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p- 17: Lemma 2.12
The end of the proof is potentially confusing, since [p,p’] is not compact in the topology of B.
The point is that every point on the arc [T}z, Tjw] lies in T;D,,. Thus, if these arcs accumulate
on [p,p'], then some compact neighborhood of an interior point of [p,p'] intersects infinitely
many of the copies T;D,,. That is the contradiction with Lemma 2.11.

Also, it should be noted that the restriction the w not be an elliptic fixed point is an artifact of
the proof. In fact, A(T) is the set of limit points of I'w for any w € H. See [Beardon, Thm. 5.3.9]
for the more general proof.

p. 21: Proof of Theorem 2.16

Although Theorem 2.16 is correct as stated, Lemma 2.17 proves only that the existence of a
finite-sided Dirichlet domain implies that the group is finitely generated. To complete the proof,
one must show that the existence of a convex finite-sided fundamental domain implies that all
convex fundamental domains are finite-sided. See Beardon [20, Thm. 10.1.2] for the proof.

p- 23: second paragraph

The claim that “a small neighborhood of p meets exactly two sides of D,,” requires more jus-
tification. One must rule out the possibility that the boundary of D,, contains infinitely many
arcs accumulating at p. For this argument, see Beardon [20, Thm. 9.3.8].
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p- 26: Lemma 2.21 B ~
In part (3) of the statement, there is a tilde missing: O, C N.

p- 29: Proof of Theorem 2.23

In the second-to-last paragraph the statement I'\H; = I';\ H; doesn’t quite make sense, since
I'" does not preserve H;. What is meant here is that if any two points of H; are related by an
element g € I', then in fact g € I}.

p- 44: Proposition 2.39
Should start “Let X be a geometrically finite hyperbolic surface...”

p. 66: Proof of Proposition 4.2
The derivation of ¢s here is sloppy. Although the asymptotic behavior f'(r) ~ —1/2xr is indeed
universal for a Green’s function in two dimensions, the argument given here makes unjustified
assumptions about the behavior of f'(r) as r — 0.
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For the correct computation of ¢g, we note that, by the definition of the resolvent,

(1) o(z0) = /H Rin(s: 20, 2)(2) dg(2),

for ¢ € C§°(H). For convenience, let us use geodesic radial coordinates (r,6) centered at 2o,
and assume that ¢ is radial in these coordinates, i.e., ¢(z) = h(r) for some function h. Then
(1) translates to

h(0) = 27 /Ooo £(r) [

where the primes denote r derivatives. Since Ay is smooth, we can write this as a limit

(B sinhr) — s(1 — s)h] sinh r dr,

sinh r

o0

h(0) = 27 lim f(r) [

e—0 /.

(W sinhr) — s(1 — s)h] sinh r dr.

~ sinhr
Staying away from r = 0 allows us to integrate by parts twice, exploiting the fact that —Af =
s(1 — s)f in this range, to obtain

(2) h(0) =27 ;1_{% [f(e)h'(e) — f'(e)h(e)] sinhe.

The asymptotic behavior of the Legendre function as v — 17 is given by [202, §5(12.23)],

1 I’
(3) Qu-1(u) ~ — gy los(u = 1) +log V2— 5 (s) =7+ 0(u-1),
for s ¢ —Ng, where 7 is Euler’s constant. Since coshr ~ 1 4 12/2 as r — 0, this implies that
logr
flr) ~ —cq T(s)

Since h/(g) = O(g), by the smoothness of ¢, the first term in (2) vanishes.
We can compute the asymptotics of f/(r) from the standard Legendre derivative formula

Qi) __s - [Qu(u) — uQur ()]

du U

(where Qs—1 =I'(s)Qs—1). Using this in conjunction with (3) gives

Cs

I(s)’

lim f/(g) sinhe = —
e—0

Hence, (2) is satisfied by setting

p. 76: Equation (4.33)
The factor of (2s — 1) that appears in (4.28) should appear here also:

Su(s;z,2') = (2s — 1) lim (yy') °Ru(s;z, 7).
y,y'—0

This is consistent with (4.6).

p- 82: First sentence
The metric is derived in the (r, ) coordinates.



p. 93: Equation (5.29)
The factor of (2s — 1) from (5.24) should appear here also:

Sk, (5;0,0) = (2s — 1) lim (pp') °Rp,(s;r,0,7",6").
r,r’—00

p. 138: Equation (7.35)
The factor of (2s — 1) from (7.30) should appear here also:

Sx(s;w, o) = (2s = 1) 1im  (pepf)' " (prpf) "R (s; 2, 2).

li
2w,z —w!

p.- 141: Proposition 7.15
The formula for Q* is missing a factor of (2s — 1), corresponding to the error in (7.35):

Q¥(si) += (25 = ) (o)~ (pepl) Qs -, )|

XXX

p.- 145: First paragraph, second sentence
Should read: “Since the residue of the resolvent...”

