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CHAPTER I

Introduction

In this dissertation, we study the geometry of secant varieties and their con-

nections to certain tautological bundles on Hilbert schemes of points. The main

theorem, detailed in chapter IV, shows that the first secant variety to a projective

variety embedded by a sufficiently positive line bundle is a normal variety. In par-

ticular, this confirms the vision and completes the results of Vermeire in [30] and

renders unconditional the results in [27], [26], [32], and [31].1

Let

X ⊂ P(H0(X,L)) = Pr

be a smooth variety over an algebraically closed field of characteristic zero, embedded

by the complete linear system corresponding to a very ample line bundle L. We define

the kth secant variety

Σk(X,L) ⊂ Pr

to be the Zariski closure of the union of k-planes intersecting X in k + 1 points

(counting multiplicity) in Pr. We will typically omit the subscript when discussing

the first secant variety. As secant varieties are classical constructions in algebraic

geometry, there has been a great deal of work done in an attempt to understand
1This question of the normality of the secant variety came up in 2001 when a proof was proposed by Vermeire

[30]. However, in 2011, Adam Ginensky and Mohan Kumar pointed out that the proof was erroneous, as explained
in Remark 4 of [27].
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their geometry. Recently, there has been interest in determining defining equations

and syzygies of secant varieties [5] [6] [7] [26] [27] [33], motivated in part by ques-

tions in algebraic statistics [12] [28] and algebraic complexity theory [19] [20]. In

this dissertation, we focus on the singularities of the first secant variety and higher

secant varieties to curves, using the comprehensive geometric description developed

by Bertram [3] and Vermeire [30].

If the embedding line bundle L is not sufficiently positive, the behavior of the

singularities of Σk(X,L) can be quite complicated. For example, the first secant

variety is generally singular along X, but if four points of X lie on a plane, then

three pairs of secant lines will intersect away from X. In some cases this will create

additional singularities at those intersection points on Σ(X,L). In more degenerate

cases, the secant variety may simply fill the whole projective space, e.g. the first

secant variety to any non-linear plane curve. However, if L is sufficiently positive,

we will see that Σ(X,L) will be singular precisely along X. More generally, Σk(X,L)

will be singular precisely along Σk−1(X,L). As L becomes increasingly positive, it

is natural to predict that the singularities of the secant variety will become easier to

control.

We start by stating some concrete special cases of the main theorem. In the case

of curves, normality of the first secant variety only depends on a degree condition:

Corollary A. Let X be a smooth projective curve of genus g and L a line bundle

on X of degree d. If d ≥ 2g + 3, then Σ(X,L) is a normal variety.

Moreover, in the example of canonical curves, we have a stronger result not covered

by the above proposition:

Corollary B. Let X be a curve of genus g which is neither a plane sextic nor a
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four-fold cover of P1. Then Σ(X,ωX), the secant variety of the canonical embedding

of X, is a normal variety.

In particular, the above implies that the first secant variety to a general canonical

curve of genus at least 7 is normal.

More generally, we can also give a positivity condition on embeddings of higher

dimensional varieties to ensure that the first secant variety is normal:

Corollary C. Let X be a smooth projective variety of dimension n. Let A and B

be very ample and nef, respectively, and

L = ωX ⊗A⊗2(n+1) ⊗ B.

Then Σ(X,L) is a normal variety.

Before we state the main theorem, we must define k-very ampleness, a rough

measure of the positivity of a line bundle:

A line bundle L on X is k-very ample if every length k + 1 0-dimensional

subscheme ξ ⊆ X imposes independent conditions on L, i.e.

H0(L)→ H0(L ⊗Oξ)

is surjective.2 In other words, L is 1-very ample if and only if it is very ample, and

for any positive k, L is k-very ample if and only if no length k + 1 0-dimensional

subscheme of X lies on a (k − 1)-plane in P(H0(L)).

Our main result is the following:

Theorem D. Let X be a smooth projective variety, and L a 3-very ample line bundle

on X. Let mx be the ideal sheaf of x ∈ X. Suppose that for all x ∈ X and i > 0, the

natural map

SymiH0(L ⊗m⊗2
x )→ H0(L⊗i ⊗m⊗2i

x )
2Some sources, e.g. [27], [26], [30], and [33], call this property (k + 1)-very ampleness.
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is surjective.3 Then Σ(X,L) is a normal variety.

In chapter IV we prove the above theorem and corollaries.

Higher secant varieties tend to be more complicated. In Chapter IV, we see that

even when restricting our attention to curves, it is significantly more difficult to

control the singularities of the higher secant varieties. This is in part due to the fact

that the singular locus is no longer just the original variety X, but rather the next

lower secant variety, as mentioned above. Though we are unable to prove normality,

we conjecture that it holds given a high enough degree embedding of the curve.

Conjecture E. If X is a smooth projective curve of genus g and L a very ample

line bundle on X such that degL ≥ 2g + 2n+ 1, then Σn(X,L) is a normal variety.

To date, the best evidence toward the conjecture is our theorem below.

Theorem F. Let X be a smooth projective curve, and L a (2n+ 1)-very ample line

bundle on X, where n ≥ 2. Suppose Σn−1(X,L(−2x)) is projectively normal for all

x ∈ X. Then Σn(X,L) is normal along X.

The above theorem shows that the normality along the curve is controlled by

the projective normality of the next lower secant variety. According to a theorem

of Sidman and Vermeire [26], under some hypotheses, the first secant variety is

projectively normal. This leads to the following corollary.

Corollary G. If X is a smooth projective curve of genus g and L a very ample line

bundle on X such that degL ≥ 2g + 5, then Σ2(X,L) is normal along X.

As described above, chapters IV and V are devoted to our results on the nor-

mality of secant varieties. In chapter II, we introduce our main piece of machinery:

3Note that this map is surjective for every i if and only if b∗xL⊗O(−2Ex) (or simply L(−2x) when X is a curve)
is normally generated, where bx is the blow-up map of X at x, and Ex is the corresponding exceptional divisor.
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tautological bundles on Hilbert schemes of points. In chapter III, we give some expo-

sition and examples of secant varieties. We also describe the geometric setup relating

Hilbert schemes to secant varieties that we will use in chapters IV and V.



CHAPTER II

Tautological Bundles on Hilbert schemes

In this entirely expository chapter, we introduce tautological bundles on Hilbert

schemes and state some well-known results and examples. These bundles are the

primary tools that we will use to understand the geometry of secant varieties in

chapter III. Our notation and conventions will be the same as in the introduction.

2.1 The Hilbert scheme of points

2.1.1 Definitions

Let X be a smooth projective variety of dimension m. The Hilbert scheme

of n points on X, denoted X [n], represents the functor of 0-dimensional length n

subschemes of X. As such, there exists a universal family of subschemes, ΦX,n called

the universal subscheme of X [n]. Set theoretically, it is the incidence variety

ΦX,n := {(x, ξ) ∈ X ×X [n] : x ∈ ξ},

or just Φ when the context is clear. Let q and σ be the two projections as shown

below:

Φ
q
��

σ""
X X [n]

.

Note that the fiber of σ over a subscheme ξ ∈ X [n] is isomorphic to the subscheme

ξ itself.

6
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Let X(n) denote the nth symmetric power of X, which parametrizes unordered

n-tuples of points on X. The Hilbert scheme X [n] is equipped with a natural map

called the Hilbert-Chow morphism

ρ : X [n] → X(n).

Set-theoretically the map is obvious; it sends a subscheme to the corresponding 0-

cycle, forgetting the scheme structure. In fact, it is also a morphism of schemes (see,

for example, section 7.1 of [10] for the construction of the morphism). It fits into a

diagram

Xn

��
X [n]

ρ
// X(n)

where the vertical map is the quotient by the Sn-action. Let X
[n]
0 ⊂ X [n] and X

(n)
0 ⊂

X(n) be the open loci parametrizing reduced subschemes and distinct n-tuples of

points, respectively. Note that restricting ρ yields an isomorphism between X
[n]
0 and

X
(n)
0 . Thus,

dimX
[n]
0 = dimX

(n)
0 = dimXn = mn.

Furthermore, consider the open subset X
(n)
∗ ⊂ X(n) consisting of the 0-cycle

supported on at least n − 1 points. Define X
[n]
∗ ⊂ X [n] and Xn

∗ ⊂ Xn to be the

preimages of X
(n)
∗ in the above diagram. Define

Bn
∗ := X [n]

∗ ×X(n)
∗
Xn
∗

so that we have the fiber square

(2.1) Bn
∗

//

��

Xn
∗

��

X
[n]
∗ ρ

// X
(n)
∗

.

The following lemma provides a nice geometric description of Bn
∗ :
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Lemma II.1 ([1] p. 60 and [11] Lemma 4.4). The map

Bn
∗ → Xn

∗

is the blowup along ∆ = {(xi) : xi = xj for some i 6= j} and the map

Bn
∗ → X [n]

∗

is the quotient by the action of the symmetric group Sn.

In general, X [n] is very singular. In fact, it is generally reducible. Even under-

standing the geometry and singularities of the punctual Hilbert scheme, or ρ−1(n ·x)

for any x ∈ X, is an enormous task that is far from complete. However, for small

m and n, the geometry of X [n] is more understandable. In particular, when n ≤ 3

or dimX = m ≤ 2, X [n] is smooth. We will be primarily concerned with the two

simplest cases for the remainder of the dissertation: the case where n = 2 and the

case where m = 1, or X is a curve.

