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Abstract

Generating quasirandom points with high uniformity is a fundamental task in many fields.
Existing number-theoretic approaches produce evenly distributed points in [0, 1]d in asymptotic
sense but may not yield a good distribution for a given set size. It is also difficult to extend
those techniques to other geometries like a disk or a manifold. In this paper, we present a novel
physics-informed framework to transform a given set of points into a distribution with better
uniformity. We model each point as a particle and assign the system with a potential energy.
Upon minimizing the energy, the uniformity of distribution can be improved correspondingly.
Two kinds of schemes are introduced: one based on molecular dynamics and another based on
deep neural networks. The new physics-informed framework serves as a black-box transformer
that is able to improve given distributions and can be easily extended to other geometries such
as disks, spheres, complex manifolds, etc. Various experiments with different geometries are
provided to demonstrate that the new framework is able to transform poorly distributed input
into one with superior uniformity.

1 Introduction

Generating quasirandom points with good uniformity plays a key role in various applications, such
as numerical integration [62, 58], computer graphics [27, 20], image reconstruction [68], machine
learning [19, 15], etc. For example, in numerical integration, quasi-Monte Carlo methods aim to
improve the convergence rate of Monte Carlo by using points that are evenly distributed in the
unit cube [0, 1]d. A large amount of work is devoted to the study of uniformity of distribution in
[0, 1]d, measured by the concept of discrepancy [48, 61, 62, 58, 26]. A set with low discrepancy
is considered to have good uniformity. Various formulas have been developed to generate points
with low discrepancy, including Halton sequence [40], Sobol′ sequence [83], digital sequence [61, 62],
lattice points [79, 80], etc. Those points are shown to have a discrepancy that converges to zero in
a certain rate as the number of points approaches infinity (cf. [62, 26] or Section 2.2).

Despite the proved uniformity in the asymptotic sense, it is well-known that (cf. [33, 65, 26]),
for a fixed set size N , the N points produced by existing formulas may display poor uniformity.
For example, the two-dimensional Halton sequence with relatively prime bases b1, b2 is given by

xn = (φb1(n− 1), φb2(n− 1)), n = 1, 2, . . . ,

where φb(n) =
∞∑
k=1

nkb
−k ∈ [0, 1) denotes the base b radical inverse funciton and n =

∞∑
k=1

nkb
k−1

is the representation of n in base b (only finitely many nk’s are nonzero). Though the infinite set
{xn}∞n=1 is shown to have low discrepancy, the finite N points x1, . . . , xN may have poor uniformity
due to the choice of N or the bases. Figure 1 illustrates this issue. The two plots in Fig. 1a
show the first 20 points of the Halton sequences with two different pairs of bases. It is easy to
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see that the set with bases (2,3) demonstrates much better uniformity than the one with bases
(11,13). Figure 1b shows that different set sizes (first N points) of the Halton sequence (with bases
11,13) can display varying degrees of the uniformity, where N = 66 points achieve extraordinary
uniformity while N = 30 points are not distributed evenly at all. When N = 250, the distribution
has low discrepancy but there is a strong correlation between certain points which impairs the
quasirandomness of the distribution.
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(a) Bases (2,3) and bases (11,13).
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(b) From left to right: 30, 66, 250 points.

Figure 1: Points from the Halton sequence with different bases (left) and set sizes (right) can
possess contrasting degrees of uniformity

We see from above that in the pre-asymptotic regime, points in a low discrepancy sequence
may not necessarily possess good uniformity. To remedy a poor distribution, permutation or
scrambling techniques have been proposed [33, 64, 47, 89]. The new set of points obtained by
applying those number-theoretic techniques can achieve significantly better uniformity. Those
techniques are closely related to the construction of low discrepancy sequences and often assume
that the input point set is from a low discrepancy sequence. In this paper, we are interested in the
more general case where the input points can be unstructured random samples or poorly distributed
in a domain as illustrated in Fig. 2. Note that even though existing work only focuses on studying
distributions in the unit cube, the problem of improving poor distributions is also of great interest
for other geometries like a disk, a sphere or more complex manifolds, for which the concept of
discrepancy is not defined and existing machineries can not be applied.
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Figure 2: Transforming random samples in [0, 1]2 (left) and a poor distribution in a disk (right)
into better distributions

In this paper, we consider the problem of improving the uniformity of a given set of possibly
poorly distributed points (see Fig. 2). We present a novel physics-informed framework based on
physics principles to transform a given distribution for better quasirandomness. It serves as a
versatile tool complementary to existing number-theoretic approaches and, furthermore, naturally
extends to improving distributions over a disk or a manifold.

Methodology and contributions. We introduce a physics-informed framework to modify
a given distribution for better uniformity. Entirely different from existing approaches, we model
each point as a particle and associate the system of particles with a potential energy. Adjusting
the distribution for better uniformity corresponds to moving particles in the physical system to-
wards a state with low potential energy. Based on this principle, we present two different schemes
for transforming the given point set: (1) molecular dynamics(MD) simulation; (2) deep neural
networks(DNN). The MD simulation is commonly used to study the interaction between particles
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and the evolution of particle systems governed by certain physics laws (cf. [44, 22, 36, 60, 52]).
It has also been used to sample the potential energy surfaces [73, 76]. In those applications, to
study the interaction between different particles and the structure of molecules, of importance are
chemical bonds, electric charges, van der Waals forces, etc. Different from existing work in MD
simulations, we are interested in transforming the configuration and the only quantity that matters
is the location of each particle instead of radius, chemical bond, charge, etc. Thus we model each
point as a particle with equal mass and ignore the radius of the particle. The MD simulation is
used to shift particles so as to resolve clumps and fill in holes in the system, thus creating a better
distribution. We remark that using MD to achieve better uniformity has existed “informally” in
the MD community, but no work has been done to investigate it systematically and quantitatively.

Contrary to MD simulation, in the DNN approach, we completely ignore the kinetic energy and
approximate the equilibrium state by minimizing the total potential energy of all particles, where
each particle is represented as a neural network. This enables the use of modern deep learning
techniques to search for a state with low energy.

Compared to classical number-theoretic approaches, introducing energy into the study of distri-
butions offers a lot more flexibility. It can be directly applied to improving the uniformity of poorly
distributed points. When applied to random samples, the energy-based distribution transformer
can efficiently improve the uniformity and thus can be used to generate quasirandom points. It
offers a straightforward generalization to improving distributions on a disk, a sphere or a general
manifold, whereas existing methods are limited to the unit cube. Generally speaking, the new
framework presents a dynamical characterization of distributions and can potentially transfer the
study of uniform distribution to other distributions of particular interest by simply changing the
potential energy. Specifically, it can be used to

• improve the quasirandomness of points in a low discrepancy sequence;

• transform random samples into a distribution with better uniformity;

• transform given points on a disk or a manifold into a better distribution.

The rest of the manuscript is organized as follows. Section 2 reviews existing work on gen-
erating quasirandom points or low discrepancy sequences. The new physics-informed framework
is presented in Section 3, where two kinds of distribution transformers, based on molecular dy-
namics and deep neural networks, respectively, are introduced. Section 4 presents the distribution
transformers for disks, spheres, and manifolds in general. Section 5 investigates theoretically the
potential energy and distributions. Numerical experiments are presented in Section 6 followed by
a discussion in Section 7. A conclusion is drawn in Section 8.

Notation Throughout the presentation, we use | · | to denote the magnitude of a vector (i.e.
Euclidean norm). #X denotes the cardinality of a finite set X.

2 Low discrepancy sequences in [0, 1]d

In Section 2.1, we review the definition of discrepancy for a finite set of points in the unit cube
[0, 1]d. Then we review in Section 2.2 existing techniques to construct low discrepancy points.
Section 2.3 discusses limitations associated with existing approaches, which motivate the work in
this manuscript.
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2.1 Discrepancy

Discrepancy is a concept that measures the uniformity of a finite set of points in the unit cube
[0, 1]d. Smaller discrepancy indicates better uniformity. Quasi-Monte Carlo methods consist in the
design and use of low discrepancy points in place of random samples in the Monte Carlo method
in order to improve the convergence rate for approximating integrals.