Chapter 10

p. 220: Equation (10.15)
The term Sg; (1 — s) 05SF;(s) on the first line should have a minus sign.

p. 220: Equation (10.16)

This equation should have an ordinary equals sign (not a definition), a finite part is missing on
the left side, and the term Sp, (1 — s) 9sSF;(s) should have a minus sign:

FP A (s,e) = —tr [s]ffj(l — 5) 0,5 (s) — Sp, (1 —s) asst(s)}

e—0

1 ff (o Qff

Chapter 11

p. 249: Definition 11.1

The fact that the integral of the wave operator against a test function has a well-defined 0O-
trace should have been justified here. One can deduce this from the functional calculus formula
(11.22). It is also not immediately clear that ©x defines a distribution on R. For hyperbolic
surfaces this fact becomes from the explicit calculation in Theorem 11.3. In the general case, the
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discrete component Q4 is a smooth, exponentially growing function by (11.21). The continuous
component O, is a tempered distribution by Lemmas 11.6 and 11.7.

p.- 258: Theorem 11.4
The fact that the sum over resonances,

(ERX

defines a distribution on R\{0} should be justified. In fact, we can show that tu(t) defines a
distribution on R.

For convenience, let us write the resonances in terms of y :=i({ — 3). For ¢ € C§°(R), define
the pairing

(tu, ) == /_ - et t) dt.

We can integrate by parts three times using et = :Fﬁ'ateii“t. There is no O(u~!) boundary

term at t = 0 because of the extra factor of ¢, and the O(~2) cancels between the integrals over
positive and negative t. We thus have

i

> —1 4 / > —1 //
/_Ooe Wt (t) dt = u—gqs (0) — :ug/—ooe it sen(t) [3¢> (t) +t¢(3)(t)}dt.

Assuming that supp ¢ € [—M, M| and using the fact that Re( < 1, we can thus estimate

1
[(tu, 9)| < CeMPlplles > —

_ 137
CGRX |C 2‘

The sum over ( is finite by the bound Nx(r) = O(r?) from Theorem 9.2. This estimate thus
shows that tu is well defined as a distribution on R.

p- 259: Lemma 11.6

The distribution ©. is not represented by a locally integrable function, as Theorem 11.3 demon-
strates, so the left hand side is more properly written as a distributional pairing (O, ¢), rather
than an integral.

p. 260: Equations (11.22), (11.24), and (11.26)
The resolvent contribution in all of these formulas should be

Rx(3 —1i€) — Rx(3 +1i8),
as in (7.23). Thus (11.22) should read:

/: ©(t) [HC cos(t A— }1)} dt

- [ [rx3-i0 - rxd +i9)] 66 e



Similarly, (11.24) should be

| etweuvin= o [~ oo+ e ag

—0o0 —0o0

wlim (0 [ 5 [Rath 19 - Rx(h+ 9] 000 ).

_g 2mt

The sign of the Yx is correct, because of a factor of i> = —1. Equation (10.26) should be
RS , ] s
otr [ % (Rl — i€) - R+ )] l6) e

o 21
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1
= FP —

PR | AG+i6e)a€) e
p- 265: Proof of Theorem 11.4

In the process of preparing the book [74], Dyatlov and Zworski noticed a gap in the proof of the
Poisson formula in Guillopé-Zworski [117], which the version printed here is based on. The issue
is that the taking the Fourier transform of the expression (11.35) term-by-term is justified only
if the sum converges in the topology of &’. This is not necessarily true. (If it were, then the
proof of Lemma 11.7 would be much simpler.) A corrected version of the argument for the case
of Schrodinger operators in odd dimensions appears in §3.10 of the published version of [74],

S. Dyatlov and M. Zworski, Mathematical Theory of Scattering Resonances,
Graduate Studies in Math., 200, AMS, 2019.

The corrected proof gives a stronger version of the theorem: if (11.19) is multiplied by a factor
of t2, then it holds as a distributional identity on R.

Chapter 14

p- 330: Proof of Proposition 14.6
In the first paragraph, O0H should be changed to JB.

p. 426: Equation (A.20)
Missing absolute value in the denominator:

FP[|z|7Y, ) := FP @dx.
(FP(l| '], ) /M

e—0
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