idea of interpolation-based construction below.

The use of polynomial interpolation (cf. [9]) yields the
following separable approximation for K(x, y)

K(x, y) ≈
r∑

k=1

pk(x)K(xk, y),

where xk are interpolation points and pk are the associated
Lagrange polynomials (k = 1, . . . , r). The separable approxi-
mation above automatically induces a low-rank approximation
of the entire farfield block for node i:

Ai := [K(x, y)]x∈Xi
y∈Yi

≈
[
p
(i)
1 (x), · · · , p(i)r (x)

]
x∈Xi

[
K(x(i)

k , y)
]
k=1:r
y∈Yi

,
(2)

where Yi denotes the set of all points that are well-separated
from Xi. Thus, the column basis Ui can be chosen as

Ui =
[
p
(i)
1 (x), p

(i)
2 (x), · · · , p(i)r (x)

]
x∈Xi

. (3)

(a) Xi (red) and its
farfield Yi (yellow).

(b) Corresponding farfield block Ai

(green) and the low-rank approximation.

Fig. 1. Demonstration of the farfield for node i.

See Fig. 1 for a pictorial demonstration.
Despite its generality and computational efficiency, interpo-

lation usually does not yield the optimal rank in the approxi-
mation. That is, the approximation rank r in (2) can be much
larger than the optimal rank under a prescribed tolerance. This
is due to the fact that interpolation does not fully exploit the
information from the kernel matrix, as one can see from (3)
that the basis Ui is independent of the kernel function K.

A more serious limitation of interpolation is that it suffers
from the curse of dimensionality. The cost of interpolation-
based construction methods scales exponentially with the num-
ber of dimensions, making them a poor choice for problems
involving more than a few dimensions. For example, in d
dimensions, interpolation over a tensor grid with p points per
direction yields pd interpolation points in total, i.e., an approx-
imation rank r = pd in (2). Hence, we see that interpolation-
based hierarchical low-rank approximations quickly lose their
efficiency in high dimensions.

II. METHODS

In this paper, we propose two novel methods for use in
hierarchical matrix packages:

1) a new data-driven construction of hierarchical matrices
with nested bases;

2) a memory efficient on-the-fly approach for matrix-vector
products.

The data-driven approach breaks the curse of dimensionality
seen by interpolation-based methods. Our experiments show
that the data-driven approach yields blocks of lower rank
(hence lower storage) for the same approximation error. Such
a comparison can be seen in Fig. 2, where it is visible that the
rank achieved by the data-driven method for the farfield nodes
is significantly lower than the rank achieved by the interpo-
lation based method. The on-the-fly approach further reduces
the memory usage of hierarchical matrix representations by
taking advantage of the special structure in coupling matrices
[9]. By postponing the generation of certain matrices until
they are used, the on-the-fly approach reduces memory usage,
allowing larger problems to be solved.

A. Data-Driven Hierarchical Construction

1) Overall Idea: The data-driven H2 matrix approach em-
ploys a submatrix of the kernel matrix as the basis matrix
for a farfield block. For example, for a farfield block Ai as



Fig. 2. A comparison of the rank of the bases produced by the interpolation-
based (lower triangular part) method and the data-driven (upper triangular
part) based method for 10,000 points randomly distributed in a cube for 1e-7
relative error for the Coulomb kernel. Red denotes nearfield interactions.

shown in Fig. 1, the column basis in the data-driven case
is Ui = K(Xi, Y

∗
i ), where Y ∗i is a small subset (O(1) in

size) of Yi. Since each Yi contains O(n) points and there are
O(n) nodes in total, naive sampling for each Yi leads to at
least O(n2) cost for deriving all basis matrices. Therefore, it
is mandatory to sample Y ∗i hierarchically so as to lower the
total cost to O(n). Since the data-driven approach takes into
account the kernel matrix, it enjoys an improved efficiency
compared to interpolation-based methods. Particularly, the
advantages of the data-driven approach are more prominent
for high dimensional problems.