There are several definitions for describing the discrepancy (cf. [62, 51]) and the most commonly
used ones are the star discrepancy and the extreme discrepancy.

Definition 1. The star discrepancy D∗N (X) of X = {x1, . . . , xN} in [0, 1]d is defined by D∗N (X) :=
sup
J∈J ∗

|#(X ∩ J)/N − λ(J)|, where λ denotes the Lebesgue measure in Rd and J ∗ is the family of

all subintervals in [0, 1)d of the form
∏d
i=1[0, ai).

Definition 2. The extreme discrepancy DN (X) of X = {x1, . . . , xN} in [0, 1]d is defined by
DN (X) := sup

J∈J
|#(X ∩ J)/N − λ(J)|, where J is the family of all subintervals in [0, 1)d of the

form
∏d
i=1[ai, bi).

Roughly speaking, if the number of points in X ∩ J is more or less proportional to the measure
of J for any box J , then the discrepancy of X is small. If there are many clumps in X, then
its discrepancy will be large. The star discrepancy in Definition 1 is also known as the L∞-star
discrepancy since the measure sup | · | can be viewed as the L∞ norm (cf. [28]). More generally,
the Lp-star discrepancy is defined by using Lp norm to measure the difference #(X ∩J)/N −λ(J).
As can be seen from the definition, the calculation of discrepancy is not straightforward in general.
However, the L2-star discrepancy for X = {xi}Ni=1 can be calculated directly using Warnock’s
formula [92]:

D∗L2,N =
1

3d
− 21−d

N

N∑
i=1

Πd
k=1(1− (x

(k)
i )2) +

1

N2

N∑
i,j=1

Ck,i,j , (1)

where Ck,i,j = min(1 − x(k)
i , 1 − x(i)

j ) and x
(k)
i denotes the kth component of xi. This discrepancy

will be used in performing experiments in Section 6. We review in the next subsection some
representative sets and sequences with low discrepancy.

2.2 Low discrepancy sets and sequences

Extensive research has been done to construct a set or a sequence of points x1, x2, · · · ∈ [0, 1]d such
that D∗N (x1, . . . , xN ) is small when N is sufficiently large. The point set is considered to have low
discrepancy if D∗N (x1, . . . , xN ) = O(N−1(logN)d) for sufficiently large N . The topic is relatively
mature and we follow the presentations in [62, 26].

There are in general two classes of approaches in constructing low discrepancy points in [0, 1]d.
Examples from the first class include Halton sequence [40], digital net [61, 62], digital sequence
[61, 62], Sobol′ sequence [83, 43], etc. The second class consists of lattice points [79, 80, 81].

Definition 3 (Halton sequence). Let φb(n) = φb

( ∞∑
k=1

nkb
k−1

)
=
∞∑
k=1

nkb
−k be the radical inverse

funciton in base b. The Halton sequence in the pairwise relatively prime bases b1, . . . , bd is defined
as

xn = (φb1(n− 1), . . . , φbd(n− 1)) ∈ [0, 1)d, n = 1, 2, . . . .
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Definition 4 (Elementary interval). For an integer b ≥ 2, a subinterval E of [0, 1)d of the form

E =
d∏
i=1

[aib
−pi , (ai+ 1)b−pi) with non-negative integers ai, pi such that ai < bpi (1 ≤ i ≤ d) is called

an elementary interval in base b.

Definition 5 (Digital net). Let 0 ≤ t ≤ m be integers. A (t,m, d)-net in base b is a set X of bm

points in [0, 1)d such that the cardinality of X ∩ E is bt for every elementary interval E in base b
with λ(E) = bt−m.

Note that the size of a digital net can not be arbitrary (the cardinality can only be bm). Hence it
is not extensible, meaning that we can not specify an arbitrary set size or add an arbitrary number
of points to the set. The extensible version of a digital net is the so-called digital sequence.

Definition 6 (Digital sequence). Let b ≥ 2 and t ≥ 0 be integers. A sequence x0, x1, . . . of points
in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ≥ 0 and m > t, the point set consisting
of the xn with kbm ≤ n < (k + 1)bm is a (t,m, d)-net in base b.

The popular Sobol′ sequence [83] is a (t, d)-sequence in base b = 2. According to discrepancy
theory [62, 51], the above sets or sequences all have low discrepancy in the sense that D∗N (X) =
O(N−1(logN)d), where X can be one of the following: (1) the first N terms of a Halton sequence;
(2) a (t,m, d)-net in base b with m > 0; (3) the first N terms of a (t, d)-sequence in base b.

A different way of constructing low discrepancy points is given by the lattice rule [79, 80, 54,
63, 21]. The lattice points have a periodic structure and are associated with a generating vector.

Definition 7 (Lattice point set). Let g ∈ Zd and N ∈ Z+. For k = 0, 1, . . . , N − 1, define xk to be
the fractional part of kg

N . The point set XN = {x0, x1, . . . , xN−1} in [0, 1)d is called a lattice point
set and g is called the generating vector of XN .

Definition 8 (Lattice sequence). Let g ∈ Zd and φb be the radical inverse function in base b. The
lattice sequence xk (k = 0, 1, . . . ) in base b is defined as the fractional part of φb(k)g.

The quality of a lattice set or sequence hinges on the choice of the generating vector g. As
described in the theorem below (cf. [62]), it can be shown that there does exist a good generating
vector g such that the resulting lattice points have low discrepancy. In practice, constructing good
generating vectors is nontrivial. Efficient algorithms for computing good generating vectors for the
lattice rule can be found in [81, 21].

Theorem 1. There exists a generating vector g such that the lattice point set in Definition 7 has
discrepancy DN (XN ) = O(N−1(logN)d).

Even though the low discrepancy points above are proved to achieve good uniformity as N
approaches infinity, it is possible that, for a finite set size, the points are not evenly distributed.
As shown in Fig. 1, the quality of low discrepancy points depends on the set size and parameters
in the generating formula. In Section 2.3, we review the limitations of existing low discrepancy
sequences.

2.3 Limitations

Low discrepancy sequence displays good uniformity in [0, 1]d as the number of points becomes large
enough. For a fixed size N , the uniformity of the N points from a low discrepancy sequence is
unpredictable.
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Pre-asymptotic regime Theoretically, the concept of low discrepancy is discussed in asymptotic
sense only (cf. Section 2.2). For a finite set, as we have seen in Section 1, the points drawn from a
low discrepancy sequence may not be distributed evenly.

Improving uniformity Permutation and scrambling techniques [33, 64, 47, 89] can be used to
significantly improve a set of poorly distributed low discrepancy points. For a general set of points
which are not generated by any formula or are located on a disk or a manifold, however, those
techniques may not be effective.

Geometry Note that discrepancy is only defined for the unit cube [0, 1]d. The low discrepancy
sets and sequences in Section 2.2 all hinge on the special properties of the unit cube [0, 1]d, such
as periodicity, tensor product structure, etc. In general, it is quite difficult to extend the algebraic
or combinatoric machinery to generating good distributions over other geometries like a disk, a
sphere, etc, which are of great interest in many applications (cf. [50, 75, 87]).

We aim to develop a general black-box distribution transformer that does not require any
generating formula for the input data and has the potential to be extended to different geometries.
An efficient distribution transformer enables a new way to construct quasirandom points, i.e., by
simply transforming random samples.

3 Physics-informed distribution transformers

In this section, we present a versatile framework to deal with distributions from a new perspective.
The key lies in assigning the given set of points with a potential energy and modelling the points
as particles with pairwise interactions dictated by the potential. Due to the strong repulsive
forces between particles that are too close, the system will evolve towards a state with lower
potential energy, which corresponds to a better distribution with more evenly spaced points. The
incorporation of interaction energy into the study of distributions greatly extends the scope of
existing machinery and can be used to study various distributions without resorting to any algebraic
or analytic formula.