2.1.2 The Hilbert Scheme of two points

Again let X be a variety of dimension m. The length two zero-dimensional sub-

schemes of X come in two types: the reduced subschemes and the subschemes sup-

ported at a single point. Intuitively, we can think of the latter case as the choice

of a point and a direction in the tangent space at that point. In fact, the universal

subscheme of X [2] is

(2.2) Φ = {(x, ξ) ∈ X ×X [2] : x ∈ ξ} ∼= bl∆(X2),

the blowup of X2 along the diagonal.

Moreover, applying lemma II.1, we have the Cartesian square

(2.3) bl∆(X2) //

��

X2

��
X [2] // X(2)
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where the vertical arrows are quotients by the involution, and the horizontal maps

are the natural ones.

The fixed locus of bl∆(X2) under the S2 action is the exceptional locus, which is

a divisor. Thus, the following lemma follows from the classical Chevalley-Shephard-

Todd Theorem (see [4], §5 Theorem 4).

Lemma II.2. If X is a smooth projective variety, then X [2] is smooth as well.

2.1.3 Symmetric powers of curves

When X is a smooth curve, it can be shown that X [n] = X(n) (see, for example,

[10], Proposition 7.3.3). Furthermore, as mentioned above, we have the following

lemma:

Lemma II.3. Let X be a smooth projective curve. Then X(n) is a smooth projective

variety of dimension n.

This is again a classical lemma and has been proved many times over. One method

of proof involves calculating the dimension of the tangent space using deformation

theory. Another reduces to an analytic coordinate open subset of the curve and looks

at Sn-invariant holomorphic functions. (See, for example, [10] Theorem 7.2.3 and [2]

page 18, respectively.)

Just as in the case of the Hilbert scheme of two points, the universal subscheme

of the Hilbert scheme of points on a curve has a nice geometric description. Since

we can think of the points of X(n) as effective divisors of degree n on X, a point of

ΦX,n is of the form (Q,D+Q), where Q ∈ X and D is an effective divisor of degree

n− 1. Thus, we get a canonical isomorphism

ΦX,n

∼=→ X ×X(n−1)
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given by the map

(Q,Q+D) 7→ (Q,D).

The natural map σ : X ×X(n−1) → X(n) is then given by addition of the coordi-

nates. That is,

σ(Q,D) = Q+D.

Example II.4 (X = P1). In the case where X = P1, all divisors of degree n are

linearly equivalent. So, if D is a divisor of degree n and |D| the corresponding linear

system, then

(P1)(n) ∼= |D| ∼= PH0(OP1(n)) ∼= Pn.

2.2 Tautological bundles

In this section, assume that dimX ≤ 2 or n ≤ 3. That is, we want to make sure

that X [n] is smooth and irreducible.

2.2.1 Definition and basic properties

Just as in the previous section, Φ ⊂ X ×X [n] is the universal subscheme of X [n],

and we have the two projection maps below.

Φ
q
��

σ""
X X [n]

Let L be a line bundle on X. Define the sheaf

En,L = σ∗q
∗L,

or just EL when the context is clear. Since σ is flat (all of the fibers are finite and of

the same length), En,L is a locally free sheaf of rank n. The bundle En,L is tautological

in the sense that the fiber of En,L over ξ ∈ X [n] is the global sections of L restricted
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the the corresponding subscheme of X. That is,

fiber of EL over ξ = H0(X,L ⊗Oξ).

Using the projection formula, we can compute the space of global sections of EL:

H0(EL) = H0(q∗L) = H0(L ⊗ q∗OΦ).

Since q is proper with connected fibers (at least in the cases with which we are

concerned), Stein factorization [14] implies that q∗OΦ = OX . Thus

(2.4) H0(EL) = H0(L).

Notice that by pushing forward the map

H0(L)⊗OΦ → q∗L

and composing it with the natural map OX[n] → σ∗OΦ, we get an evaluation map

ev : H0(L)⊗OX[n] → EL.

Over ξ ∈ X [n], the evaluation map on fibers is the restriction

H0(L)→ H0(L|ξ).

Thus, the evaluation map is surjective on every fiber (and therefore surjective) if

and only if every n-tuple of points imposes independent conditions on L. Or, more

precisely:

Lemma II.1. The evaluation map ev : H0(L)⊗OX[n] → EL is surjective if and only

if L is (n− 1)-very ample.

Just as in the last section, we compute the example in which X = P1:
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Example II.2. From example II.4, we recall that (P1)[n] = (P1)(n) ∼= Pn, where we

think of Pn as the space of homogeneous n-forms on P1 up to scaling. Let

L = OP1(b),

where b ≥ n− 1. Then L is (n− 1)-very ample.

We can think of Φ ⊂ P1×Pn as pairs consisting of a point and a homogeneous n-

form on P1 vanishing at that point. Since dim Φ = n, Φ is a divisor on P1×Pn. Let F

be a homogeneous n-form on P1. Then Φ intersects P1×{F} at the n points (counting

multiplicity) along which F vanishes. If P is a point in X, then Φ intersects {P}×Pn

at the homogeneous forms which vanishing along P , i.e. a hyperplane. Thus,

OP1×Pn(Φ) ∼= OP1×Pn(n, 1).

We thus have a short exact sequence on P1 × Pn:

0→ OP1×Pn(−n,−1)→ OP1×Pn → OΦ → 0.

Pulling back L along the projection map P1 × Pn → P1, we get OP1×Pn(b, 0). Thus,

tensoring the above short exact sequence by this pullback yields the short exact

sequence

0→ OP1×Pn(b− n,−1)→ OP1×Pn(b, 0)→ q∗L → 0.

By definition, OP1×Pn(b− n,−1) = OP1(b− n) �OPn(−1). Thus, by base change

and the projection formula, the push-forward of this line bundle along the projection

to the second factor is H0(OP1(b−n))⊗OPn(−1). Using an analogous argument for

the middle term yields the short exact sequence of sheaves on Pn

0→ H0(OP1(b− n))⊗OPn(−1)→ H0(OP1(b))⊗OPn → EL → 0.
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The first map is multiplication by homogeneous n-forms on P1. The second map is

the evaluation map, and thus surjective. (Equivalently, the left term of the previous

short exact sequence has no nonzero higher direct images.) Therefore, the sequence

above is indeed exact, and we have a description of EL as a quotient of decomposable

vector bundles.

Lastly, it follows that the determinant bundle is

det EL ∼= OPn(b− n+ 1).

2.2.2 Maps to Grassmannians

Let L be an (n− 1)-very ample line bundle on X. Denote

G = Gr (n,H0(L)),

the Grassmannian of n-dimensional quotients of H0(L).

The evaluation map

ev : H0(L)⊗OX[n] → En,L

is surjective by (n− 1)-very ampleness. Thus, the maps on fibers are also surjective,

and the evaluation map induces a morphism

φ : X [n] → G,

where each point is sent to the corresponding map on fibers. That is,

φ(ξ) =
(
H0(L) � H0(L⊗Oξ)

)
.

So by the universal property of Grassmannians, the evaluation map is the pullback

of the map to the universal quotient on the Grassmannian:

H0(L)⊗OG → Q→ 0.
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Taking the nth exterior power of both maps, we see that
∧nH0(L)→ det En,L is the

pullback of the map defining the Plücker embedding, and we get the commutative

diagram

X [n] φ //

det En,L &&

G

detQ

��
P (
∧nH0(L))

.

Note that the map φ will be injective when no two length n subschemes determine

the same (n− 1) plane. Thus, as long as L is n-very ample, φ will be injective.



CHAPTER III

Secant varieties

In this chapter, we introduce secant varieties, the primary objects of our focus.

In section 3.1 we give some definitions and discuss a few examples of mathematical

areas in which secant varieties have shown up. In sections 3.2 and 3.3, we discuss the

geometry of secant varieties in terms of tautological bundles, originally described by

Bertram and Vermeire in [3] and [30], respectively.

3.1 Secant Varieties

3.1.1 Introduction to secant varieties

Let L be a very ample line bundle on X so that

X ⊂ P(H0(L)) = Pr,

thinking of the points of P(H0(L)) as the one-dimensional quotients of H0(L). Recall

from the introduction that the kth secant variety to X,

Σk(X,L) ⊂ Pr,

is the Zariski closure of the union of secant k-planes passing through k + 1 distinct

points of X.

In some cases, for instance when k = 1 or X is curve, Σk(X,L) is the union of

the secant and tangent k-planes. However, this will not hold more generally, in part

15
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due to the complicated geometry of the punctual Hilbert scheme. This will become

more clear when we illustrate the connection to Hilbert schemes in the next section.

The secant k-planes are spanned (sometimes in multiple ways) by k + 1 distinct

points of X. Thus

(3.1) dim Σk(X,L) ≤ mk + k,

where m = dimX. When equality holds, we say that Σk(X,L) has the expected

dimension. When equality does not hold, Σk(X,L) is defective . There has been

a great deal of work done in trying to understand defective secant varieties, and

much is still unknown. In fact, it is unknown whether there is a bound on the

deficiency (the difference between the actual and expected dimensions) of secant

varieties. Throughout the rest of the dissertation, we will primarily be concerned

with non-defective secant varieties. In fact, we will impose a stronger condition,

detailed in sections 3.2 and 3.3.

Although secant varieties are classical constructions, and it is always beneficial to

understand the geometry of known examples of algebraic varieties, it may still seem

somewhat arbitrary to study this single family of varieties. However, secant varieties

do in fact appear in many areas of algebraic geometry, some quite unexpected. In

the next few sections, we discuss a few of these applications.

