\(\lim_{x\to a}f(x)=\infty\) means that the values of \(f(x)\) can be made arbitrarily large by taking \(x\) sufficiently close to \(a\), but not equal to \(a\). ( \(f(x)\) "blows up" when \(x\) approaches \(a\) )
Since \(\infty\) is not a number, \(\lim_{x\to a}f(x)=\infty\) implies that the limit doest not exist when \(x\) tends to \(a\).
Similarly, \(\lim_{x\to a}f(x)=\infty\) means that \(f(x)\) can be arbitrarily large negative as \(x\) approaches \(a\).
Example. \(\lim_{x\to 0}\frac{1}{x^2}=\infty\) and \(\lim_{x\to 0}\frac{-1}{x^2}=-\infty\)
One-sided infinite limits can be defined similarly (see graphs below).
If \(f(x)\) tends to \(\infty\) or \(-\infty\) as \(x\) approaches \(a\) (either one-sided or two-sided), the vertical line \(x=a\) is called a vertical asymptote of \(y=f(x)\).
Ex. Find the limits.
(a). \(\lim_{x\to 4^-} \frac{5-x}{x-4}\)
(b). \(\lim_{x\to 1^+}\ln(x^2-1)\)
(c). \(\lim_{x\to (\frac{\pi}{2})^-} \tan x\)
(d). \(\lim_{x\to (\frac{\pi}{2})^+} \tan x\)
Answer: (a).\(-\infty\) (b). \(-\infty\)
(c).\(\infty\) (d).\(-\infty\)
Assume \(\lim_{x\to a} f(x)\) exists. Then
Ex. (a). \(\lim_{x\to 1} \sqrt[3]{x^2-9}\)
(b). \(\lim_{x\to -1} 3x-5x^2+1\)
Answer: (a). -2 (b). -7
Assume that the limits \(\lim_{x\to a} f(x)\) and \(\lim_{x\to a} g(x)\) exist. Then
What if \(\lim_{x\to a} g(x) =0\) ?
In this case, it is very likely that the expression can be simlified by canceling out common factors from the top and the bottom.
Example 1. \(\lim_{x\to 1} \frac{1-x^2}{x-1}\)
Solution: \(\lim_{x\to 1} x-1 = 0\) so we cannot apply the law above.
Instead, we first simplify the expression:
\[\frac{1-x^2}{x-1} = \frac{(1+x)(1-x)}{x-1} = -(1+x)\]
Now it follows that \(\lim_{x\to 1} \frac{1-x^2}{x-1} = \lim_{x\to 1} -(1+x)=-2\).
Example 2. \(\lim_{x\to 0} \frac{(1-h)^2-1}{h}\)
Solution: Since \((1-h)^2-1=-2h+h^2\),
we have \[\lim_{x\to 0} \frac{(1-h)^2-1}{h} = \lim_{x\to 0} \frac{-2h+h^2}{h}=\lim_{x\to 0} -2+h = -2\]
Example 3. \(\lim_{t\to 9} \frac{9-t}{3-\sqrt{t}}\)
Solution:
\[\lim_{t\to 9} \frac{9-t}{3-\sqrt{t}}=\lim_{t\to 9} \frac{9-t}{3-\sqrt{t}} \frac{3+\sqrt{t}}{3+\sqrt{t}}=\lim_{t\to 9} \frac{(9-t)(3+\sqrt{t})}{9-t}=\lim_{t\to 9}3+\sqrt{t}=6\]
Theorem 1. If \(f(x)\leq g(x)\) when \(x\) is near \(a\) (except possibly at \(a\)) and the limits of \(f\) and \(g\) both exist as \(x\) approaches \(a\), then \[\lim_{x\to a} f(x)\leq \lim_{x\to a}g(x)\]
Theorem 2(aka Sandwich Theorem or Squeeze Theorem) If \(f(x)\leq g(x)\leq h(x)\) when \(x\) is near \(a\) (except possibly at \(a\)) and \[\lim_{x\to a} f(x) = \lim_{x\to a}h(x) = L\] then \[\lim_{x\to a}g(x) = L\]
Ex. Show that \(\lim_{x\to 0}x^2\sin\frac{1}{x}=0\) using the Sandwich Theorem.