2) Nyström Sampling: The Nyström method [21] is a
popular approach for deriving low-rank approximations via
sampling and has been widely used in machine learning. Given
point sets S, T , let KS,T denote a matrix with entries K(s, t)
for s ∈ S, t ∈ T . To approximate the kernel matrix KX,X

by a low-rank factorization, the Nyström method computes a
set S that is much smaller compared to the size of X , and
constructs the following approximation

KX,X ≈ KX,SK
+
S,SKS,X ,

where K+
S,S denotes the pseudoinverse of KS,S . Once S is

selected, KX,S serves as a column basis for the low-rank
approximation. The original Nyström method chose S to be
a subset of X associated with randomly chosen indices. The
choice of S significantly affects the approximation accuracy
and computational efficiency of Nyström methods. Various
sampling strategies have been proposed to improve the perfor-
mance of the original Nyström method [21], such as leverage
score based sampling [22], [23], k-means based sampling [24],
anchor net based sampling [25], etc. In this paper, we adopt
the anchor net based sampling in [25] due to its efficiency for
high dimensional problems.

3) Bottom-to-Top Sweep: The key to avoiding a quadratic
sampling complexity is to sample the entire dataset hierar-

chically. This hierarchical sampling procedure starts with a
bottom-to-top sweep following the partition tree. The anchor
net Nyström method [25] is used to select the sample points
inside each subset. We first sample over the points associated
with each leaf node and then pass the samples to the parent.
Since there are O(1) points in each node at the leaf level, the
cost associated with each leaf node is O(1). Note that a parent
node has O(1) children and each child passes O(1) samples,
so the parent of each leaf node is associated with a new set of
points with O(1) size. Next we perform the same operation
for each parent node as in the leaf level. That is, we perform
sampling over the new set of points for each parent node and
pass the output to the next level. The operation is repeated
until we reach the root node. Since the cost associated with
each node is O(1), the total cost for the bottom-to-top sweep
is O(n). An illustration of the samples selected at the leaf
level for a 2D dataset is shown in Fig. 3a.

4) Top-to-Bottom Sweep: The top-to-bottom sweep is then
performed on the samples from the farfield associated with
each node. We perform sampling over each such subset and
pass the output to the children nodes along the partition tree.
Since computing samples at each node has O(1) complexity,
the total cost for this sweep is also O(n). An illustration of
the samples from the farfield of a block for a 2D dataset is
shown in Fig. 3b.

Note that the sampling step is only performed on points in
the original set, and is independent of the kernel function and
the kernel matrix. While sampling has previously been used
in hierarchical methods, to the best of our knowledge, this is
the first time that sampling techniques have been used in a
hierarchical way. An outline of the hierarchical sampling is
shown in Algorithm 1.

To summarize, the proposed data-driven method enjoys the
following features:

1) allows black-box kernel independent construction of the
hierarchical low-rank format;

2) provides optimal O(n) complexity for the construction
of nested bases, where n is the number of given points;

3) is valid for high dimensional problems (more than 3
dimensions);

4) achieves lower rank than interpolation-based methods
for the same accuracy.

B. On-The-Fly Matrix-Vector Products

State-of-the-art methods for performing H2 matrix-vector
products calculate the coupling matrices Bi,j during the
construction of the matrix. The Bi,j matrices are only used
to perform matrix-vector products. In the new H2 on-the-
fly memory mode, rather than calculating the Bi,j matrices
during the construction of the matrix, they are calculated as
needed in lines 9 and 15 of Algorithm 2.

Existing hierarchical matrix implementations calculate and
store all the generators during the construction of the matrix,
which will then be (re)used later. While the memory con-
sumption scales linearly, we observe that the majority of the
memory consumption arises from the storage of the coupling



(a) Samples X∗
i (red circles) from

all leaf nodes i.
(b) Samples Y ∗

i (red circles) from
the farfield set Yi for Xi (blue stars)
in the bottom left corner.

Fig. 3. Illustration of the hierarchical sampling.

Algorithm 1 Data-driven hierarchical sampling
1: procedure HIERARCHICAL SAMPLE(X)

Output: Y ∗i
2: for all i do
3: Set Y ∗i to be empty
4: if i is a leaf node then
5: Set X∗i = Xi, (points associated with node i)
6: else
7: Set X∗i to be empty
8: end if
9: end for

10: for each node i from bottom to top do
11: Set X∗i = Sampling(X∗i )
12: Add X∗i to X∗p , the set associated with parent p
13: end for
14: for each node i from top to bottom do
15: Set Y ∗i =

⋃
X∗j , j ∈ interaction list of i

16: Update Y ∗i = Sampling(Y ∗i )
17: Add Y ∗i to Y ∗c for each child c of i
18: end for
19: end procedure

matrices Bi,j . Since Bi,j is a submatrix of the original kernel
matrix, memory consumption can be significantly reduced by
storing the indices instead of the whole matrix Bi,j . The use
of the on-the-fly memory scheme enables problems an order
of magnitude larger to be tackled compared to traditional
approaches.