3.1.2 A Whitney-type Embedding Theorem for varieties

Possibly one of the first appearances of secant varieties was in connection with

projection maps. By simply applying the upper bound of the dimension of secant

varieties, we get an almost immediate proof of a Whitney-type embedding theorem

for varieties. The Whitney embedding theorem is a classical result in differential

topology stating that any smooth m-dimensional real manifold can be embedded in
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R2m. An analogous result holds for algebraic varieties:

Theorem III.1 ([25], chapter II, §5.4). Let X be a smooth projective variety of

dimension m. Then there exists an embedding X ↪→ P2m+1.

Proof. Since X is projective, we have an embedding X ⊂ PN , for some N . If N ≤

2m + 1, we are done, so assume N > 2m + 1. Let y ∈ PN\X. The projection map

from y, PN → PN−1 will map X isomorphically onto its image if and only if y is

not on a secant or tangent line; this is because it will be a bijection, but also an

immersion since it won’t collapse any tangent vectors. Since the first secant variety

is the union of the secant and tangent lines of X, this is equivalent to y not lying on

the secant variety. By the inequality (3.1),

dim Σ ≤ 2m+ 1 < N.

Thus, such an y exists, and in fact, a general point of PN will work. The statement

of the theorem follows by induction.

3.1.3 Secant varieties to Segre varieties

As mentioned in the introduction, a motivation for some recent work on secant

varieties is to answer questions in algebraic statistics [12] [28] and algebraic complex-

ity theory [19] [20]. In particular, most of these questions deal with secant varieties

to Segre embeddings.

Recall that a Segre variety is the image of the Segre embedding

s : Pm+1 × Pn+1 → Pmn+1.

More generally (and more intrinsically), given a collection of vector spaces V1, . . . , Vm,

the Segre is given by the natural map

s : P(V1)× · · · × P(Vm)→ P(V1 ⊗ · · · ⊗ Vm).
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The image of the map, the Segre variety, corresponds to the rank 1, or simple, tensors,

up to scaling. Furthermore, the rank two tensors are those which can be written as

a linear combination of two simple tensors. Of course, in the projectivization, these

correspond to points along the secant line connecting the corresponding points on

the Segre variety. More generally, the rank k tensors correspond to points on secant

(k − 1)-planes.

However, we have to be a bit careful. Just like the union of the secant (k − 1)-

planes, the variety of rank k tensors is generally not Zariski closed when the Segre

variety is the product of at least three projective spaces. A tensor has border rank

k if it is the limit of rank k tensors but is not the limit of rank k − 1 tensors. This

definition thus leads to the following well-known fact:

Lemma III.2. The kth secant variety of the image of P(V1)×· · ·×P(Vm) under the

Segre embedding is equal to the locus of tensors in P(V1 ⊗ · · · ⊗ Vm) of border rank

at most k + 1.

3.1.4 Secant varieties to Veronese varieties

Another example that is related to the previous one is the Veronese embedding

and secant varieties to Veronese varieties. Recall that a Veronese embedding is the

embedding of Pm into a larger projective space by a the complete linear system of

OPm(n). In other words, it is the natural map

v : P(V )→ P(SymdV ).

The image of the map is the Veronese variety. We can think of the elements of SymdV

as homogenous degree d polynomials. The Veronese variety then corresponds to rank

1 polynomials, i.e. those that can be written as the dth power of a linear form. Just

as in the case of Segre varieties, we can thus describe the kth secant variety of the
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Veronese variety as the closure of rank n degree d polynomials.

Lemma III.3. The kth secant variety of the image of P(V ) under the Veronese

embedding is equal to the locus of homogeneous degree d polynomials of border rank

at most k + 1. That is, limits of polynomials of the form

Ld1 + Ld2 + · · ·+ Ldk+1,

where each Li is linear.

The first nontrivial example is, naturally, the twisted cubic.

Example III.4. Let X = P1, and L = OP1(3). The complete linear system corre-

sponding to L embeds P1 into P3 as the twisted cubic. As pointed out previously,

O(3) is 3-very ample. That is, no length 3 subscheme of X is collinear in P3. This is

the same as saying that two secant or tangent lines will never meet off X. (We will go

into more depth about this idea in the next section.) Thus, Σ(X,L) is not defective,

so, since dimX = 3, Σ(X,L)X = P3. More over, every point in Σ(X,L)\X = P3\X

lies on a unique tangent or secant line.

What does this mean in terms of homogeneous polynomials? It means that every

degree 3 homogeneous polynomial in two variables that is not already the power of

a linear form can be written uniquely in the form L3
1 + L3

2, where each Li is linear.

In general, questions about whether a point is contained in a secant variety can

be very difficult. In fact, there is a famous open question called Waring’s problems

for polynomials [17]: if F is a homogeneous polynomial of degree d, what is the

minimum k so that

F = Ld1 + Ld2 + · · ·+ Ldk?

Of course, from the above exposition, this is equivalent to asking which secant variety

of a Veronese variety a given point is on.
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3.1.5 Application to vector bundle stability

One of the most surprising applications of secant varieties is to the stability of

vector bundles on curves. This application is due to Bertram [3].

First we recall some definitions. Let X be a smooth projective curve. Let E be a

vector bundle on X of rank r. The degree of E is the degree of the determinant, or

top exterior power, of E , which is a line bundle. That is,

deg E = deg(det E).

The slope of E is

µ(E) =
deg(E)

r
.

E is stable (respectively semistable) if for every quotient vector bundle E � F ,

µ(E) < µ(F) (respectively µ(E) ≤ µ(F)).

The moduli space Mr,L of semistable bundles of rank r and determinant L is a

very widely studied object. In fact, according to a well-known result of Mumford

[23], Mr,L is a projective variety.

In this example, we will be concerned with rank 2 vector bundles. Let L be a

very ample line bundle and ω the canonical line bundle of X. The extension group

Ext1(L, ωX) parametrizes short exact sequences of the form

0→ OX → E → B → 0,

where B = L ⊗ ω∗X and E is a rank two vector bundle. Let b = degB.

By Serre duality,

Ext1(L, ωX) ∼= H0(L)∗.

Thus, since L is very ample, we have an embedding

X ↪→ P(Ext1(L, ωX)).
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Note that scaling an element of Ext1(L, ωX) by a constant does not affect the rank

two vector bundle in the corresponding short exact sequence; it merely alters the

maps. Thus, each point of the projective space P(Ext1(L, ωX)) corresponds to some

rank 2 vector bundle. In order to get a rational map φL : P(Ext1(L, ωX)) → M2,L,

we need to show that a general vector bundle in Ext1(L, ωX) is semistable.

Let

(∗) : 0→ OX → E → B → 0

be a class in Ext1(L, ωX). Let M be a line bundle on X of minimum degree such

that there is a quotient E �M. Then we have the following diagram.

0 // OX // E //

����

B // 0

M

Of course, degM ≤ b = degB, so the composite map OX → M must be nonzero.

Otherwise, E →M would factor through B. Let s be the section of M obtained by

this construction. The section s corresponds to a specific effective divisor in |M|.

Call this divisor D. By inspection of the isomorphism Ext1(L, ωX) ∼= H0(L)∗, one

can show that the point corresponding to (*) in the projective space lies on the span

of the points of D. This means that the “maximally unstable” bundles, i.e. those

destabilized by a line bundle of degree one, correspond to points along the image of

X in the projective space. The “second most unstable” bundles correspond to points

that lie on the first secant variety Σ(X,L), and so on.

Furthermore, the unstable bundles in P(Ext1(L, ωX)) are those which correspond

to points on the span of fewer than b/2 points. Let b′ = bb/2c. Then the unstable
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bundles are those those which correspond to points on Σb′−1(X,L). Notice that

dim Σb′−1(X,L) = 2(b′ − 1) + 1 = 2b′ − 1 =


b− 1 b even

b− 2 b odd

.

By the Riemann-Roch theorem,

dimP(H0(L)∗) ≥ degL − g = b+ (2g − 2)− g = b+ g − 2,

which is greater than the dimension of Ext1(L, ωX)) as long as the genus g is at least

2 (or at least 1 when b is odd). Thus, in these cases, φL is in fact a rational map to

M2,L, as desired.

3.2 Geometry of the first secant variety

In this section, we describe the geometric connection between Hilbert schemes

of two points and the first secant variety, detailed in the case of curves in [3], and

extended to higher dimensions in [30]. This will be the geometric setup for chapter

IV.

3.2.1 Geometric setup

Let L be a very ample line bundle on a smooth variety X and

X ↪→ P(H0(L)) = Pr

the corresponding embedding, again treating the points of P(H0(L)) as the one

dimensional quotients of H0(L).

Recall that X [2] is smooth, and its universal subscheme is the incidence variety

(3.2) Φ = {(x, ξ) ∈ X ×X [2] : x ∈ ξ} ∼= bl∆(X ×X),
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the blowup of X ×X along the diagonal. Moreover, we have the Cartesian square

(3.3) bl∆(X ×X) //

��

X ×X
��

X [2] // Sym2X

where the vertical arrows are quotients by the involution, and the horizontal maps are

the natural ones. Note that whenX is a curve, the horizontal maps are isomorphisms.

Let q and σ be the two projections as shown below:

Φ
q
��

σ""
X X [2]

.

Recall the tautological vector bundle

EL = σ∗q
∗L.

Since L is very ample, the map

H0(L)⊗OX[2] → EL

is surjective and induces a morphism

f : P(EL)→ Pr.

We can think of the points of P(EL) as pairs (ξ,H0(L ⊗ Oξ) � Q), where Q is a

one-dimensional quotient, and ξ is a point of X [2]. Thus,

(3.4) f(ξ,H0(L ⊗Oξ) � Q) = (H0(L) � Q) ∈ Pr.