Based on the energy principle, we introduce two different approaches to improve the quality of
a given distribution: molecular dynamics(MD) simulations and deep neural networks(DNN). The
MD approach relies on classical molecular dynamics simulations, where the system is equipped
with both potential energy and kinetic energy and particles move according to Newton’s law of
motion. The DNN approach ignores the kinetic energy and searches for the equilibrium state via
minimizing the potential energy, where the state is represented by a deep neural network. We first
review the basics of molecular dynamics simulations and deep neural networks in Section 3.1. Then
we introduce the corresponding distribution transformers in Section 3.2 and Section 3.3.

3.1 Review of molecular dynamics and neural networks

3.1.1 Molecular dynamics (MD)

Molecular dynamics(MD) is a popular tool to simulate the motion of particles in fluid dynamics,
material sciences, chemical engineering, and biology. The system of particles are subject to pairwise
interactions and the evolution of the system is obtained by numerically solving Newton’s law of
motion with time stepping. In practical applications, the simulation may involve millions of time
steps and a large number of particles. For large-scale simulations, many high performance software
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packages have been developed, such as Desmond [6], GROMACS [88], LAMMPS [70, 1], NAMD
[69], OpenMM [31], etc. We review in the following some basic notions and algorithms in MD.

The evolution of a system of interacting particles is determined by the Newton’s law of motion:

mi
d2xi
dt2

= Fi, where mi and xi denote the mass and location of the ith particle, respectively, and

Fi denotes the force imposed on particle i. Given a potential function U(x, y) and a system of N
particles x1, . . . , xN ∈ Rd, the potential field and force on particle i are given by

Ui =
n∑
j=1
j 6=i

U(xj , xi), Fi = −∇xiUi, (2)

respectively. The numerical scheme to compute approximate solution to the Newton’s equation is
called an integrator. There are several integrators for molecular dynamics simulations. The most
popular class of integrators in molecular dynamics are the Verlet algorithms, including the basic
Verlet algorithm [91], the Verlet leapfrog algorithm [35] , the velocity Verlet algorithm [85]. The
velocity Verlet algorithm is based on the following update formula, which is widely used in practice
due to the computational efficiency.

x(t+ ∆t) = x(t) + v(t)∆t+
F

2m
∆t2, v(t+ ∆t) = v(t) +

F (t+ ∆t) + F (t)

2m
∆t,

where x denotes the location of a particle, v denotes the velocity and ∆t denotes the step size for
time discretization. The complete algorithm is shown in Algorithm 1. Compared to other schemes,
the velocity Verlet algorithm is easy to implement and memory-efficient. Algorithm 1 will be used
in Section 3.2 to design the MD-based distribution transformer.

Algorithm 1 Velocity Verlet Algorithm

Input: Initial positions {xi}Ni=1 and velocities {vi}Ni=1

Parameters: Potential U , mass m, step size ∆t, maximum iteration number M
Output: Positions xi and velocities vi after M time steps

1: For each particle i, compute the force Fi = −∇xiUi as in (2)
2: Update the positions xi = xi + vi∆t+ Fi

2m∆t2

3: Update the velocities partially vi = vi + Fi
2m∆t

4: Update the force field Fi using the new positions xi
5: Complete the update of velocities vi = vi + Fi

2m∆t
6: Go back to Step 1 unless the number of iterations reaches M
7: return {xi}Ni=1, {vi}Ni=1

3.1.2 Deep neural networks (DNN)

The past decade has seen unprecedented success for the applications of deep neural networks. Due to
the expressive power and flexible architecture, deep neural networks have been an indispensable tool
in a variety of fields, such as image processing, patter recognition, natural language understanding,
artificial intelligence, etc. DNN is also used as a tool for solving scientific computing problems
such as partial differential equations (cf. [72, 41, 7]). In the following, we review the basics of
feedforward deep networks. Mathematically, a neural network is a mapping Fθ : Rm → Rn defined
as a composition of a sequence of affine and nonlinear mappings, i.e.,

Fθ = σ ◦AL ◦ σ ◦AL−1 ◦ · · ·σ ◦A2 ◦ σ ◦A1(x), (3)
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where σ : R→ R is called the activation function and is applied elementwisely to the input vector
or matrix, and each Ak is an affine transformation in the form of Ak(x) := Wkx + bk. Here the
matrix Wk is called the weight matrix and the vector bk is the bias vector. The symbol θ in (3)
denotes the set of all parameters, including weight matrices and bias vectors. Vector input in each
composition corresponds to a layer, where the input layer is x, the output layer is σ ◦ AL, and
the intermediate ones are called hidden layers. The number L measures the depth of the neural
network. The length of vector bk is called the width of the kth layer. A deep neural network is a
neural network with more than one hidden layer.

The activation function σ is usually a nonlinear monotone function. Some commonly used
activation functions include ReLU σ(x) = max(x, 0), Sigmoid σ(x) = 1/(1 + e−x), hyperbolic
tangent σ(x) = tanh(x), etc. It is well-known that deep neural networks can approximate any
smooth functions [23, 37]. Because of the universal approximation property, neural networks are
used extensively to model possibly complicated mappings. The parameter set θ is determined by
training the neural network, i.e., minimizing a loss function. The definition of the loss function
depends on the particular application. The loss function is in general a complicated nonconvex
function and a variety of optimization techniques have been developed, such as stochastic gradient
descent (SGD) [5, 84], ADAGRAD [29], Adam [45], extragradient method [49, 59], etc. In practice,
due to the large number of parameters and complicated loss function, there is no guarantee that
those techniques can find any global or local minimum. A solution that significantly reduces the
initial loss to a certain level is considered acceptable.

3.2 Distribution transformer via MD

We present two distribution transformers based on molecular dynamics. The first one in Algorithm
2 transforms the input points directly, while the second one in Algorithm 3 applies a random shift
to the input points before the transformation.

Basic MD-based distribution transformer. The basic MD-based distribution transformer
is given in Algorithm 2. It applies the velocity Verlet algorithm to the particles with several
modifications. Firstly, the proposed transformer in Algorithm 2 contains the confinement potential
in the definition of total energy, which is not included in the velocity Verlet algorithm in Algorithm
1. Namely, in Algorithm 2, we define the potential field on particle i as

Ui = γV (xi) +

n∑
j=1
j 6=i

U(xj , xi) (4)

with V the confinement potential and γ the confinement strength. Secondly, since the updated
position of a particle can go out of the cube [0, 1]d, for each updated position x, we compute
x = x − bxc to ensure that each particle lies inside [0, 1]d during the transformation in Algorithm
2. Here bxc denotes the floor function and is applied componentwisely to vector x. A similar but
slightly different strategy is used in the lattice rule, where instead of using the floor function, the
fractional part of a point is chosen to obtain an admissible point in [0, 1]d. A discussion of the two
approaches and why we use the floor function is given in Remark 3.1.

Given a set of points, Algorithm 2 is easy to implement and only requires the locations of
points. The MD-based model is quite flexible as the user is free to modify the model by adjusting
the potential function and model parameters ∆t,M, ρ,m, etc. We discuss the choice of parameters
later in this section.

Applying the MD-based transformer to random samples yields an efficient way of generating
quasirandom points. Compared to low discrepancy sequences in Section 2.2, the new dynamical
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Algorithm 2 Distribution transformer via molecular dynamics

Input: N points x1, . . . , xN ∈ [0, 1]d

Parameters: Potentials U , V , confinement strength γ, mass m, step size ∆t, maximum iteration
number M , energy reduction rate ρ ∈ (0, 1]
Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Initialize velocities vi = 0 for i = 1, . . . , N
2: Compute the potential Ui in (4) and force field Fi = −∇xiUi for all points

3: Compute the total potential energy E∗ =
N∑

i,j=1
i<j

U(xi, xj) + γ
N∑
i=1

V (xi)

4: Set the mass of each particle to be

m = 100∆t2N
1
d
−1(

N∑
i=1

|Fi|2)1/2, (5)

where | · | denotes the magnitude of a vector
5: Run the velocity Verlet algorithm in Algorithm 1 with an extra step x = x − bxc every time

after a position is updated. In each time step, compute the total potential energy E of the
system. If E < ρE∗, update E∗ = E and record the locations of points

6: return The configuration y1, . . . , yN with the lowest energy

approach is more flexible as it is not based on any strict formula and allows points to shift in the
domain. The new model is less sensitive to parameters due to the continuous framework.

