Math 421 Problem Set August 30, 2022

- 1. Let n > 1. Recall that $\mathbb{Z}/n\mathbb{Z}$ is the set of residue classes mod n.
 - (a) Check that multiplication in $\mathbb{Z}/n\mathbb{Z}$ is well-defined; that is, if $\bar{a_1} = \bar{b_1}$ and $\bar{a_2} = \bar{b_2}$, then $\overline{a_1 \cdot a_2} = \overline{b_1 \cdot b_2}$.
 - (b) Show that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication.
 - (c) We define

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid \text{there is } \bar{c} \in \mathbb{Z}/n\mathbb{Z} \text{ such that } \bar{a} \cdot \bar{c} = \bar{1} \}.$$

Check that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group under multiplication. (You can assume that the standard multiplication on \mathbb{Z} is associative.)

- (d) Show that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the collection of residue classes whose representatives are relatively prime to n.
- (e) Write down the multiplication table for $(\mathbb{Z}/12\mathbb{Z})^{\times}$.
- 2. Let $\langle A, *_A \rangle$ and $\langle B, *_B \rangle$ be groups. Define the binary operation * on $A \times B$ by $(a, b) * (c, d) = (a *_A c, b *_B d)$.
 - (a) Show that $\langle A \times B, * \rangle$ is a group. The group $A \times B$ is called the *direct product* of A and B.
 - (b) Show that $A \times B$ is abelian if and only if A and B are abelian.
- 3. Let G be a group, and $a, b \in \mathbb{Z}$. Let $x \in G$
 - (a) Show $(x^a)^{-1} = x^{-a}$
 - (b) Show $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.