Notice that the image of f is Σ(X,L), since the surjections in the image are precisely

those which factor through H0(L ⊗Oξ) for some ξ ∈ X [2].



24

3.2.2 Resolution of singularities of Σ(X,L)

Let

t : P(EL) � Σ(X,L)

be f with its target restricted.

The following lemma is adapted from [3] in the case of curves and [30] for higher

dimensions.

Lemma III.1. Suppose L is 3-very ample. Then t : P(EL)→ Σ(X,L) is an isomor-

phism away from t−1(X). In particular, t is a resolution of singularities.

Proof. For clarity, we first show that t is a bijection away from t−1(X), which follows

nearly immediately from the 3-very ampleness of L:

Given a length two 0-dimensional subscheme ξ, points of the form (ξ,H0(L ⊗

Oξ) � Q) ∈ P(EL) map bijectively to the secant line spanned by ξ. Since L is 3-very

ample, no two distinct length two subschemes will correspond to the same secant

line. Thus, the only way for t not to be a bijection away from t−1(X) would be for

two secant lines of X to intersect away from X. This would cause four points of X

to lie on a plane in Pr, which contradicts the 3-very ampleness of L.

In order to show that t is actually an isomorphism away from t−1(X), we need

to check that it is an immersion. This follows in the curve case from Lemma 1.4

of [3], and in the higher dimensional case from Theorem 3.9 of [30]. In the former,

Bertram proves that it is an immersion directly. In the latter, Vermeire shows that

P(EL) is isomorphic to the blowup of Σ(X,L) along X, which clearly implies what

we need.

For our purposes, it will be useful to also understand t−1(X). Looking at (3.4),
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we see that

t−1(X) = f−1(X) = {(ξ,H0(L ⊗Oξ) � H0(L ⊗Ox) : x ∈ ξ},

which is set-theoretically equal to Φ (defined in (3.2)). In fact, a lemma of Vermeire

implies that it is actually an isomorphism:

Lemma III.2 ([30], Lemma 3.8). The scheme-theoretic inverse image t−1(X) is

isomorphic to bl∆(X ×X).

From now on, we will refer to t−1(X) as simply Φ. Notice that t
∣∣
Φ

= q, and for

x ∈ X, the fiber is

Fx := t−1(x) = {ξ : x ∈ ξ} ∼= blx(X),

which is simply X when X is a curve.1

Let

π : P(EL)→ X [2]

be the projection map. Notice that π
∣∣
Φ

= σ. Furthermore, π
∣∣
Fx

is an isomorphism,

as Fx is a section over π(Fx). When the context is clear, we will refer to π(Fx), the

points of X [2] whose corresponding subschemes contain x, as simply Fx.

3.2.3 Useful diagrams

To summarize, we have the following two commutative diagrams, to which we will

refer back in chapter IV:

(3.5) Fx ∼= blx(X) �
� //

����

Φ ∼= bl∆(X2) �
� //

q
����

P(EL)

t����

f

## ##
{x} � � // X �

� // Σ(X,L) �
� // Pr

1All of the arguments for the remainder of this section and chapter IV go through in the case of curves by replacing
Ex with x. From now on, this will be assumed.
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and

(3.6) Fx
� � //

∼=
��

Φ �
� //

σ����

P(EL)

{{{{
Fx
� � // X [2]

.

Since t is a resolution of singularities, and hence a birational map from a normal

variety, our strategy for showing Σ(X,L) is normal is to show t∗OP(EL) = OΣ(X,L) by

exploiting the geometry of Φ and Fx.

3.3 Geometry of higher secant varieties to curves

In this section, we set up the parallel story of the geometry of the higher secant

varieties of curves. Though at some level, the framework is very similar to the

previous section, the geometry of higher secant varieties of a curve is substantially

more complicated than the geometry of the first secant of a higher dimensional

variety. In fact, our main theorem, detailed in chapter IV, only holds in the latter

case. As such, we treat the two cases separately. We will use the material from

this section in chapter V when we give some lemmas and conjectures toward the

normality of higher secant varieties to curves. The material in this section is also

based on Bertram’s paper [3].

3.3.1 Geometric setup

Let X be a smooth projective curve of genus g, and L an n-very ample line bundle

embedding X into P(H0(L)) = Pr. Recall that in this case, X [n+1] is smooth, and

X [n+1] = X(n+1). It’s universal subscheme is

Φ = ΦX,n+1

∼=→ X ×X(n),
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and as before we have the two maps

X ×X(n)

q

xx
σ
''

X X(n+1)

.

The map q is the projection, and σ takes the sum of the two factors.

Recall that the vector bundle En+1,L = σ∗q
∗L has rank n+1. By n-very ampleness,

the evaluation map

H0(L)⊗OX(n+1) → En+1,L

is surjective and again induces a morphism

f : P(En+1,L)→ Pr.

Notice that the fiber over a subscheme ξ ∈ X(n+1) is sent by f to the n-plane spanned

by ξ. Thus, the image of f is Σn(X,L).

3.3.2 Resolution of singularities of Σn(X,L)

As in the previous section, let t : P(En+1,L) � Σn(X,L) be equal to f with its

target restricted.2 Again, t is a resolution of singularities, with slightly stronger

hypotheses than in the case of the first secant variety.

This lemma is adapted from [3].

Lemma III.1. Suppose L is (2n + 1)-very ample. Then t : P(En+1,L) → Σn(X,L)

is an isomorphism away from t−1(Σn−1(X,L)). In particular, t is a resolution of

singularities.

Proof. First we show that t is a bijection away from t−1(Σn−1(X,L)). Given a degree

n + 1 divisor ξ of X, points of the form (ξ,H0(L ⊗ Oξ) � Q) ∈ P(En+1,L) are sent

2We recognize the slight abuse of notation, since we also named the analogous maps in the previous section f
and t. This is to avoid excess notation. However, there should be no confusion since we are treating the two cases
entirely separately.
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bijectively, via t, to the n-plane spanned by ξ. This follows from n-very ampleness.

Thus, we just need to show that if the n-planes spanned by two different divisors

meet, they meet along the smaller secant varieties.

Let ξ 6= ξ′ be two degree n+ 1 divisors, spanning the n-planes H and H ′, respec-

tively. Their intersection

Z = ξ ∩ ξ′

has degree m, where 0 ≤ m ≤ n. Since L is certainly (m−1)-very ample, Z spans an

(m−1)-plane, `. We will show that H and H ′ don’t meet away from `. The union of

ξ and ξ′ has degree 2n+ 2−m ≤ 2n+ 2. Thus, since L is (2n+ 1−m)-very ample,

H and H ′ span a 2n+ 1−m dimensional space, which means that there intersection

has dimension exactly m− 1. Thus,

H ∩H ′ = ` ⊂ Σm−1(X,L) ⊆ Σn−1(X,L).

The fact that t is an immersion away from t−1(Σn−1(X,L)) follows from Lemma 1.4

of [3], and we are done.

It follows from this lemma that Σn(X,L) is smooth away from Σn−1(X,L). How-

ever, it is important to note that one can show it is singular at every point of

Σn−1(X,L).

Now that we have this resolution of singularities, it will be useful to get a better

understanding of the exceptional locus. The exceptional locus itself, t−1(Σn−1(X,L)),

is singular and quite complicated. In fact, the intersection with each fiber of P(En+1,L)

is the union of n + 1 (n − 1)-planes, counting multiplicity. However, the preimage

of X is more readily understandable. Thinking as points of P(En+1,L) as pairs of a

subscheme and a one dimensional quotient, we have

t−1(X) = f−1(X) = {(ξ,H0(L ⊗Oξ) � H0(L ⊗Ox)) : x ∈ ξ}.
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Just as in the previous section, this is set-theoretically equal to the incidence variety

Φ ∼= X ×X(n). By the discussion in Section 1 of [3], this is actually an isomorphism.

That is,

t−1(X) ∼= X ×X(n).

As such, we will from now on refer to t−1(X) as Φ.

Notice that t
∣∣
Φ

= q, the projection onto the first factor. Thus, for x ∈ X, the

fiber is

Fx := t−1(x) = q−1(x) = {x} ×X(n) ∼= X(n).

Let

π : P(En+1,L)→ X(n+1)

be the projection map. Then, analogous to the previous section, π
∣∣
Φ

= σ, the

addition map, and π
∣∣
Fx

is an isomorphism, as Fx is a section over π(Fx), the locus

of divisors that contain x. Again, we may abuse notation and refer to π(Fx) as Fx

when the context is clear.

Of course, Fx isn’t the only kind of fiber over a singular point. Let y ∈ Σn−1(X,L)

be a point in the singular locus, but not in X. Let m be the minimum number so

that y ∈ Σm−1(X,L). Then there is a unique degree m divisor D such that y lies

in the (m− 1)-plane spanned by D. Let H0(L⊗OD) � Qy be the one dimensional

quotient corresponding to y. Then we have

Fy,D := t−1(y) = {(ξ,H0(L⊗Oξ) � Qy) : ξ ⊃ D} ∼= {ξ ∈ X(n+1) : D ⊂ ξ} ∼= X(n+1−m).

3.3.3 More useful diagrams

For completeness and clarity, we will reproduce the diagrams from the previous

section, identical in notation, but very different in geometry as we saw above:
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(3.7) Fx ∼= {x} ×X(n) � � //

����

Φ ∼= X ×X(n) � � //

q
����

P(En+1,L)

t����

f

$$ $$
{x} � � // X �

� // Σn(X,L) �
� // Pr

and

(3.8) Fx ∼= {x} ×X(n) � � //

∼=
��

Φ �
� //

σ����

P(En+1,L)

xxxx
Fx ∼= X(n) � � // X(n+1)

.