MD-based distribution transformer with random shift. The transformer in Algorithm
2 works well for random input but may not be effective for input distributions with a high level of
symmetry, such as the rightmost distribution in Fig. 1b. This is because the forces imposed on each
particle may cancel out due to the symmetry and thus the overall force on each particle is extremely
small. As a result, directly applying Algorithm 2 may hardly change the distribution. To resolve
this issue, inspired by the random scrambling techniques [64, 47] for improving low discrepancy
sequences, we propose a modified MD-based transformer with random shift. The key step is to
perform a random shift to the input before applying the MD-based transformer in Algorithm 2.
The full scheme is summarized in Algorithm 3. As we will see in Section 6, the random shift
version is very effective for improving the quasirandomness of distributions with certain symmetry,
for which the basic MD-based transformer in Algorithm 2 does not work well.

Algorithm 3 MD-based distribution transformer with random shift

Input: N points x1, . . . , xN ∈ [0, 1]d

Parameters: Random shift size ν, potential U , V , confinement strength γ, mass m, step size ∆t,
maximum iteration number M , energy reduction rate ρ ∈ (0, 1]
Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Apply random shift to each input point: x̂i = xi + νti, where ti ∈ [0, 1] is random
2: Restrict each point to [0, 1]d: x̂i = x̂i − bx̂ic
3: Apply Algorithm 2 to x̂1, . . . , x̂N to obtain the transformed points y1, . . . , yN
4: return y1, . . . , yN

9



Choice of parameters The step size ∆t is usually a small number compared to the length scale
of the domain, for example, 0.0001 to 0.001 for the unit square.

The choice of mass affects how fast each particle moves in each time step and consequently the
speed of the transformation. Larger mass yields slower move while smaller mass yields faster and
more dramatic change of locations in each time step. Using a large mass may lead to a large number
of iterations for the system to attain a good distribution, while a small mass may cause the system
to go out of control since the change can be too wild during each iteration. We choose the mass to be
given by (5) for the following reason. In each time step, we’d like the shift contributed from forces
F

2m∆t2 to be comparable to the scale of O(N−1/d), which is the scale of spacing for equispaced grid

points in [0, 1]d. Hence m is chosen to be of order O(N1/d|F |∆t2), where |F | = N−1

(
N∑
i=1
|Fi|2

)1/2

denotes the average magnitude of force. The coefficient 100 in (5) is not essential and can be
replaced by other suitable values. One can also choose a different mass other than the one in (5).
Numerical results in Section 6 show that the choice of mass in (5) yields rapid convergence from
given random samples to a quasirandom distribution (after only a few time steps). Nevertheless,
it is interesting to investigate the impact of mass on the performance of the algorithm as well as
the interplay between m and other quantities like N,∆t,M . A more comprehensive study of the
model parameters will be reported in a later date.

The energy reduction rate ρ ∈ (0, 1] affects which configuration the user needs to keep. If ρ = 1,
then every time we reach a state with a potential energy lower than the current E∗, the state is
stored and E∗ is updated. If ρ is small, this means that we only save the state that leads to a
noticeable reduction in energy. In Section 6, good test results are obtained with ρ = 0.99 and a
dramatic decrease in energy is uncommon if the input points are random samples, which spread
over the domain with potentially multiple holes and clumps, but are not considered too poorly
distributed.

Remark 3.1 The two techniques for restricting a point to [0, 1]d - using the floor function and
choosing fractional part - are slightly different. To see this, consider a scalar number x. If x ≥ 0,
then x− bxc is equal to the fractional part of x. If x < 0, for example, x = −0.1, then x− bxc =
−0.1− (−1) = 0.9, while the fractional part of x is 0.1. We choose to use x−bxc due to its physical
interpretation. Assume that we tile the unit cube [0, 1]d to make a periodic structure that fills the
whole space. Then the location of x− bxc in [0, 1]d is equal to the relative location of x inside the
cube that contain x. For example, if we consider d = 1, then the relative location of x = −0.1 in
[−1, 0] is same as x− bxc = 0.9 in [0, 1].

Remark 3.2 Note that both the technique x = x − bxc in Algorithm 2 and the fractional part
selection in lattice rule [79, 54, 21] are limited to the special geometry of [0, 1]d. They become
invalid for dealing with points in other geometries such as spheres or more complex manifolds.
The neural network-based approach introduced in Section 3.3 enables a more flexible treatment of
different geometries.

3.3 Distribution transformer via DNN

Different from the molecular dynamics approach, we can also completely ignore the kinetic energy
of the system and search for a state with low potential energy. This is achieved via parametrizing
the desired low-energy state as a neural network and minimizing a loss function representing the
total energy. An illustration of the basic model is shown in Fig. 3. The full algorithm is presented
in Algorithm 4.

10



Basic idea. For a point x ∈ [0, 1]d, we represent the corresponding transformed output y as a
residual neural network (ResNet) [42] y = x + G(x; θ), where G is a neural network parametrized
by θ. The output y will be determined after the ResNet x+G(x; θ) is trained to minimize the loss
function, defined as the total interaction energy:

E(x1, . . . , xN ) =
N∑

i,j=1
i<j

U(xi, xj) + γ
N∑
i=1

V (xi), (6)

where U(x, y) denotes the interaction potential, V (x) denotes the confinement potential, and γ ≥ 0
is a parameter for confinement strength.

There are several choices of the interaction potential and the confinement potential. In this
manuscript, we consider the following interaction potentials.

Coulomb potential: U(x, y) =
1

|x− y|
; Yukawa potential: U(x, y) =

e−µ|x−y|

|x− y|
, (7)

where the constant µ is the damping factor (also called screening strength) in the screened inter-
action. If U is chosen as the Coulomb potential, a confinement potential is often needed, i.e. γ > 0
in (6). If U is chosen as the Yukawa potential, we can choose γ = 0 as discussed in Section 5.

The confinement potential V is usually in the form of V (x) = |x− c|k, where c is the center of
the region and k > 0 is an even number. In [57, 71], V (x) = |x − c|2; in [77], V (x) = |x − c|4. In
general, V (x) is a non-negative function such that the closer x is to the boundary of the domain,
the larger V (x) is.

Input Output

Figure 3: Deep neural network as a distribution transformer

Note that the output of ResNet y = x + G(x; θ) is not guaranteed to stay in the unit cube
[0, 1]d, so the model can not be used directly since the output y has to be restricted to the unit
cube. One simple remedy is to apply a sigmoid activation function σ (whose range is (0, 1)) to the
ResNet as follows:

y = σ(x+G(x; θ)). (8)

However, this destroys the ResNet architecture (as the identity map can not be recovered in the
“short connection” [42]) and will yield unsatisfying results as demonstrated in Section 6. This is
consistent with the finding in [42] on the improved stability and faster convergence provided by
the ResNet architecture. To circumvent this issue, we propose in the following an unconstrained
model.

Unconstrained model. To ensure that the output is always inside the unit cube, we parametrize
each point x as x = 1

2 + 1
2 sinα, where both ’+’ and ’sin’ are applied componentwisely. Since

x ∈ [0, 1]d is always guaranteed and the mapping is surjective, α ∈ Rd is a free variable without
any constraint. The energy function in the free latent variables becomes

Ec(α1, . . . , αN ) =
N∑

i,j=1
i<j

U(1
2 + 1

2 sinαi,
1
2 + 1

2 sinαj) + γ
N∑
i=1

V (1
2 + 1

2 sinαi), αi ∈ Rd. (9)

11



Given x ∈ [0, 1]d, we can compute the free variable as α = arcsin(2x−1). In order to transform x, it
suffices to transform α into β and set y = 1

2 + 1
2 sinβ. We use a ResNet to model the transformation

of the free variable α:
β = α+G(α; θ). (10)

The neural network is trained via minimizing the energy Ec(β1, . . . , βN ) and the output distribution
in [0, 1]d is set to be yi = 1

2 + 1
2 sinβi. The full deep neural network (DNN)-based algorithm for

transforming a given distribution is presented in Algorithm 4.