III. IMPLEMENTATION DETAILS

In this section, we describe our shared memory parallel
implementation for comparing the performance resulting from
data-driven sampling vs. interpolation and on-the-fly mode vs.
normal memory mode. Our description is in two major parts:
the construction of the H2 matrix and the application of the
matrix via matrix-vector products. The coarsest level of par-
allelism arises directly from the structure of the partition tree.
During the bottom-to-top sweeps of the tree, only information
from the descendants of a node is required to calculate the
generators associated with that node. Thus, all nodes on the

Algorithm 2 H2 matrix-vector product
1: procedure H2MAT-VEC(b, U, V,B,W,R, tree)

Output: y = Âb
2: for each leaf node i do
3: qi = V T

i bi
4: end for
5: for each non-leaf node i from bottom to top do
6: qi =

∑
c∈children of i W

T
c qc

7: end for
8: for each non-leaf node i do
9: gi =

∑
j Bi,jqj , ∀j ∈ interaction list of i

10: end for
11: for each non-leaf node i from top to bottom do
12: gc = gc +Rcgi
13: end for
14: for each leaf node i do
15: yi = Uigi +

∑
j Bi,jbj , ∀j ∈ nearfield of i

16: end for
17: end procedure

same level of the tree can be processed in parallel. Similar
parallelism is found in the top-to-bottom sweeps where all
nodes on a given level can be processed in parallel. Finally,
certain operations require a “horizontal sweep,” where there is
no dependency on the ordering of the computation, and thus
all nodes can be processed simultaneously.

A. H2 Matrix Construction

Our construction phase has two parts. First, the construction
of the tree and second, the construction of the matrix. The
tree construction is conducted in a divide-and-conquer manner,
where initially the entire set of points is considered. This set
is then partitioned, where each partition can be considered
independently and in parallel with others. If a given node
contains more than a heuristically determined number of
points, this process is recursed. During the tree construction,
the parent of each node is tracked, and after the construction
this information is used to determine the children associated
with each node, as well as other hierarchical information such
as which level each node is on. Finally, once the construction
of the hierarchy information is completed, the determination
of which nodes are well-separated is performed.

The determination of well-separated nodes is completed via
a recursive method, which starts by considering the interaction
of the root node with itself. If both nodes being considered
are well-separated, they are added to each other’s interaction
list. A node’s interaction list corresponds to the nodes that are
in the farfield of the node, but not in the farfield of the node’s
parent. Otherwise, if both are leaf nodes, they are added to
each other’s nearfield list. If one or both have children, the
process is repeated among the children.

Once the hierarchy information has been calculated, we
can perform the sampling given in Algorithm 1, which is
independent of the kernel. Algorithm 1 consists of a bottom-
to-top sweep and a top-to-bottom sweep. These sweeps can be



performed using the parallelization method described above,
by considering all of the nodes on a level in parallel.

The construction of the basis matrices and the indices asso-
ciated with coupling matrices is completed in a bottom-to-top
sweep, and can be performed in parallel for all nodes at a given
level. If the on-the-fly memory mode is not being utilized, the
calculation of the coupling matrices is performed. This can be
performed completely in parallel, by calculating the interaction
between every node with the nodes in its interaction list. Note
that our implementation uses a separate data structure to store
the Bi,j matrices. This is due to the fact that if the interactions
between nodes are considered as a matrix, the matrix would be
very sparse. Thus, our data structure consists of a sparse matrix
of integers, and a sequence of dense matrices. The sparsity
of the sparse matrix corresponds to the interactions between
nodes, with the value of the element at (i, j) providing the
linear index into a vector of dense matrices for Bi,j . Notably,
this data structure is a C++ class with a matrix-free interface,
and thus can be used for on-the-fly mode as well. For on-the-
fly mode, rather than populating all the Bi,j matrices, they are
calculated as needed. In the symmetric case, only half of the
Bi,j matrices are required, as Bi,j = (Bj,i)

T .