We will refer back to these diagrams in chapter V.



CHAPTER IV

Normality of the first secant variety

In this chapter, we present our results about the first secant variety, following the

geometric setup in section 3.2. In the first section, we prove the main theorem. In

section 4.2, we prove some corollaries that help illustrate the power of the theorem.

In the last section of this chapter, we discuss a few theorems and conjectures of

Sidman and Vermeire that use the normality of secant varieties as a hypothesis.

This chapter is taken from our paper [29].

4.1 Proof of the main theorem

In this section, we give the proof of Theorem D, which we have restated below:

Theorem D. Let X be a smooth projective variety, and L a 3-very ample line bundle

on X. Let mx be the ideal sheaf of x ∈ X. Suppose that for all x ∈ X and i > 0, the

natural map

SymiH0(L ⊗m⊗2
x )→ H0(L⊗i ⊗m⊗2i

x )

is surjective.1 Then Σ(X,L) is a normal variety.
1Note that this map is surjective for every i if and only if b∗xL⊗O(−2Ex) (or simply L(−2x) when X is a curve)

is normally generated, where bx is the blow-up map of X at x, and Ex is the corresponding exceptional divisor.

31



32

4.1.1 Preliminary lemmas

We begin by observing that the normality of the secant variety Σ(X,L) is con-

trolled by the geometry of the conormal bundle to Fx. Recall that

Fx = t−1(x) ∼= blxX,

where x ∈ X and

t : P(EL)→ Σ(X,L)

is the resolution of singularities.

Lemma IV.1. Let L be a 3-very ample line bundle on X. Let x ∈ X, and let αx,k

be the natural map

αx,k : Symk(T ∗xPr)→ H0(SymkN∗Fx/P(EL)).

If αx,k is surjective for all k > 0 and all x ∈ X, then Σ(X,L) is a normal variety.

Proof. We have the following natural maps of sheaves:

OPr

��

// // OΣ(X,L)
J j

ww
t∗OP(EL)

.

As pointed out at the end of section 3.2, if t∗OP(EL) = OΣ(X,L), then Σ(X,L) is

normal. So we need to show OΣ(X,L) → t∗OP(EL) is surjective. Thus, by the above

diagram, it suffices to show OPr → t∗OP(EL) is surjective.

The map OPr → t∗OP(EL) is surjective if and only if the completion of the map

is surjective at every point x ∈ Σ(X,L). However, we only need to check this for

x ∈ X, since P(EL) is smooth, and t is an isomorphism away from t−1(X) by Lemma

III.1.
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Let

Ix = the ideal sheaf of Fx ⊆ P(EL)

and

mx = the ideal sheaf of x ∈ Pr.

Then by the theorem on formal functions (see [15] Theorem 11.1), we need to show

that the map

Ψx : lim
←−

(
OPr/mk

x

)
→ lim
←−

(
H0
(
OP(EL)/Ikx

))
is surjective for each x ∈ X.

Consider the following diagram:

(4.1)

0 //mk
x/m

k+1
x

//

αx,k��

OPr/mk+1
x

a //

Ψx,k+1��

OPr/mk
x

//

Ψx,k��

0

0 // H0
(
Ikx/Ik+1

x

)
// H0

(
OP(EL)/Ik+1

x

) b // H0
(
OP(EL)/Ikx

) c // H1
(
Ikx/Ik+1

x

)
// · · ·

.

Note that we have canonical isomorphisms

mk
x/m

k+1
x
∼= Symk(T ∗xPr)

and

Ikx/Ik+1
x
∼= SymkN∗Fx/P(EL).

We claim that it suffices to show all the vertical maps are surjective for all k:

Assume the vertical maps are surjective. Then the snake lemma says that

ker Ψx,k+1 → ker Ψx,k

is surjective for all k. In particular, the inverse system (ker Ψx,k) satisfies the Mittag-

Leffler condition (see II.9 of [15]). Thus, by Prop II.9.1(b) of [15], Ψx is surjective.

Thus, we are reduced to showing that the vertical arrows are surjections.
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We claim that if the left vertical arrow αx,k is surjective for all k, then Ψx,k is

surjective for all k. We show this by induction.

The base case is k = 1: Consider the map

Ψx,1 : OPr/mx → H0
(
OP(EL)/Ix

)
= H0(OFx).

Since Fx is reduced and irreducible, h0(OFx) = 1, and since Ψx,1 is certainly nonzero,

it must be surjective.

Now assume Ψx,k is surjective. Then, looking back at (4.1), the composition

Ψx,k ◦ a is surjective. Thus, by commutativity, b ◦ Ψx,k+1 is surjective. Therefore, c

must be the zero map, so that the bottom sequence of maps between global sections

is actually short exact. Thus, by the five lemma, the center vertical map Ψx,k+1 is

surjective. Thus, only the left vertical map αx,k needs to be surjective in order to

guarantee the normality of Σ(X,L), as desired.

For the remainder of the section, we will focus on finding the conditions under

which αx,k is surjective. The next lemma will help us better understand the target

space. Recall that n is the dimension of X.

Lemma IV.2. Suppose L is 3-very ample. Then for all x ∈ X,

N∗Fx/P(EL)
∼= O⊕nFx

⊕ (b∗xL(−2Ex)),

where bx is the blow-up map of X at x, and Ex is the corresponding exceptional

divisor.

Proof. Since Fx is a section over its image π(Fx), we have the following short exact

sequence:

(4.2) 0→ TP(EL)/X[2]

∣∣
Fx
→ NFx/P(EL) → NFx/X[2] → 0.
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First we will try to understand the left term, TP(EL)/X[2]

∣∣
Fx

by looking at the

relative Euler sequence

(4.3) 0→ OP(EL) → π∗EL∗ ⊗OP(EL)(1)→ TP(EL)/X[2] → 0.

Since TP(EL)/X[2] is a line bundle, taking determinants yields

TP(EL)/X[2]
∼= det(π∗EL∗)⊗OP(EL)(2) ∼= (π∗ det EL)∗ ⊗OP(EL)(2).

So

TP(EL)/X[2]

∣∣
Fx

∼= (π∗ det EL)∗
∣∣
Fx
⊗OP(EL)(2)

∣∣
Fx

∼= det EL∗
∣∣
Fx
⊗OP(EL)(2)

∣∣
Fx
.

To calculate OP(EL)(2)
∣∣
Fx

, consider the diagram (3.5). First note that by con-

struction of the map f : P(EL)→ Pr via maps of vector bundles, it follows that the

pullback of the tautological bundle is also the tautological bundle. That is,

f ∗OPr(1) ∼= OP(EL)(1).

Thus, OP(EL)(1)
∣∣
Fx

is isomorphic to the pullback of OPr(1)
∣∣
x
∼= Ox to Fx. So

OP(EL)(1)
∣∣
Fx

∼= OFx .

Thus,

TP(EL)/X[2]

∣∣
Fx

∼= det EL∗
∣∣
Fx
,

so the next step is to understand the restriction of EL to Fx.

Consider the diagram

(4.4) σ−1(Fx)
� � i //

σ

��

Φ

σ
��

Fx
� �

j
// X [2]

.
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We have temporarily named the inclusion maps so that we can easily refer to them.

Note that σ−1(Fx) is two copies of Fx intersecting along Ex. Since the above is a

Cartesian square and σ is flat and finite, base change yields

EL
∣∣
Fx

= j∗σ∗q
∗L ∼= σ∗i

∗q∗L.

If we think of Φ as bl∆(X×X), then q is the blowup morphism followed by projection

to the first factor. Thus, i∗q∗L is isomorphic to OFx when restricted to one reducible

component, and b∗xL when restricted to the other. Thus, pushing forward, we have

a natural map

(4.5) EL
∣∣
Fx

∼= σ∗i
∗q∗L → OFx ⊕ b∗xL,

which is an injection that drops rank along Ex.

As an aside, it is useful to recall that the fiber of EL
∣∣
Fx

over a point ξ ∈ Fx is

H0(X,L ⊗ Oξ), where ξ is some length two subscheme of X which contains x. So

over generic ξ, the map (4.5) on fibers is the sum of restrictions

H0(X,L⊗Oξ)→ H0(X,L⊗Ox)⊕H0(X,L⊗Oy),

where {x, y} = Supp(ξ).

Since the vector bundles in (4.5) have the same rank, taking determinants yields

det EL
∣∣
Fx

∼= b∗xL(−Ex),

which means

TP(EL)/X[2]

∣∣
Fx

∼= b∗xL∗(Ex).

We can now rewrite (4.2) as

0→ b∗xL∗(Ex)→ NFx/P(EL) → NFx/X[2] → 0
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and turn our attention to NFx/X[2] . The map induced by σ on normal bundles

NFx/Φ → NFx/X[2] is an isomorphism away from the ramification locus, which in-

tersects Fx in Ex. Thus,

detNFx/X[2]
∼= (detNFx/Φ)(Ex).

Now q : Φ → X is a smooth map of which Fx is a fiber, so NFx/Φ is isomorphic to

the pullback of Nx/X . Thus,

NFx/Φ
∼= OnFx

,

which means that

detNFx/X[2]
∼= OFx(Ex).

Looking back at our short exact sequence, this means that

detNFx/P(EL)
∼= b∗xL∗(2Ex).

Now consider the following short exact sequence on normal bundles, again involv-

ing NFx/P(EL):

(4.6) 0→ NFx/Φ → NFx/P(EL) → NΦ/P(EL)

∣∣
Fx
→ 0.