Algorithm 4 Distribution transformer via deep neural network

Input: N points x1, . . . , xN ∈ [0, 1]d

Output: N transformed points y1, . . . , yN ∈ [0, 1]d

1: Compute αi = arcsin(2xi − 1) for all xi, where arcsin is applied componentwisely
2: Let βi = αi +G(αi; θ) be the ResNet in (10) parametrized by θ
3: Train the ResNet via minimizing Ec(β1, . . . , βN ) to obtain θ∗ and β∗i = αi +G(αi; θ

∗)
4: return yi = 1

2 + 1
2 sinβ∗i for i = 1, . . . , N

One advantage of DNN-based approach compared to the MD-based approach in Section 3.2 is
that it is able to yield highly uniform distributions similar to equispaced grid points. See Section
6 for numerical results. The framework can be applied to dealing with distributions in a general
domain as long as the system energy is chosen suitably. In Section 4, we will consider disks, spheres,
and manifolds in general.

Remark 3.3 It should be noted that, when training a deep neural network, it is almost impossible
in practice to find the exact global minimum, so θ∗ in Algorithm 4 is not a minimizer in general. In
fact, there is no need to find the global minimum. As long as the computed solution significantly
reduces the energy and improves the distribution, it serves as a desirable output.

Remark 3.4 (Relationship between the MD and DNN approaches) The DNN-based
approach optimizes the energy function with respect to parameters in the neural network. As a
comparison, the MD-based approach can be viewed as optimizing with respect to the output space
directly. In fact, the time step ∆t in the MD-based approach in Algorithm 2 can be interpreted as
the learning rate (or its variant like the sqaure root of the learning rate, up to some multiplicative
constants) in gradient descent algorithms; the force field is exactly the negative gradient of the
objective - the potential energy; the velocity Verlet algorithm in Algorithm 1 can be viewed as
a gradient descent algorithm with momentum, where the updates in Steps 2 and 3 of Algorithm
1 constitute a momentum update. We see that the update in the MD-based approach resembles
applying a gradient descent-type algorithm to the energy function over the output space. It should
be pointed out that directly applying gradient descent algorithms over the output space is gen-
erally invalid because each time, the new update can lie outside the geometry of interest. Hence
postprocessing as in Algorithm 2 (Step 5) is needed to restrict the point to the domain of interest.
Overall, this approach can be infeasible if the underlying geometry is too complicated to warrant an
effective postprocessing step, as mentioned in Remark 3.2. The more flexible DNN-based approach
can circumvent this issue and be applied to complicated geometries as discussed in Section 4.
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4 Distribution transformers on disks, spheres, general manifolds

Generating distributions on a disk, a sphere or a general manifold has vast applications across
various disciplines, from earth models [17, 78], structural chemistry [50, 56], to computer graphics
[38, 87], topology optimization [75], etc. In this section, we illustrate the flexibility of the pro-
posed physics-informed framework by transforming distributions on disks, spheres, and manifolds
in general. We employ the DNN-based model.

Distribution transformer on the unit disk. To transform points in the unit disk, directly
minimizing (6) is not easy to implement since each point has to be restricted to the disk during the
training of the neural network. Similar to Algorithm 4, we parametrize each point x in the unit
disk using free variables α, β as

x =
(

1
2 cosβ(1 + sinα), 1

2 sinβ(1 + sinα)
)
, α, β ∈ R. (11)

The total energy expressed in terms of free variables

[
αi
βi

]
∈ R2 becomes:

Ed
([
α1

β1

]
, . . . ,

[
αN
βN

])
=

N∑
i,j=1
i<j

U(xi(αi, βi), xj(αj , βj)) + γ
N∑
i=1

V (xi(αi, βi)), (12)

where xi(αi, βi) is the parametrization in (11). The interaction potential U and confinement po-
tential V can be chosen as discussed in Section 3.3.

We use a ResNet architecture to model the transformation of free variables:[
α̃

β̃

]
=

[
α
β

]
+G(

[
α
β

]
; θ). (13)

Then we train the neural network via minimizing the corresponding energy Ed. The full algorithm
is presented in Algorithm 5.

Algorithm 5 Distribution transformer on the unit disk

Input: N points x1, . . . , xN on the unit disk
Output: N transformed points y1, . . . , yN on the unit disk

1: For each xi, set αi = arcsin(2|xi| − 1) and βi the angle of xi

2: Let

[
α̃

β̃

]
be the ResNet in (13) parametrized by θ

3: Train the ResNet via minimizing Ed
([
α̃1

β̃1

]
, . . . ,

[
α̃N
β̃N

])
to obtain θ∗ and

[
α̃∗i
β̃∗i

]
4: return yi parametrized by α̃∗i , β̃

∗
i as in (11)

The energy-based framework provides a flexible way to manipulate points and generate distri-
butions according the specific need. Note that modifying γ will generate point distributions with
different levels of concentration towards the center of the disk. A larger γ will result in more points
near the center while setting γ = 0 will yield a ground state with more points near the boundary.

Distribution transformer on the unit sphere. The case of a sphere is very different from
a cube or a disk because a sphere is a closed surface, i.e., with no boundary. Due to this property,
there is no boundary effect and a confinement potential is not needed.
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To transform the points on the unit sphere, we parametrize each point using the spherical
coordinate

x = (sinα cosβ, sinα sinβ, cosα) ∈ S2, α, β ∈ R. (14)

The system energy expressed in terms of the free variables αi, βi is

Es
([
α1

β1

]
, . . . ,

[
αN
βN

])
=

N∑
i,j=1
i<j

U(xi(αi, βi), xj(αj , βj)), αi, βi ∈ R, (15)

where xi(αi, βi) is the spherical coordinate in (14) and U can be chosen as the Coulomb potential.

Same to (13), we model the transformed free variables

[
α̃

β̃

]
as a ResNet. The neural network is

trained via minimizing Es and the transformer is given in Algorithm 6.

Algorithm 6 Distribution transformer on the unit sphere

Input: N points x1, . . . , xN on the unit sphere
Output: N transformed points y1 . . . yN on the unit sphere

1: For each xi ∈ S2, compute the corresponding angle parameters αi, βi

2: Let

[
α̃

β̃

]
be the ResNet in (13) parametrized by θ

3: Train the ResNet via minimizing Es
([
α̃1

β̃1

]
, . . . ,

[
α̃N
β̃N

])
to obtain θ∗ and

[
α̃∗i
β̃∗i

]
4: return yi ∈ S2 parametrized by α̃∗i , β̃

∗
i via (14)

Distribution transformer on a manifold. The idea in Algorithm 6 the can be generalized
to a general manifold, as summarized in Algorithm 7. Assume a manifold Γ ⊂ Rd is parametrized
by ψ : [−1, 1]d−1 → Γ. We express each point x ∈ Γ as x = ψ(sinα), α ∈ Rd−1. Then we can define
a ResNet similar to (13) and optimize the energy function for a system of given points. The new
locations can eventually be obtained as in Algorithm 7.

