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Chapter 2

p. 17: Lemma 2.12
The end of the proof is potentially confusing, since [p, p′] is not compact in the topology of B.
The point is that every point on the arc [Tjz, Tjw] lies in TjDw. Thus, if these arcs accumulate
on [p, p′], then some compact neighborhood of an interior point of [p, p′] intersects infinitely
many of the copies TjDw. That is the contradiction with Lemma 2.11.

Also, it should be noted that the restriction the w not be an elliptic fixed point is an artifact of
the proof. In fact, Λ(Γ) is the set of limit points of Γw for any w ∈ H. See [Beardon, Thm. 5.3.9]
for the more general proof.

p. 21: Proof of Theorem 2.16
Although Theorem 2.16 is correct as stated, Lemma 2.17 proves only that the existence of a
finite-sided Dirichlet domain implies that the group is finitely generated. To complete the proof,
one must show that the existence of a convex finite-sided fundamental domain implies that all
convex fundamental domains are finite-sided. See Beardon [20, Thm. 10.1.2] for the proof.

p. 23: second paragraph
The claim that “a small neighborhood of p meets exactly two sides of Dw” requires more jus-
tification. One must rule out the possibility that the boundary of Dw contains infinitely many
arcs accumulating at p. For this argument, see Beardon [20, Thm. 9.3.8].

p. 26: Lemma 2.21
In part (3) of the statement, there is a tilde missing: Op ⊂ Ñ .

p. 29: Proof of Theorem 2.23
In the second-to-last paragraph the statement Γ\Hj = Γj\Hj doesn’t quite make sense, since
Γ does not preserve Hj . What is meant here is that if any two points of Hj are related by an
element g ∈ Γ , then in fact g ∈ Γj .

p. 44: Proposition 2.39
Should start “Let X be a geometrically finite hyperbolic surface...”

Chapter 4

p. 66: Proof of Proposition 4.2
The derivation of cs here is sloppy. Although the asymptotic behavior f ′(r) ∼ −1/2πr is indeed
universal for a Green’s function in two dimensions, the argument given here makes unjustified
assumptions about the behavior of f ′(r) as r → 0.
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For the correct computation of cs, we note that, by the definition of the resolvent,

(1) φ(z0) =

∫
H
RH(s; z0, z)φ(z) dg(z),

for φ ∈ C∞
0 (H). For convenience, let us use geodesic radial coordinates (r, θ) centered at z0,

and assume that φ is radial in these coordinates, i.e., φ(z) = h(r) for some function h. Then
(1) translates to

h(0) = 2π

∫ ∞

0
f(r)

[
− 1

sinh r
(h′ sinh r)′ − s(1− s)h

]
sinh r dr,

where the primes denote r derivatives. Since ∆φ is smooth, we can write this as a limit

h(0) = 2π lim
ε→0

∫ ∞

ε
f(r)

[
− 1

sinh r
(h′ sinh r)′ − s(1− s)h

]
sinh r dr.

Staying away from r = 0 allows us to integrate by parts twice, exploiting the fact that −∆f =
s(1− s)f in this range, to obtain

(2) h(0) = 2π lim
ε→0

[
f(ε)h′(ε)− f ′(ε)h(ε)

]
sinh ε.

The asymptotic behavior of the Legendre function as u → 1+ is given by [202, §5(12.23)],

(3) Qs−1(u) ∼ − 1

2Γ(s)
log(u− 1) + log

√
2− Γ′

Γ
(s)− γ +O(u− 1),

for s /∈ −N0, where γ is Euler’s constant. Since cosh r ∼ 1 + r2/2 as r → 0, this implies that

f(r) ∼ −cs
log r

Γ(s)
.

Since h′(ε) = O(ε), by the smoothness of φ, the first term in (2) vanishes.
We can compute the asymptotics of f ′(r) from the standard Legendre derivative formula

dQs−1(u)

du
=

s

u2 − 1

[
Qs(u)− uQs−1(u)

]
(where Qs−1 = Γ(s)Qs−1). Using this in conjunction with (3) gives

lim
ε→0

f ′(ε) sinh ε = − cs
Γ(s)

.

Hence, (2) is satisfied by setting

cs =
Γ(s)

2π
.

p. 76: Equation (4.33)
The factor of (2s− 1) that appears in (4.28) should appear here also:

SH(s;x, x
′) = (2s− 1) lim

y,y′→0
(yy′)−sRH(s; z, z

′).

This is consistent with (4.6).

p. 82: First sentence
The metric is derived in the (r, θ) coordinates.
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Chapter 5

p. 93: Equation (5.29)
The factor of (2s− 1) from (5.24) should appear here also:

SFℓ
(s; θ, θ′) = (2s− 1) lim

r,r′→∞
(ρρ′)−sRFℓ

(s; r, θ, r′, θ′).

Chapter 7

p. 138: Equation (7.35)
The factor of (2s− 1) from (7.30) should appear here also:

SX(s;ω, ω′) = (2s− 1) lim
z→ω,z′→ω′

(ρfρ
′
f)
1−s(ρfρ

′
f)
−sRX(s; z, z′).

p. 141: Proposition 7.15
The formula for Q♯ is missing a factor of (2s− 1), corresponding to the error in (7.35):

Q♯(s; ·, ·) := (2s− 1)
[
(ρfρ

′
f)
−s(ρcρ

′
c)

1−sQ(s; ·, ·)
]∣∣∣

∂X×∂X
.