We have already established that the left term is the trivial bundle of rank n. Since

Φ ⊂ P(EL) has codimension one, NΦ/P(EL)

∣∣
Fx

must be a line bundle. Thus, taking

determinants, we obtain

NΦ/P(EL)

∣∣
Fx

∼= detNFx/P(EL)
∼= b∗xL∗(2Ex).

We take the dual and rewrite (4.6) as

0→ b∗xL(−2Ex)→ N∗Fx/P(EL) → OnFx
→ 0.



38

Our final goal is to show that the above sequence splits. Since the right term is

trivial, this is the same as showing that the map on global sections

H0
(
N∗Fx/P(EL)

)
→ H0

(
N∗Fx/Φ

)
is a surjection. Consider the commutative diagram

T ∗xPr // //

αx,1
��

T ∗xX

��

H0
(
N∗Fx/P(EL)

)
// H0

(
N∗Fx/Φ

)
.

As mentioned earlier,

NFx/Φ
∼= T ∗xX ⊗OFx .

Thus, the right vertical map is an isomorphism, so the bottom horizontal map must

be a surjection, as desired. Therefore, the desired sequence splits, which completes

the proof.

Now we return to showing that αx,k is surjective. In the case k = 1, it is actually

an isomorphism, which follows from a straight-forward geometric argument.

Lemma IV.3. Suppose L is 3-very ample. Then

αx,1 : T ∗xPr → H0
(
N∗Fx/P(EL)

)
is an isomorphism for all x ∈ X.

Proof. First we show αx,1 is injective. Let w ∈ T ∗xPr be a nonzero covector. Call the

kernel hyperplane in the tangent space H ⊂ Pr. Since X ∈ Pr is non-degenerate, we

can pick some y ∈ X such that y /∈ H. Define ` to be the secant line through x and

y. Now define

˜̀ := f−1(`) ⊂ P(EL).
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Note that ˜̀ is all points in P(EL) in the fiber over the subscheme x+ y ∈ X [2]. That

is,

˜̀= π−1(x+ y).

Thus, ˜̀ intersects Fx ∼= blx(X) at the point corresponding to y, i.e. at the point

(x+ y,H0(L ⊗Ox+y)→ H0(L ⊗Ox)) ∈ P(EL). Call this point Py.

Consider the commutative diagram of tangent spaces

TPy
˜̀ ∼= //
� _

��

Tx`� _

��
TPyP(EL)

df // TxPr

,

where the top horizontal map is an isomorphism since f is an isomorphism on ˜̀. Let

v ∈ TPy
˜̀ be a nonzero vector. Looking the above diagram, df(v) is nonzero and sits

inside Tx`. Thus, since ` is not contained in H, we know that

〈f ∗w, v〉Py = 〈w, df(v)〉x 6= 0,

which means that f ∗w 6= 0.

Notice that the pullback map T ∗xPr → T ∗Py
P(EL) factors through H0(N∗Fx/P(EL)) as

follows:

T ∗xPr
f∗ //

αx,1
��

T ∗Py
P(EL)

H0
(
N∗Fx/P(EL)

)
restr.// H0

(
N∗Fx/P(EL)

∣∣
Py

)?�

OO

Thus, since f ∗w 6= 0, we know αx,1(w) 6= 0. Thus, αx,1 is injective.

Now to show that αx,1 is an isomorphism, we show that T ∗xPr and H0
(
N∗Fx/P(EL)

)
have the same dimension.

First of all,

dimT ∗xPr = r = h0(L)− 1.
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Next, by Lemma IV.2,

h0
(
N∗Fx/P(EL)

)
= h0(OnFx

) + h0(b∗xL(−2Ex)).

Of course, h0(OnFx
) = n. To calculate h0(b∗xL(−2Ex)), consider the natural short

exact sequence

0→ OFx(−2Ex)→ OFx → O2Ex → 0.

Tensoring by b∗xL and taking cohomology yields

0→ H0(b∗xL(−2Ex))→ H0(b∗xL)→ H0(b∗xL ⊗O2Ex)→ · · · .

Pushing forward, the second map on global sections is equal to the map

H0(L)→ H0(L ⊗O/m2
x),

which is surjective by very ampleness of L. Thus,

h0(b∗xL(−2Ex)) = h0(L)− h0(L ⊗O/m2
x) = h0(L)− (n+ 1).

So

h0
(
N∗Fx/P(EL)

)
= n+ h0(L)− n− 1 = h0(L)− 1 = dimT ∗xPr,

as desired, which completes the proof.

4.1.2 The proof

Now we prove the main theorem by showing that the higher αx,k are surjective.

Proof of Theorem D. By Lemma IV.1, showing that

αx,k : Symk(T ∗xPr)→ H0(SymkN∗Fx/P(EL))

is surjective will prove the theorem.
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Notice that we can build αx,k from αx,1 as follows:

Symk(T ∗xPr)
Symkαx,1//

αx,k

''

SymkH0(N∗Fx/P(EL))

��

H0(SymkN∗Fx/P(EL))

,

where the vertical map is the natural one. By Lemma IV.3, αx,1 is an isomorphism,

so the induced map Symkαx,1 must be as well. Thus, αx,k is surjective if and only if

Symk(H0(N∗Fx/P(EL)))→ H0(SymkN∗Fx/P(EL))

is surjective.

By Lemma IV.2,

Symk
(
H0(N∗Fx/P(EL))

) ∼= Symk
(
H0(OFx)⊕n ⊕H0(b∗xL(−2Ex))

)
and

H0
(
SymkN∗Fx/P(EL)

) ∼= H0
(
Symk

(
O⊕nFx

⊕ (b∗xL(−2Ex))
))
.

By construction of the map,

Symk(H0(N∗Fx/P(EL)))→ H0(SymkN∗Fx/P(EL))

decomposes as the sum of maps of the form

SymiH0(b∗xL(−2Ex))→ H0
(
(b∗xL(−2Ex))

⊗i) .
These maps are surjective for all i if and only if b∗xL(−2Ex) is normally generated,

which is equivalent to hypothesis (1) of the theorem. Thus,

Symk(H0(N∗Fx/P(EL)))→ H0(SymkN∗Fx/P(EL))

is surjective, and we are done.
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4.2 Examples and Corollaries

This section is devoted to proving the corollaries from the introduction. These

corollaries help show the strength of the theorem, as they are more immediately

applicable than the rather abstract hypotheses of the main theorem.

4.2.1 Degree condition on line bundles of curves

Corollary A. Let X be a smooth projective curve of genus g and L a line bundle

on X of degree d. If d ≥ 2g + 3, then Σ(X,L) is a normal variety.

Proof. Let D be an effective divisor on X of degree 4. Then both L and L(−D)

have degree greater than 2g− 2, so they are both non-special. Thus, Riemann-Roch

implies that

h0(L(−D)) = h0(L)− 4.

Thus, L is 3-very ample.

Let x ∈ X. Then

degL(−2x) ≥ 2g + 1.

A classical result of Castelnuovo, Mattuck [22], and Mumford [24] states that line

bundles on curves with degree at least 2g + 1 are normally generated, which means

the maps in the hypothesis of the theorem are surjective, as desired.

4.2.2 Canonical curves

Next, we prove the corollary involving canonical curves. Note that this example

is not covered by Corollary A.

Corollary B. Let X be a curve of genus g with Clifford index Cliff(X) ≥ 3. Then

Σ(X,ωX) is a normal variety.
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Proof. Let c = Cliff(X). The following classification is given in [9]:

c = 0 ⇐⇒ X is hyperelliptic.

c = 1 ⇐⇒ X has a g1
3 or X is a plane quintic.

c = 2 ⇐⇒ X has a g1
4 or X is a plane sextic.

Thus, c ≥ 3 if and only if X has no g1
4 and is not a plane sextic.

First we will show that ωX is 3-very ample. Let D be an effective divisor of degree

4. Then Riemann-Roch gives

h0(ωX(−D)) = h0(D) + (2g − 2− 4)− g + 1 = h0(ωX) + h0(D)− 5.

Thus, ωX is 3-very ample if and only if h0(D) = 1, i.e. X has no g1
4, which follows

from the hypothesis.

Next we show that ωX(−2x) is normally generated. A theorem of Green and

Lazarfeld (Theorem 1 in [13]) states that if L is very ample, and

degL ≥ 2g + 1− 2h1(L)− c,

then L is normally generated. In the situation of interest, degωX(−2x) = 2g − 4,

and by Serre duality h1(ωX(−2x)) = h0(2x), which is 1 since X is not hyperelliptic.

Thus, the Green-Lazarsfeld theorem implies ωX(−2x) is normally generated as long

as c ≥ 3.

In the above proof, the lack of a g1
4 was equivalent to 3-very ampleness. However,

c ≥ 3 merely implies the normal generation condition. This raises the question: do

we need the hypothesis that X is not a plane sextic, or does the lack of a g1
4 suffice?

In fact, if X is a plane sextic, ω(−2x) is not normally generated. This follows from a

proof analogous to one due to Konno (Lemma 2.2 of [18]), setting D = ωX(−2x) and

k = 2. We won’t restate the proof, as it is nearly identical to Konno’s proof except
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we replace ` with a line tangent to X at x and blow up twice at the intersection

of X and ` rather than once. Thus, to satisfy the hypotheses of our theorem, it is

necessary that X is not a plane sextic. However, our theorem only gives sufficient

conditions for normality, so we ask the following question:

Question IV.1. If X is a smooth plane sextic, is Σ(X,ωX) a normal variety?