Algorithm 7 Distribution transformer on a manifold

Input: N points x1 = ψ(t1), . . . , xN = ψ(tN ) on the manifold Γ parametrized by ψ : [−1, 1]d−1 → Γ
Output: N transformed points y1, . . . , yN on the manifold

1: For each ti ∈ [−1, 1]d−1, compute angle parameters αi ∈ [−π, π]d−1 such that sinαi = ti
2: Let α̃ = α+G(α; θ) ∈ Rd−1 denote the ResNet parametrized by θ
3: Train the ResNet via minimizing Es(α̃1, . . . , α̃N ) to obtain θ∗ and α̃∗i
4: return yi = ψ(sin α̃∗i ) ∈ Γ

Metrics for general geometries. For points on a general geometry such as a manifold,
the definition of discrepancy is no longer valid and metrics not limited to a certain geometry are
needed to measure the uniformity of a set X = {x1, . . . , xN}. The inverse minimal pairwise distance

1
min
i 6=j
|xi−xj | is a simple metric valid for arbitrary geometries. It has been used as a metric in meshless

methods to avoid the instability for discretizing and solving partial differential equations (cf. [53]).
A relatively small value indicates good spacing between points. A drawback of this metric is
that it depends on the minimal distance between two points and the same value can correspond
to drastically different configurations with arbitrarily many pairs of points achieving the minimal
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distance. Different from geometric metrics, another metric we can use to indicate uniformity is the
low-rank approximation error to certain kernel matrix. Recent study [15, 13] shows that points with
good uniformity will benefit the low-rank approximation to kernel matrices and clustered points in
small regions impede not only accuracy but also numerical stability in low-rank approximations.
Inspired by this result, we use X to compute low-rank factors to the kernel matrix and then use
the approximation error as a metric to indicate the uniformity of X. Formally, we compute the low
rank approximation error for a large kernel matrix KΩΩ = [κ(p, q)]p,q∈Ω associated with a smooth
symmetric kernel κ(x, y) and a set Ω = {qi}Mi=1 with M � N . The artificial set Ω is created such
that it contains X and a large number of points randomly distributed on the underlying geometry.
Examples of the kernel κ are shown in (21). The metric for X is defined as

||KΩΩ −KΩXK
+
XXK

T
ΩX ||/||KΩΩ||, (16)

whereA+ denotes the pseudoinverse of matrixA, ||·|| denotes the 2-norm, andKXY := [κ(x, y)]x∈X,y∈Y .
It is expected that, a set X with better uniformity gives a smaller error. Experiments in [15] and
Section 6 show that this algebraic metric is able to distinguish good distributions from bad ones
(with poor uniformity). Compared to the concept of discrepancy, the metrics above work in a
much more general setting and can be computed easily. We would like to emphasize that it is still
unknown which metric works best or should be used for measuring uniformity of a set on a general
geometry.

Remark 4.1 Distributing points on a sphere is a classical problem with diverse interests in
chemistry, spherical design, physics [50, 93, 86, 25]. The problem of minimizing the total Coulomb
potential over a set of points x1, . . . , xN on the unit sphere is known as the Thomson problem [86].
The optimal set of points that minimize the energy is referred as Fekete points [34]. The Coulomb
interaction 1

|xi−xj | can be replaced with the more general Riesz s-energy 1
|xi−xj |s . The Thomson

problem is still an open problem [82]. For some special values of N , the solution is known to
be evenly distributed on the sphere. For example, when N = 4, the convex hull of the optimal
distribution of points is a tetrahedron [93]; when N = 12, the convex hull is a icosahedron [3].

Remark 4.2 For simple geometries like a cube or a ball, we can first generate evenly distributed
points in the bounding box and then remove points outside the geometry. However, this “generate-
and-remove” approach does not work for more general geometries such as manifolds (a sphere, for
example). It is easy to see that, if the underlying geometry is a manifold, points evenly spread
the bounding box are unlikely to lie exactly on the manifold. Another issue is that it may not be
straightforward or computationally efficient to check whether each point belongs to the underlying
geometry. On the contrary, the DNN-based approach is powerful enough to handle non-cube
geometries, as can be seen from various experiments in Section 6.

5 Interaction energy

In this section, we consider the Coulomb and Yukawa potentials and discuss the interplay between
the total energy and the distribution of points.

Coulomb interaction The Coulomb potential between two particles is inverse proportional to
their distance. For a system of electrons in a bounded region, if the total energy is defined as the sum
of all Coulomb interactions, then the equilibrium distribution is not the equispaced distribution,
as can be seen from the proposition below for the one-dimensional case.
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Proposition 1. Let E(x1, . . . , xN ) =
N∑

i,j=1
i<j

1
|xi−xj | be the Coulomb interaction energy of N points in

[0, 1]. Then the set of N equispaced points x∗i = (i − 1)h with h := 1
N−1 and 1 ≤ i ≤ N does not

minimize E.

Proof. For any N points x1 < x2 < · · · < xN , the partial derivative of E is given by

∂E
∂xi

= −
i−1∑
l=1

1

|xi − xl|2
+

N∑
l=i+1

1

|xi − xl|2
.

At the equispaced points (x∗1, . . . , x
∗
N ), the partial derivative with respect to x2 is

∂E
∂x2

= − 1

h2
+

N∑
l=3

1

(l − 2)2h2
=

N−2∑
k=2

1

k2h2
≥ 1

4h2
.

We see that the partial derivative is large (assuing N is large), so E is far from being minimal when
the N points are equispaced.

The result above indicates that, in order to obtain evenly distributed distributions, a confine-
ment potential needs to be included in the total energy, as in (6). More precisely, we see from
the proof of Proposition 1 that for the equispaced distribution, particles located near the bound-
ary experience large Coulomb forces while those near the center are relatively stable due to the
cancellation of forces from opposite directions. Hence it is impossible to obtain a nearly uniform
distribution at equilibrium. To resolve the boundary effect, a confinement potential V is needed
in practice, as in (6). It is used to create a relatively large energy when the point is close to the
boundary.

Yukawa interaction The Yukawa interaction is a screened Coulomb interaction where the long
range interaction can be suppressed by the damping factor. Consequently, the boundary effect may
not be noticeable and the confinement potential may not be necessary. A quantitative description
is given in the proposition below for Yukawa interaction.

Proposition 2. Let E(x1, . . . , xN ) =
N∑

i,j=1
i<j

K(xi, xj) be the total interaction energy of N points in

[0, 1] associated with interaction K(·, ·). Define h := 1
N−1 and

µ := −3

2
h−1 lnh. (17)

Then at the equispaced points x∗i = (i− 1)h,

∂E
∂xi

(x∗1, . . . , x
∗
N )→ 0 as N →∞, i = 2, . . . , N − 1.

Proof. Consider the Yukawa interaction K(x, y) = e−µ|x−y|

|x−y| . Then it can be computed that

∂E
∂xi

=

i−1∑
l=1

(
−e
−µril

r2
il

− µe−µril

ril

)
+

N∑
l=i+1

(
e−µril

r2
il

+
µe−µril

ril

)
,
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where ril := |xi − xl|. At the equispaced points (x∗1, . . . , x
∗
N ), we deduce for 2 ≤ i ≤ N − 1 that,∣∣∣∣ ∂E∂xi

∣∣∣∣ ≤ ∣∣∣∣ ∂E∂x2

∣∣∣∣ =
N−2∑
k=2

(
e−µkh

k2h2
+
µe−µkh

kh

)
≤ e−2µh

h2

N−2∑
k=2

1

k2
+
µe−2µh

h

N−2∑
k=2

1

k
. (18)

Since in this case µ = −3
2h
−1 lnh, we compute that

e−2µh

h2
= h =

1

N − 1
and

µe−2µh

h
= −3

2
h lnh =

3 ln(N − 1)

2(N − 1)
.

Plug it in to (18), we arrive at∣∣∣∣ ∂E∂xi
∣∣∣∣ ≤ 1

N − 1

N−2∑
k=2

1

k2
+

2 ln(N − 1)

N − 1

N−2∑
k=2

1

k
<

2

N − 1
+

2 ln(N − 1)(lnN + 1)

N − 1
, (19)

where we have used the fact that
∞∑
k=1

1
k2

= π2

6 < 2 and
N∑
k=1

1
k < lnN + 1. It follows immediately

from (19) that
∂E
∂xi
→ 0 as N →∞.

From the proof above, it can be seen that, the sum in either (18) is in fact dominated by the
first term due to the super-exponential decay of the sequence with respect to k. Therefore, in order
to bound the sum, it suffices to bound the first term. This provides a guidance for choosing µ in
higher dimensions and the formula (17) still applies with properly defined h. For a system of N
particles in [0, 1]d, we may choose µ as in (17) with h := O(N−1/d). That is µ = O(1

dN
1/d logN)

6 Experiments

In this section, we perform numerical experiments to investigate the proposed physics-informed
distribution transformers: MD-based one and DNN-based one. The implementation details are
presented in Section 6.1. Test results are shown in Section 6.2. The deep neural network is
implemented with PyTorch [2, 67].