Chapter 8

p. 145: First paragraph, second sentence
Should read: “Since the residue of the resolvent...”

Chapter 10

p. 220: Equation (10.15)
The term SFj (1− s) ∂sSFj (s) on the first line should have a minus sign.

p. 220: Equation (10.16)
This equation should have an ordinary equals sign (not a definition), a finite part is missing on
the left side, and the term SFj (1− s) ∂sSFj (s) should have a minus sign:

FP
ε→0

Aff
ij(s, ε) = − tr

[
Sff
jj(1− s) ∂sS

ff
jj(s)− SFj (1− s) ∂sSFj (s)

]
+

1

2s− 1
tr
[
Sff
jj(s)S

ff
jj(1− s)− IFj

]
.

Chapter 11

p. 249: Definition 11.1
The fact that the integral of the wave operator against a test function has a well-defined 0-
trace should have been justified here. One can deduce this from the functional calculus formula
(11.22). It is also not immediately clear that ΘX defines a distribution on R. For hyperbolic
surfaces this fact becomes from the explicit calculation in Theorem 11.3. In the general case, the
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discrete component Θd is a smooth, exponentially growing function by (11.21). The continuous
component Θc is a tempered distribution by Lemmas 11.6 and 11.7.

p. 258: Theorem 11.4
The fact that the sum over resonances,

u(t) :=
∑

ζ∈RX

e(ζ−
1
2
)|t|,

defines a distribution on R\{0} should be justified. In fact, we can show that tu(t) defines a
distribution on R.

For convenience, let us write the resonances in terms of µ := i(ζ − 1
2). For ϕ ∈ C∞

0 (R), define
the pairing

(tu, ϕ) :=
∑
µ

∫ ∞

−∞
e−iµ|t|tϕ(t) dt.

We can integrate by parts three times using e±iµt = ∓ i
µ∂te

±iµt. There is no O(µ−1) boundary

term at t = 0 because of the extra factor of t, and the O(µ−2) cancels between the integrals over
positive and negative t. We thus have∫ ∞

−∞
e−iµ|t|tϕ(t) dt =

4i

µ3
ϕ′(0)− i

µ3

∫ ∞

−∞
e−iµ|t| sgn(t)

[
3ϕ′′(t) + tϕ(3)(t)

]
dt.

Assuming that suppϕ ∈ [−M,M ] and using the fact that Re ζ < 1, we can thus estimate

|(tu, ϕ)| ≤ CeM/2∥ϕ∥C3

∑
ζ∈RX

1

|ζ − 1
2 |3

.

The sum over ζ is finite by the bound NX(r) = O(r2) from Theorem 9.2. This estimate thus
shows that tu is well defined as a distribution on R.

p. 259: Lemma 11.6
The distribution Θc is not represented by a locally integrable function, as Theorem 11.3 demon-
strates, so the left hand side is more properly written as a distributional pairing (Θc, φ), rather
than an integral.

p. 260: Equations (11.22), (11.24), and (11.26)
The resolvent contribution in all of these formulas should be

RX(12 − iξ)−RX(12 + iξ),

as in (7.23). Thus (11.22) should read:∫ ∞

−∞
φ(t)

[
Πc cos

(
t
√

∆− 1
4

)]
dt

=

∫ ∞

−∞

ξ

2πi

[
RX(12 − iξ)−RX(12 + iξ)

]
φ̂(ξ) dξ.
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Similarly, (11.24) should be∫ ∞

−∞
φ(t)Θc(t) dt =

1

4π

∫ ∞

−∞
φ̂(ξ)ΥX(12 + iξ) dξ

+ lim
a→0

(
0-tr

∫ a

−a

ξ

2πi

[
RX(12 − iξ)−RX(12 + iξ)

]
φ̂(ξ) dξ

)
.

The sign of the ΥX is correct, because of a factor of i2 = −1. Equation (10.26) should be

0-tr

∫ a

−a

ξ

2πi

[
RX(12 − iξ)−RX(12 + iξ)

]
φ̂(ξ) dξ

= FP
ε→0

1

4π

∫ a

−a
A(12 + iξ, ε)φ̂(ξ) dξ.

p. 265: Proof of Theorem 11.4
In the process of preparing the book [74], Dyatlov and Zworski noticed a gap in the proof of the
Poisson formula in Guillopé-Zworski [117], which the version printed here is based on. The issue
is that the taking the Fourier transform of the expression (11.35) term-by-term is justified only
if the sum converges in the topology of S ′. This is not necessarily true. (If it were, then the
proof of Lemma 11.7 would be much simpler.) A corrected version of the argument for the case
of Schrödinger operators in odd dimensions appears in §3.10 of the published version of [74],

S. Dyatlov and M. Zworski, Mathematical Theory of Scattering Resonances,
Graduate Studies in Math., 200, AMS, 2019.

The corrected proof gives a stronger version of the theorem: if (11.19) is multiplied by a factor
of t2, then it holds as a distributional identity on R.

Chapter 14

p. 330: Proof of Proposition 14.6
In the first paragraph, ∂H should be changed to ∂B.

Appendix

p. 426: Equation (A.20)
Missing absolute value in the denominator:(

FP[|x|−1], φ
)
:= FP

ε→0

∫
|x|≥ε

φ(x)

|x|
dx.
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