4.2.3 Main corollary

Now we turn to our final corollary, which deals with higher dimensional X.

Corollary C. Let X be a smooth projective variety of dimension n. Let A and B

be very ample and nef, respectively, and

L = ωX ⊗A⊗2(n+1) ⊗ B.

Then Σ(X,L) is a normal variety.

Proof. When n = 1, L already has sufficiently high degree so that it satisfies the

hypothesis of Corollary A. We will assume from now on that n is at least 2.

The line bundle ωX ⊗A⊗k ⊗ B is very ample when k ≥ n+ 2 (see [21], Example

1.8.23). On the other hand, the product of an i-very ample line bundle with a j-very

ample line bundle will be (i+ j)-very ample [16]. Thus ωX ⊗A⊗k ⊗B will be 3-very

ample for k ≥ n+ 4. For n ≥ 2, we have 2(n+ 1) ≥ n+ 4, so L = ωX ⊗A⊗2(n+1)⊗B

must be 3-very ample.

Now we check the remaining hypotheses on X̃ = blxX. First we calculate

b∗xL(−2Ex).

b∗xL = b∗xωX ⊗ b∗xA⊗2(n+1) ⊗ b∗xB

= ωX̃ ⊗OX̃(−(n− 1)E)⊗ b∗xA⊗2(n+1) ⊗ b∗xB.
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Thus, we get

b∗xL(−2Ex) = ωX̃ ⊗ b
∗
xA⊗2(n+1) ⊗OX̃(−(n+ 1)Ex)⊗ b∗xB

= ωX̃ ⊗ (b∗xA⊗2(−Ex))⊗(n+1) ⊗ b∗xB.

A is very ample, so it is the restriction of O(1) of the corresponding projective space

Pm. Consider the blowup P̃m of Pm at x ∈ X. It is well-known that 2H̃ − E is very

ample, where H̃ is the pullback of a hyperplane. Thus,

OX̃(2H̃ − E) = b∗xA⊗2(−Ex)

is also very ample. Furthermore, the pullback of a nef line bundle is again nef.

A theorem of Ein and Lazarsfeld in [8] states that line bundles of the form ω ⊗

M⊗(n+1) ⊗N , where M is very ample and N is nef, are normally generated. Thus,

b∗xL(−2Ex) is normally generated, so Σ(X,L) must be normal.

4.3 Further applications of the main theorem

After Vermeire proposed a proof of the normality of secant varieties in [30], he

and Sidman used the purported normality to prove theorems and pose conjectures

about the first secant variety of curves in [27], [26], [32], [31]. Our main theorem

thus confirms these results, eliminating the hypotheses requiring the secant varieties

to be normal. In this section, we state some of the most powerful of these theorems.

In [26], Sidman and Vermeire show that for high degree line bundles on curves,

Σ(X,L) is arithmetically Cohen-Macaulay:

Theorem IV.1 ([26], Theorem 1.1). If C ⊂ Pn is a smooth curve of genus g and

degree d ≥ 2g + 3, then its secant variety Σ(X,L) is ACM.

Also in [26], Sidman and Vermeire give a result on the vanishing of higher coho-

mology on Σ(X,L):
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Theorem IV.2 ([26], Theorem 3.2). If C ⊂ Pn is a smooth curve of genus g and

degree d ≥ 2g + 3, then H i(Σ(X,L),OΣ(X,L)(k)) = 0 for k < 0 and i = 1, 2.

Finally, in [32], Vermeire gives a regularity bound for the secant variety:

Theorem IV.3 ([32], Corollary 11). If C ⊂ Pn is a smooth curve of genus g and

degree d ≥ 2g + 3, then Σ(X,L) is 5-regular.

Note that in the above theorems, the hypothesis d ≥ 2g + 3 implies normality of

the secant variety of a curve (cf. Corollary A), thus we do not need to impose any

additional hypotheses.



CHAPTER V

Higher secant varieties to curves

In this chapter, we present our results about the normality of higher secant va-

rieties to curves, following the geometric setup in section 3.3. In this situation, we

do not yet have a proof of normality, but we present some preliminary lemmas and

conjectures. This story parallels that of the previous chapter, which will help make

it more obvious when we reach an obstacle.

5.1 Toward a proof of normality

5.1.1 Preliminary results

Let X be a smooth projective curve, and L a (2n+ 1)-very ample line bundle on

X. Just as in the previous chapter, the normality of the secant variety Σn(X,L) of

X is controlled by the geometry of the conormal bundle to the fiber Fx. Recall that

Fx = t−1(x) ∼= X(n),

where

t : P(En+1,L)→ Σn(X,L)

is the resolution of singularities, and Pr = P(H0(L)).

Lemma V.1. Let L be a (2n+1)-very ample line bundle on X. Let x ∈ X, and let

47
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αx,k,n be the natural map

αx,k,n : Symk(T ∗xPr)→ H0(SymkN∗Fx/P(En+1,L)).

If αx,k,n is surjective for all k > 0 and all x ∈ X, then Σn(X,L) is normal along X.

This lemma is analogous to Lemma IV.1. In fact, the notation that we have

chosen makes the proof identical when we replace EL with En+1,L.

As we pointed out in Section 3.3, Σn(X,L) is not singular only along X. Rather,

it is singular along Σn−1(X,L). However, the above lemma actually does hold for

points y ∈ Σn−1(X,L)\X as well, replacing Fx with Fy,D, the fiber over y. We will

not state the lemma in full detail since, as we will soon see, this is the direction in

which we face our main obstacles.

Now we will focus on understanding the conormal bundle N∗Fx/P(En+1,L).

Lemma V.2. Suppose L is (2n+ 1)-very ample. Then for all x ∈ X,

N∗Fx/P(En+1,L)
∼= OFx ⊕ En,L(−2x).

Proof. The fiber Fx is a section over its image π(Fx), so we have the following short

exact sequence:

(5.1) 0→ TP(En+1,L)/X(n+1)

∣∣
Fx
→ NFx/P(En+1,L) → NFx/X(n+1) → 0.

First we calculate the left term in the above sequence, TP(En+1,L)/X(n)

∣∣
Fx

. Consider

the relative Euler sequence

0→ OP(En+1,L) → π∗E∗n+1,L ⊗OP(En+1,L)(1)→ TP(En+1,L)/X(n+1) → 0.

The vector bundle TP(En+1,L)/X(n+1) has rank n. Taking determinants, we get

det(TP(En+1,L)/X(n+1)) ∼= det
(
π∗E∗n+1,L

)
⊗OP(En+1,L)(n+ 1)

∼= (π∗ det En+1,L)∗ ⊗OP(En+1,L)(n+ 1).
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So restricting to Fx yields

det(TP(En+1,L)/X(n+1))
∣∣
Fx

∼= (π∗ det En+1,L)∗
∣∣
Fx
⊗OP(En+1,L)(n+ 1)

∣∣
Fx

∼= det E∗n+1,L
∣∣
Fx
⊗OP(En+1,L)(n+ 1)

∣∣
Fx
.

For the same reason as described in the proof of Lemma IV.2,

OP(En+1,L)(1)
∣∣
Fx

∼= OFx .

Thus,

det(TP(En+1,L)/X(n+1))
∣∣
Fx

∼= det E∗n+1,L
∣∣
Fx
.

Now we need to understand the restriction of En+1,L to Fx. Consider the fiber

square

Φ×X(n+1) Fx
� � i //

σ

��

Φ ∼= X ×X(n)

σ

��
Fx = x+X(n) � �

j
// X(n+1)

.

The key observation here is that

Φ×X(n+1) Fx = {(x,D) : D ∈ X(n)}
⋃
{(y, x+ C) : y ∈ X,C ∈ X(n−1)}

∼=
(
{x} ×X(n)

)⋃(
X × (x+X(n−1))

)
∼= X(n)

⋃
(X ×X(n−1)).

From this fiber square, we get a natural map

En+1,L
∣∣
Fx
→ OFx ⊕ En,L

which is an injection that drops rank along the divisor

F ′x := 2x+X(n−1) ⊂ x+X(n) = Fx ⊂ X(n+1).
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(For more details regarding how we get this map via base change, see the proof of

Lemma IV.2.) Both the source and target vector bundles have rank n + 1. Thus,

taking determinants gives

det(En+1,L
∣∣
Fx

) ∼= det(En,L)⊗O(−F ′x),

which means

det(TP(En+1,L)/X(n+1))
∣∣
Fx

∼= det(E∗n,L)⊗O(F ′x).

Now we turn our attention to the line bundle NFx/X(n+1) . The map induced by σ

on normal bundles NFx/Φ → NFx/X(n+1) is an isomorphism away from the ramification

locus, which intersects Fx in F ′x. Thus,

NFx/X(n+1)
∼= NFx/Φ(F ′x).

Recall that Fx sits inside Φ as follows:

Fx = {x} ×X(n) ⊂ X ×X(n) = Φ.

That is, it is just a fiber over the projection onto the first factor. Thus,

NFx/Φ
∼= OFx

and

NFx/X(n+1)
∼= OFx(F ′x).

Looking back at the short exact sequence (5.1), taking determinants gives us

detNFx/P(En+1,L)
∼= det(TP(En+1,L)/X(n+1))

∣∣
Fx
⊗NFx/X(n+1)

∼= det(E∗n,L)⊗OFx(2F ′x)

Now consider the following short exact sequence on normal bundles:

(5.2) 0→ NFx/Φ → NFx/P(En+1,L) → NΦ/P(En+1,L)

∣∣
Fx
→ 0
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We have already established that the left term is a trivial line bundle. Thus,

detNΦ/P(En+1,L)

∣∣
Fx

∼= detNFx/P(En+1,L)
∼= det(E∗n,L)⊗OFx(2F ′x).