B. Matrix-Vector Product
The matrix-vector product consists of five stages, as seen

in Algorithm 2. First, a horizontal sweep at the leaf node
is performed, during which all leaf nodes can be considered
in parallel. Then, a bottom-to-top sweep is done, which can
take advantage of the bottom-to-top parallelization scheme
mentioned at the beginning of Section III. A horizontal sweep
is then performed, applying the coupling matrices associated
with each node to the vector. Every application of Bi,j

can be considered in parallel. In the on-the-fly case, the
matrix-vector product call to the class described above will
calculate and apply Bi,j at this point, however in the other
memory modes Bi,j is retrieved from the data structure and
applied. After the horizontal sweep, a top-to-bottom sweep
is performed, propagating the farfield-interactions (calculated
via the interaction list) to the children. Finally, a horizontal
sweep over the leaf nodes is performed, taking into account
the nearfield/direct interactions.

C. Kernel Evaluation
Many of the calculations performed during the construction

and application of hierarchical matrices are kernel evaluations.
Thus, it is paramount to have efficient kernel evaluations.
These evaluations can be accelerated by exploiting the SIMD
instructions present in modern CPUs. Note that, like for direct
interactions, the calculation of Bi,j involves two clusters of
points and there is an upper limit on the number of pairs of
points for which the kernel evaluation will be performed. The
maximum number of points per node tends to be on the order
of hundreds.

D. Data-Driven Sampling
As shown in Algorithm 1, data-driven sampling is per-

formed via a bottom-to-top sweep and then a top-to-bottom

sweep. In these sweeps, nodes at the same level of the tree can
be processed in parallel. Note that during the sampling step,
where Nyström sampling is performed by finding the points
nearest to a set of lattice points, Euclidean distances between
the lattice points and the considered points are calculated.

IV. EXPERIMENTAL SETUP

We report experimental timings for the H2 matrix construc-
tion and matrix-vector products. The test sets of points used
of these experiments are randomly generated over the surface
of a sphere (sphere), in the volume of a cube (cube), and
over the surface of a dinosaur (dino). The dinosaur test set
is a complex 3D pointcloud, which is used to demonstrate
the ability for these methods to handle highly non-uniform
data [9], [26]. The timings of the algorithms were measured
in separate parts, Tconst, the H2 matrix construction time,
and Tmv , the time required to perform a single matrix-vector
product, both in milliseconds. The construction cost only
occurs once, and can be amortized over many matrix-vector
products. The experiments were conducted on a single node
with 128 GB of memory and two Intel Xeon E5-2680 v4
CPUs, which have a base clock speed of 2.4 GHz and 14 cores.
Unless otherwise noted, experiments were performed with 14
OpenMP threads and using the Coulomb kernel 1/||x− y||2.
The relative error is measured as ||z − ẑ||2/||z||2, where ẑ is
composed of 12 rows sampled randomly from the H2 matrix-
vector product, and z contains the corresponding rows in the
exact matrix-vector product.

V. NUMERICAL RESULTS

Fig. 4a shows that the point distribution does not have
a notable impact on the construction time using on-the-fly
memory mode. Fig. 4b shows that the asymptotic scaling
remains roughly the same for the different distributions. In
Fig. 4c, we see that the Sphere distribution requires less
memory than the Cube distribution. This is due to the relative
sparsity of the Sphere distribution, as the points are not
uniformly distributed in the 3D domain, and there exists much
empty space and fewer nearfield nodes, reducing the number
of dense matrices required to be stored. The inflection point
in memory usage is a result from the generally effective, but
not optimally tuned, parameters of the construction method.
Fig. 4b and Fig. 4c show that the data-driven method’s matrix-
vector products scale the same as, or better than, interpolation,
and have a lower prefactor, while using less memory.

Fig. 5 demonstrates the scaling of the data-driven method
with respect to the number of dimensions when using the on-
the-fly memory mode. It is clear from Fig. 5a and Fig. 5c
that the construction and memory usage scale significantly
better in the data-driven case compared to interpolation-based
methods. For example, with 160,000 points, going from three
to four dimensions gives a 87.05 fold increase in construction
time and 5.46 fold increase in peak memory usage for the
interpolation-based methods, while the data-driven method
increased only 4.25, and 1.87 times, respectively. Note that
due to time and memory constraints, the interpolation-based
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Fig. 4. Data-driven and interpolation-based methods on a variety of distributions uising on-the-fly memory mode for the Coulomb kernel. The relative accuracy
for all tests is around 1e-8.
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Fig. 5. Data-driven and interpolation-based methods on points in increasing dimensions using the on-the-fly memory mode for the Coulomb kernel with
points in the volume of a hypercube, where the relative accuracy is fixed around 1e-8.

method was not tested for problems involving more than
40,000 points in five dimensions.