6.1 Implementation Details

MD-based distribution transformer For the MD-based transformer, we use the Coulomb
interaction U(x, y) = 1

|x−y| and the quadratic confinement potential V (x) = |x−c|2. The parameters

are chosen as follows: time step ∆t = 0.0002, mass is defined in (5), maximum iteration number
M = 20, energy reduction rate ρ = 0.99.

DNN-based distribution transformer For all DNN-based transformers, we use Adam [45] as
the optimizer with beta parameters (0.5, 0.9) and epsilon parameter 10−6 (cf.[45]). The learning
rate is set to be 0.001. The activation function is chosen as Leaky ReLU [55]. The loss function is
defined according to the geometry and the potential used, which will be detailed in each experiment.
For the Yukawa potential, the damping factor is chosen as follows according to the discussion in
Section 5.

µ = d−1N1/d logN. (20)
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6.2 Test results

In this section, we present several experiments to investigate the performance of the proposed
distribution transformers for improving the uniformity of a given distribution. For Tests 1,2,3,
to evaluate the uniformity quantatitively, we compute the L2 star discrepancy using Warnock’s
formula in (1). The inverse minimum pairwise distance is used in Test 5. For non-cube geometries
as in Tests 6,7,8, we use the kernel matrix approximation error described in (16) to measure the
uniformity of a configuration quantitatively.

Test 1. DNN-based transformer with unconstrained model. In this test, we compare
the performance of DNN-based transformers based on two models, one in (8) with original variable
restricted to [0, 1]d and one in (10) with unconstrained latent variable. We employ the Yukawa
potential and define the loss function as the sum of all pairwise Yukawa interactions with damping
factor in (20). In the neural network, three hidden layers with dimensions 8, 16, 8 are used. The
maximum number of epochs is set to be 10000. For the given N = 100 random samples, we see from
Fig. 4 (top row) that the model in (8) with artificial restriction fails to yield a good distribution
within 10000 epochs, while the unconstrained model in (10) produces highly evenly-spaced points
in Fig. 4 (bottom-right). It can be seen that a decent distribution is obtained after 2000 epochs
using the model in (10). Quantitatively, the corresponding discrepancy plot is shown in Fig. 5.
The decay of discrepancy during the training of neural network is easily seen from the plot.

Figure 4: Test 1: Restricted model (top) in (8) and unconstrained model (bottom) in (10). Left to
right: input distribution, transformed distributions after 500, 1000, 2000, 5000, 10000 epochs.
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Figure 5: Test 1: discrepancy plot for distributions in Fig. 4(bottom)

Test 2. Transforming random samples with MD-based transformer. In this test, we
use molecular dynamics (MD)-based transformer in Algorithm 2 to improve the distribution of
N = 300 random samples in the unit square. The model parameters are described in Section 6.1.
The energy function is the total Coulomb potential plus confinement potential with confinement
strength γ = 10N . The results are shown in Fig. 6, where we plot the force field (blue arrow) on
each particle in the 8 interior subfigures, corresponding to the iteration steps 0, 1, 2, 3, 4, 7, 10, 16
in the velocity Verlet algorithm. The plot of the corresponding discrepancies is also shown. The
length of each blue arrow in Fig. 6 indicates the strength of the force field. We see that the particles
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move in the direction to create better uniformity. Furthermore, it only takes less than 20 iterations
to transform the random input in Fig. 6 to an output with better uniformity.
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Figure 6: Test 2: MD-based transformation of random samples. Top-left to bottom-right: input,
force fields of the system at time steps 0, 1, 2, 3, 7, 10, 16, output, discrepancy plot

Test 3. Improving low discrepancy sequence with MD-based transformer (random
shift version). We see from Fig. 1b (also 1st plot in Fig. 7) that the first 250 points from
the Halton sequence with bases 11,13 do not display enough quasirandomness due to the strong
correlation between points. In this test, we apply the MD-based transformer with random shift in
Algorithm 3 to the Halton points in order to obtain better quasirandomness. The random shift is
chosen as 0.1 and other parameters are the same as in Test 2. We plot the distributions at time steps
1, 6, 17 in Fig. 7 along with the output and the discrepancies corresponding to those distributions.
We see that the output points achieve better quasirandomness than the input distribution, with
reduced discrepancy. Also, the random shift does help to destroy the symmetric structure in
the input distribution and contributes to the quasirandomness obtained by Algorithm 3. As a
comparison to permutation or scrambling techniques, in Fig. 8, we include the output obtained
by the reverse permutation [89]. It is easy to see from Fig. 8 that the permutation method does
not resolve the high correlations between points as the MD-based method does. In general, though
number-theory based formulas are easy to compute, they are limited to special input sets and
meanwhile can not be applied to non-cube geometries. These limitations motivate the development
of the methods in this manuscript to handle more general input sets and geometries.
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Figure 7: Test 3: Transforming 250 Halton points with bases 11, 13. Left to right: input, randomly
shifted input, system with force fields at time steps 1, 6, 17, output, discrepancy plot

Test 4. Transforming points in a disk. We apply Algorithm 5 to transforming N = 100
given points in the unit disk in Fig. 9 (left). The energy is chosen as Coulomb interaction plus
the confinement potential V (x) = |x|2 with confinement strength γ = 3N . In the neural network,
four hidden layers with dimensions 4, 16, 32, 8 are used and the maximum number of epochs is
set to be 50000. Note that since the input distribution in Fig. 9 is extremely poorly distributed
in the disk, to obtain a good transformation, we expect a larger neural network and more epochs
compared to Test 1. It is easy to see from Fig. 9 that the DNN-based transformer is able to
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Figure 8: Comparison of the number theoretic approach and the proposed approach for Test 3.
Left: input Halton set; Middle: output of reverse permutation [89]; Right: output of MD-based
approach

yield a point distribution with extremely high uniformity despite the fact that input points are
concentrated in a small reigon, namely, 1/6 of the domain. This demonstrates the potential of
DNN-based transformers to generate highly structured points with good uniformity.

Figure 9: Test 4: Transforming points in a disk. Left to right: input distribution, transformed
distributions after 500, 1000, 2000, 10000, 30000, 50000 epochs

Test 5. Transforming points on a sphere. We apply Algorithm 6 to transforming N = 100
given points on the unit sphere in Fig. 10 (top-left). The energy is chosen as the total pairwise
Coulomb interactions. The neural network contains four hidden layers with dimensions 4, 8, 16,
8. The maximum number of epochs is set to be 50000. Fig. 10 shows the distributions during
transformation, where the color of each point is measured by the value of its z component in the
Cartesian coordinate. We see that the input points (top-left plot) are poorly distributed on the
sphere and the output distribution (bottom-right plot) is much better. To illustrate the uniformity
quantatitively, we compute the inverse minimal pairwise distances 1/min

i 6=j
|xi−xj | corresponding to

the 7 distributions in Fig. 10 and plot the curve in Fig. 10(bottom-right). We see that the minimal
pairwise distance of the output distribution is significantly larger than the input distribution, which
indicates that the points do become more evenly spaced after the transformation.
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Figure 10: Test 5: Transforming points on a sphere. Top-left to bottom-right: input, distributions
after 500, 1000, 2000, 10000, 30000, 50000 epochs, inverse minimum pairwise distance plot
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Test 6. Transforming points on a complex manifold in R3. We apply Algorithm 7 to
100 points on a complex flower-shaped manifold in R3. See Fig. 11 (top left) for an illustration of
the manifold. As can be seen from the second figure (top row) in Fig. 11, a majority of the points
are clustered at the bottom of the manifold. To transform the points, we use the same neural
network architecture as in Test 5. The metric for measuring uniformity is chosen as the kernel
matrix approximation error as described in (16), where four different kernel functions - Gaussian,
multiquadric, inverse quadratic, inverse multiquadric - are tested:

e−0.2||x−y||2 ,
√

1 + 0.2||x− y||2, 1

1 + 0.1||x− y||2
,

1√
1 + 0.1||x− y||2

. (21)

The results for the transformation and the metric are shown in Fig. 11. Visually, it can be seen
from the scatter plots in Fig. 11 that during the training, the points clustered at the bottom
of the manifold are transformed to disperse over the entire manifold. Quantitatively, from Fig.
11 (bottom), we see that the matrix approximation error decays effectively, which reflects the
improvement of the uniformity of the distribution.
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Figure 11: Test 6: Transforming points on a complex manifold in R3. Top left to bottom right:
geometry, input points, points at epoch=500k(k = 1, 2, . . . , 6). Bottom: matrix approximation
errors for kernels in (21) vs epoch

Test 7. Transforming points on a hypersphere in R4. We apply Algorithm 7 (with a
different interval for parameters) to 100 poorly distributed points on the unit hypersphere S3 in
R4:

(cosu cos v cosw, cosu cos v sinw, cosu sin v, sinu) ∈ R4.