By lemma 1.3(b) of [3],

P(N∗Φ/P(En+1,L)

∣∣
Fx

) ∼= P(En,L(−2x)).

This means that

N∗Φ/P(En+1,L)

∣∣
Fx

∼= En,L(−2x) ⊗M,

whereM is some line bundle. However, we know the determinant of N∗Φ/P(En+1,L)

∣∣
Fx

,

so we can figure out what M is.

Consider the following short exact sequence on X:

0→ L(−2x)→ L→ O2x → 0.

The maps q and σ are flat and finite, respectively, so pulling back the sequence along

q and pushing it forward along σ preserves exactness:

0→ En,L(−2x) → En,L → O2F ′x → 0.

So we get

det En,L(−2x) = det(En,L)⊗OFx(−2F ′x)
∼= N∗Φ/P(En+1,L)

∣∣
Fx
.

Thus, M is trivial, so

N∗Φ/P(En+1,L)

∣∣
Fx

∼= En,L(−2x).

We can now rewrite the dual of the short exact sequence (5.2) as

0→ En,L(−2x) → N∗Fx/P(En+1,L) → OFx → 0.

All that is left is to show this sequence splits. This follows by the same argument as

in the last paragraph of the proof of Lemma IV.2, and we are done.
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Now we return to our main goal, which is to show αx,k,n is surjective for all k. In

the case k = 1, it is an isomorphism. To show this, we follow the same argument as

in the proof of Lemma IV.3.

Lemma V.3. Suppose L is (2n+1)-very ample. Then

αx,1,n : T ∗xPr → H0
(
N∗Fx/P(En+1,L)

)
is an isomorphism for all x ∈ X.

Proof. First we show αx,1,n is injective. Let w ∈ T ∗xPr be a nonzero covector. Call

the kernel hyperplane in the tangent space H ⊂ Pr. Since X ∈ Pr is non-degenerate,

we can pick some y ∈ X such that y /∈ H. Define ` to be the secant line through

x and y, and define J to be the unique secant n-plane determined by the divisor

x+ ny.

Now define

J̃ := f−1(J) ⊂ P(En+1,L).

Note that J̃ is all points in P(En+1,L) in the fiber over the subscheme x+ny ∈ X(n+1).

That is,

J̃ = π−1(x+ ny).

Define

˜̀ := f−1(`) ∩ J̃ .

Note that ˜̀ is the line connecting the preimages of x and y in J̃ . More explicitly, J̃

connects the points

(
x+ ny,H0(L ⊗Ox+ny

)
→ H0(L ⊗Ox))

and (
x+ ny,H0(L ⊗Ox+ny)→ H0(L ⊗Oy)

)
.
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By construction, f maps J̃ and ˜̀ isomorphically onto their images. Let P be the

preimage of x in J̃ and ˜̀. That is,

P =
(
x+ ny,H0(L ⊗Ox+ny

)
→ H0(L ⊗Ox)) ∈ P(En+1,L).

Consider the commutative diagram of tangent spaces

TP ˜̀ ∼= //
� _

��

Tx`� _

��
TPP(En+1,L)

df // TxPr

,

where the top horizontal map is an isomorphism since f is an isomorphism on ˜̀. Let

v ∈ TP ˜̀ be a nonzero vector. Looking the above diagram, df(v) is nonzero and sits

inside Tx`. Thus, since ` is not contained in H (because y /∈ H), we know that

〈f ∗w, v〉P = 〈w, df(v)〉x 6= 0,

which means that f ∗w 6= 0.

Notice that the pullback map T ∗xPr → T ∗PP(En+1,L) factors throughH0(N∗Fx/P(En+1,L))

as follows:

T ∗xPr
f∗ //

αx,1,n
��

T ∗PP(En+1,L)

H0
(
N∗Fx/P(En+1,L)

)
restr.// H0

(
N∗Fx/P(En+1,L)

∣∣
P

)?�

OO

Thus, since f ∗w 6= 0, we know αx,1,n(w) 6= 0. Thus, αx,1,n is injective.

Now to show that αx,1,n is an isomorphism, we show that T ∗xPr andH0
(
N∗Fx/P(En+1,L)

)
have the same dimension.

First of all,

dimT ∗xPr = r = h0(L)− 1.

Next, by Lemma V.2,

h0
(
N∗Fx/P(En+1,L)

)
= h0(OFx) + h0(En,L(−2x)).
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Of course, h0(OFx) = 1. By (2.4) and very ampleness of L,

h0(En,L(−2x)) = h0(L(−2x)) = h0(L)− 2.

Thus,

h0
(
N∗Fx/P(En+1,L)

)
= h0(L)− 1 = dimT ∗xPr,

as desired, and we are done.

The only remaining thing we need in order for Σn(X,L) to be normal along X is

for the higher αx,k,n to be surjective. It turns out that the hypothesis we need is that

a lower secant variety be projectively normal, as described in this next theorem.

Theorem F. Let X be a smooth projective curve, and L a (2n+ 1)-very ample line

bundle on X, where n ≥ 2. Suppose Σn−1(X,L(−2x)) is projectively normal for all

x ∈ X. Then Σn(X,L) is normal along X.

Proof. By Lemma V.1, showing that

αx,k,n : Symk(T ∗xPr)→ H0(SymkN∗Fx/P(En+1,L))

is surjective will prove the lemma.

Notice that we can build αx,k,n from αx,1,n as follows:

Symk(T ∗xPr)
Symkαx,1,n//

αx,k

&&

SymkH0(N∗Fx/P(En+1,L))

��

H0(SymkN∗Fx/P(En+1,L))

,

where the vertical map is the natural one. By Lemma V.3, αx,1,n is an isomorphism,

so the induced map Symkαx,1,n must be as well. Thus, αx,k,n is surjective if and only

if

Symk(H0(N∗Fx/P(En+1,L)))→ H0(SymkN∗Fx/P(En+1,L))
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is surjective.

By Lemma V.2,

Symk
(
H0(N∗Fx/P(En+1,L))

)
∼= Symk

(
H0(OFx)⊕H0(En,L(−2x))

)
and

H0
(

SymkN∗Fx/P(En+1,L)

)
∼= H0

(
Symk

(
OFx ⊕ En,L(−2x)

))
.

By construction of the map,

Symk(H0(N∗Fx/P(En+1,L)))→ H0(SymkN∗Fx/P(En+1,L))

decomposes as the sum of maps of the form

SymiH0(En,L(−2x))→ H0
(
SymiEn,L(−2x)

)
.

We want to show these maps are surjective for all i.

Now consider the secant variety Σn−1(X,L(−2x)). LetM be the embedding line

bundle. Then the hypothesis of this lemma means the map

SymiH0(M) � H0(M⊗i)

is surjective for all i. Since M is the restriction of OPr , pulling back this map along

f yields the surjective map

SymiH0(OP(En,L(−2x))(1)) � H0(OP(En,L(−2x))(i)).

Recall that if we pushforward O(i) along the projection π : P(En,L(−2x)) → X(n),

we get SymiEn,L(−2x). Thus, we have a natural isomorphism

H0(OP(En,L(−2x))(i))
∼= H0(SymiEn,L(−2x)).

Therefore, the map

SymiH0(En,L(−2x))→ H0
(
SymiEn,L(−2x)

)
is surjective, as desired, and we are done.



56

5.1.2 Corollaries and conjectures

Now the question becomes: when is Σn−1(X,L(−2x)) projectively normal? Ac-

cording to a result of Sidman and Vermeire (Corollary 3.4 of [26]), Σ1(X,B) is pro-

jectively normal as long as deg(B) ≥ 2g+ 3. This immediately leads to the following

corollary.

Corollary G. If X is a smooth projective curve of genus g and L a very ample line

bundle on X such that degL ≥ 2g + 5, then Σ2(X,L) is normal along X.

Note that we do not need to add the condition that L be 5-very ample in the

above, as the degree condition will imply that.

It is unknown whether higher secant varieties are projectively normal. However,

we quote a conjecture of Vermeire below.

Conjecture V.4 ([32], Conjecture 5). Let C ⊂ Pn be an embedding of a smooth

curve of genus g by a line bundle B. If degB ≥ 2g+ 1 + 2k, k ≥ 0, then Σk(C,B) is

projectively normal.

As we have already mentioned, Σn(X,L) is singular along Σn−1(X,L), not just

along X. However, the place that we run into a dead end is calculating the conormal

bundle N∗Fy,D/P(En+1,L), where y ∈ Σn−1(X,L)\X. Intuition tells us that the singu-

larities should be the “worst” along X and get better as we move to higher secant

varieties. Thus, since we have strong evidence that Σn(X,L) is normal along X for

sufficiently high degree L, we combine our intuition with our theorem and Vermeire’s

conjecture to get the following conjecture.

Conjecture E. If X is a smooth projective curve of genus g and L a very ample

line bundle on X such that degL ≥ 2g + 2n+ 1, then Σn(X,L) is a normal variety.
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5.2 Further considerations

As mentioned in previous chapters, the Hilbert scheme X [n] is smooth when n ≤ 3

or dimX ≤ 2. Thus, in these cases, we would also get a resolution of singularities

of the corresponding secant variety. However, as we’ve seen above, higher secant

varieties can get very complicated, even in the simplest case of curves. We conclude

with the following question.

Question V.1. Is Σn(X,L) normal when dimX = 2 or when n = 2?
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