Fig. 6 details the cumulative effect of the new basis calcu-
lation via the data-driven method and the on-the-fly memory
mode. We observe that the effects are cumulative, where using
the data-driven method and on-the-fly memory at the same
time results in the lowest memory usage and construction time.
The memory scaling using on-the-fly memory is slightly better
than that in the normal memory mode, as the normal memory
mode scales with both the size and the number of farfield
blocks while the on-the-fly memory mode scales only with
the size of the blocks. As can be seen from Table I, the total
memory reduction is from 58.75 GiB to 543.74 MiB, for the
case of 320,000 points.

Fig. 7 displays the scaling of on-the-fly methods with the
number of OpenMP threads for 1,000,000 points. Normal
memory mode was not tested, as interpolation in normal mem-

ory mode requires more memory for this problem size than
what is available. While the scaling of the construction seen in
Fig. 7a is sub-linear, due to the difficulty of parallelizing the
upper levels of the recursive bisection, it can be seen in Fig. 7b
that the matrix-vector products have near linear scaling in both
cases. Fig. 7c demonstrates that the memory usage increases
slightly with the number of threads, p. Each thread stores only
one Bi,j matrix at a time; thus, the concurrent memory usage
is p · size(Bi,j).

Fig. 8 shows a comparison of the data-driven and
interpolation-based methods as a function of the approxima-
tion error. This demonstrates that the data-driven method with
the on-the-fly memory mode, for a given relative error, requires
lower construction time, memory usage, and matrix-vector
time. This holds true even in the low accuracy case, where
interpolation is known to be the standard choice. These results
demonstrate the effectiveness of the data-driven method across



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Data Driven: Normal Memory
Data Driven: On-The-Fly

Interpolation: Normal Memory
Interpolation: On-The-Fly

104 105

n

102

103

104

T
c
o
n
s
t

(m
s)

(a) Construction time (ms)

104 105

n

101

102

103

T
m

v
(m

s)
(b) Matrix-vector product time (ms)

104 105

n

106

107

Pe
ak

m
em

or
y

(K
iB

)

(c) Peak memory usage

Fig. 6. The data-driven and on-the-fly methods tested on increasing number of points for the Coulomb kernel with points in the cube distribution, where
the relative accuracy for all tests is around 1e-8.

TABLE I
TIMINGS AND MEMORY CONSUMPTION USING DATA DRIVEN AND INTERPOLATION-BASED METHODS.

n Basis Memory Tconst (ms) Tmv (ms) Memory (KiB)
320,000 Interpolation Normal 16789 1193 61603893
320,000 Interpolation On-The-Fly 3488 2869 1440420
320,000 Data Driven Normal 10011 469 19507675
320,000 Data Driven On-The-Fly 2430 1245 556789

a wide range of accuracy, in addition to the number of points.
The performance gap becomes even larger as the accuracy
increases.

Fig. 9 shows the generality of the new data-driven method
by demonstrating the method for different kernel functions
using the on-the-fly memory mode. The cubed Coulomb
kernel is given by 1/||x− y||32, the exponential kernel by
exp(−||x− y||2), and the Gaussian by exp(−||x− y||22/0.1).
It can be seen that, in most cases, the plots for the different ker-
nels are nearly indistinguishable, demonstrating the generality
of the new method. With the exception of the Gaussian kernel,
the scaling for the different kernels are all nearly identical.

VI. DISCUSSION

A. Data-Driven Basis Construction

From Section V, the benefits of the data-driven method
are numerous. Compared to the interpolation-based method,
the data-driven method uses much less memory, as well as
reduces the time taken by the matrix-vector product and
H2 matrix construction. The majority of the time associated
with the construction of the hierarchical matrix using the data-
driven method comes not from the calculation of the basis,
but rather the sampling. During the matrix-vector products,
the majority of the time spent is in calculating the direct or
nearfield interactions. Fortunately, the hierarchical sampling
is done independently of the kernel, and depends only on the
points; thus, for applications where multiple kernels must be
used on the same data, the cost of sampling is amortized. As
seen in Fig. 4 and Fig. 9, the data-driven method is equally

general as interpolation and Fig. 5 demonstrates that it scales
significantly better with the number of dimensions. While the
scaling seen is not completely independent of the number of
dimensions, the scaling observed is much less severe than that
seen in the interpolation-based methods.

