Math 421 Problem Set September 1, 2022

- 1. Look back at the multiplication table you made for $(\mathbb{Z}/12\mathbb{Z})^{\times}$ on the last problem set. Calculate the order of each element.
- 2. Let G be a group and $x \in G$.
 - (a) Show that $|x| = |x^{-1}|$.
 - (b) If x has finite order n, show that the elements $1, x, x^2, \dots, x^{n-1}$ are all distinct.
 - (c) If x has infinite order, show that the elements x^n , $n \in \mathbb{Z}$ are all distinct.
- 3. Let G be a group.
 - (a) For $x \in G$, show that $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup of G. This is called the **cyclic subgroup** of G generated by x.
 - (b) Find all the cyclic subgroups of D_8 .
 - (c) A group G is **cyclic** if G is a cyclic subgroup of itself; i.e. if $G = \{x^n \mid n \in \mathbb{Z}\}$ for some $x \in G$. Check that $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z} are cyclic.
 - (d) Is $(\mathbb{Z}/n\mathbb{Z})^{\times}$ always cyclic?