Math 421 Problem Set September 8, 2022

- 1. (a) If G is a group, and $a, b \in G$ commute, show that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. (Do this first by induction for positive n.)
 - (b) Show that the order of a cycle in S_n is equal to its length.
 - (c) Show that the order of an element in S_n is equal to the least common multiple of the lengths of the cycles in its cycle decomposition.
 - (d) For each element in S_3 , write its cycle decomposition and compute its order.
- 2. Let G be a group and $H \subset G$ be some subset of G. Show that $H \leq G$ (i.e. H is a subgroup of G) if and only if H is nonempty and for all $a, b \in H$, $a^{-1} \in H$ and $ab \in H$.