B. On-The-Fly Memory Mode

Fig. 6 shows that the on-the-fly memory mode marginally
increases the matrix-vector product time, but significantly
decreases the H2 matrix construction time. This makes on-the-
fly memory ideal for cases where the number of matrix-vector
products for each construction is small, while the normal
memory mode might be preferred in cases where many matrix-
vector products are preformed for each construction.

VII. RELATED WORK

There exist a number of packages which, among other
features, aim to extend hierarchical and FMM methods
to higher dimensions. The STRUctured Matrices PACKage
(STRUMPACK) [13] is a distributed memory package based
on the HSS matrix format. It requires users to provide a
fast matrix-vector multiplication routine in order to use ran-
domized algorithms to perform low-rank compression. ASKIT
[27] is a distributed memory package designed for performing
high-dimensional kernel summations. It is based on using
approximate nearest neighbor information to factorize off-
diagonal blocks of kernel matrices. The Geometry-Oblivious
FMM (GOFMM) distributed memory package [12] constructs
an H matrix by sampling matrix entries without requiring
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Fig. 7. The data-driven and interpolation-based methods vs. thread count. The on-the-fly mode was used for the Coulomb kernel with points in the cube
distribution, where the test problem has 1,000,000 points and the relative accuracy is fixed around 1e-8.
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Fig. 8. Data-driven and interpolation-based methods using the on-the-fly memory mode as a function of accuracy for the Coulomb kernel with points in the
cube distribution.
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Fig. 9. Data-driven and interpolation-based methods for different kernel functions where the relative accuracy is fixed around 1e-8 for points in the cube
distribution.



any knowledge of the point coordinates or kernel functions.
The main difference between the data-driven method proposed
in this paper and these other methods is that the sampling
technique in the data-driven method does not require any
evaluations or entries of the kernel K and is performed
hierarchically in order to ensure the nested basis property for
the H2 matrix construction.

Meanwhile, many algebraic methods have also been pro-
posed to compress low-rank matrices. Adaptive cross approx-
imation (ACA) [28] can provide compression algebraically
using only a few entries of the matrix. However, ACA may fail
for general kernel functions and complex geometries due to the
heuristic nature of the method. The hybrid cross approximation
improves the efficiency of ACA while achieving the conver-
gence seen with interpolation [7]. The CUR decomposition,
and the closely related interpolative decomposition, provide a
decomposition of the original matrix using a subset of the rows
and columns [22] [29]. While interpolative decomposition can
be used efficiently in constructing nested bases once candidate
bases are determined, its asymptotic complexity makes it
infeasible to use to select sample points.

VIII. CONCLUSION

We demonstrate that bottlenecks associated with hierarchi-
cal matrices can be alleviated using our new data-driven and
on-the-fly methods. We show that the data-driven method
provides an equally general, but computationally more efficient
way to calculate generators. Furthermore, the on-the-fly tech-
nique allows the memory savings that come with hierarchical
matrices to be even more pronounced. Our implementation
has near linear scaling with the number of threads for matrix-
vector products with all the tested problems. Results demon-
strate that both of the methods, individually and cumulatively,
result in H2 matrices that scale linearly (as expected) with
the number of points for both computation time and memory
usage.
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[11] S. Börm, L. Grasedyck, and W. Hackbusch, “Introduction to hierarchical
matrices with applications,” Engineering Analysis with Boundary Ele-
ments, vol. 27, no. 5, pp. 405–422, May 2003.

[12] C. D. Yu, S. Reiz, and G. Biros, “Distributed-memory Hierarchical Com-
pression of Dense SPD Matrices,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp.
15:1–15:15.

[13] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A Distributed-Memory
Package for Dense Hierarchically Semi-Separable Matrix Computations
Using Randomization,” ACM Trans. Math. Softw., vol. 42, no. 4, pp.
27:1–27:35, Jun. 2016.
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