The same neural network architecture as in Test 6 is used. The input points are generated with
u sampled from U(−π

2 ,
π
2 ) and v, w sampled from U(0, 0.2π), where U(a, b) denotes the uniform

distribution on [a, b]. This is to make most points cluster in a small region on the hypersphere. The
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kernel matrix approximation error in (16) is used as the metric. The results for the experiment
are shown in Fig. 12 and Fig. 13. Fig. 12 shows the matrix approximation errors associated
with points on the hypersphere in R4 and the projections into three dimensions. Fig. 13 presents
visualizations of the three dimensional projections: (1,2,3) and (2,3,4) during the transformation.
The decay of errors in Fig. 12 reflects the improved uniformity of the input after the transformation.
We see that the improvement is not only reflected in the original four dimensional space but also
observed in each of the three dimensional projections. It can also be seen that only around 500
epochs are needed to refine the distribution substantially. The experiment shows that the proposed
distribution transformer also works for high dimensional geometry.
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Figure 12: Test 7: Matrix approximation error vs epoch. Top left to bottom right: points on the
hypersphere in R4, projections to dimensions (1,2,3), (1,2,4), (1,3,4), (2,3,4)

Figure 13: Test 7: Each row shows 3D projections of 4D points on a hypersphere at
epoch=0,200,400,1000. Top: dimension (1,2,3); Bottom: dimension (2,3,4). Quantitative results
are shown in Fig. 12.

Test 8. Transforming samples from a distribution. We apply Algorithm 7 (with a
different interval for parameters) to learn a distribution transformer applied to batches of 100
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samples from the following distribution on the unit sphere:

x = (sin(θ/2) cos(φ), sin(θ/2) sin(φ), cos(θ/2)) ,

where θ ∼ N (0, 1) is the standard normal distribution and φ ∼ U(0, 2π) is the uniform distribution
on [0, 2π]. Samples from this distribution are more likely to cluster at the north pole, where the
probability density peaks. We use the algebraic metric in (16) to measure the uniformity and the
kernel function is chosen as κ(x, y) = e−||x−y||

2
. Fig. 14 presents the results of transforming five

sets of input samples (top row) and to more evenly distributed outputs (bottom row). The metric
(low-rank approximation error) is shown as the title in each configuration plot. A substantially
smaller approximation error indicates better uniformity of points. From the numeric values in Fig.
14, it can be seen that, each poorly distributed input only gives one digit of accuracy at most,
while the corresponding output can achieve five to six digits of approximation accuracy, reflecting
the much improved uniformity.

error: 6.2E-1 error: 6.8E-1 error: 6.6E-1 error: 6.4E-1 error: 5.9E-1

error: 3.7E-5 error: 1.8E-5 error: 4.7E-5 error: 1.4E-5 error: 5.1E-6

Figure 14: Test 8: Transforming samples clustered around the north pole on the sphere: input(top)
and output(bottom). The title for each plot is the metric in (16) for the configuration with kernel
κ(x, y) = e−||x−y||

2
. Significantly improved approximation accuracy (from 1 digit to 5 or 6 digits)

reflects improved uniformity of points.

7 Discussion

7.1 Comparison of MD-based and DNN-based transformers

The MD-based transformer is given by an explicit update formula, which is easy to compute. When
applied to random samples or points from a low discrepancy sequence, it can quickly improves the
quasirandomness. However, it is not able to achieve extremely high uniformity as DNN-based
transformers do and can not be extended easily to other geometries. The DNN-based transformer
is able to produce distributions with superior uniformity regardless of the input distribution. It can
be easily extended to different geometries as long as an unconstrained parametrization is available.
However, there are several drawbacks. The DNN-based approach requires solving a nonconvex
minimization problem and the training of the deep neural network is more time-consuming than
running MD simulations.

Overall, the MD-based transformer can be used as a fine-tuner to quickly improve the uniformity
or quasirandomness of a given distribution. If the given distribution is far from being evenly
distributed and high uniformity is needed, then the DNN-based transformer is a better option.
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The DNN-based transformer also works for disks and manifolds. Though the basic residual network
(ResNet) is used in the manuscript, other neural network architectures can also be incorporated
into the DNN-based transformer. Using the state-of-the-art optimization tools may also improve
the performance of the proposed transformer.

7.2 Issues and future work

Quadratic complexity The proposed framework requires computing all pairwise interactions
between particles and thus the computation cost has O(N2) complexity for a system of N particles,
which is not optimal. The quadratic cost can be circumvented by using fast multipole method
or hierarchical matrices (cf. [18, 16, 4, 39, 12, 32, 13]), which employ a hierarchically low-rank
representation to approximate the dense kernel matrix and yield O(N) complexity in time and
space.

Training of neural network The potential numerical instability in training deep neural net-
works has long been a challenging problem in deep learning [37, 5, 45]. To transform a large number
of points with DNN-based transformer, a large neural network is needed in order to model the com-
plicated system. Deeper and wider hidden layers may cause numerical stability issues during the
training stage. How to stabilize the training is a major problem to investigate in order to apply
the proposed method to large-scale datasets.

Neural network architectures In the manuscript, we use a residual neural network (ResNet)
to model the transformation. It will be our future work to explore appropriate architectures for
the distribution transformer leveraging the state-of-the-art development in neural networks. For
example, for generating configurations with good uniformity, generative models such as normalizing
flows [66, 74, 46, 30, 24, 14] appear promising due to its power in modelling complex mappings
between distributions.

Choice of energy for other distributions and geometries The choice of energy dictates
the final output distribution of the proposed transformers. It is interesting to study which energy
should be used to obtain a desired point distribution (not necessarily uniform) over a specific ge-
ometry. This will greatly expand the scope of applications of the proposed approach, for example,
to numerical simulations in fluid, mechanical, electromagnetic problems where adaptive discretiza-
tion (non-uniform mesh) is often needed in order to resolve singular behaviors of solutions (cf.
[90, 9, 10, 11, 8]).

8 Conclusion

In this manuscript, we introduce a physics-informed framework for improving given distributions.
As an initial attempt to leverage physics principles and deep neural networks for improving the
quasirandomness of a given distribution, two kinds of distribution transformers are introduced: one
based on molecular dynamics (MD), another based on deep neural networks (DNN). The MD-based
transformer serves as an efficient fine-tuner which can quickly improve the uniformity of random
samples or the quasirandomness of low discrepancy sequence. The DNN-based transformer is
more powerful as it is able to achieve superior uniformity in different geometries regardless of the
given distribution. Various experiments are presented to demonstrate the quality of the proposed
transformers on improving the given possibly poorly distributed points over different geometries.
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Compared to existing methods, the new approach provides a flexible framework that allows dealing
with general point distributions instead of points generated by a certain formula. Future work
includes improving the computational efficiency via incorporating hierarchical matrices, leveraging
the state-of-the-art neural network architecture to investigate more general geometries.
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