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Abstract

Although image restoration methods based on spectral filtering techniques are very efficient,
they can be applied only to problems with fairly simple spatially invariant blurring operators.
Iterative methods, however, are much more flexible; they can be very efficient for spatially invari-
ant as well as spatially variant blurs, they can incorporate a variety of regularization techniques
and boundary conditions, and they can more easily incorporate additional constraints, such as
nonnegativity. This chapter describes a variety of iterative methods used in image restoration,
with a particular emphasis on efficiency, convergence behavior, and implementation. Discussion
of MATLAB software implementing the methods is also provided.
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1 Introduction

Image restoration is the process of reconstructing an approximation of an image from blurred
and noisy measurements. In this chapter, we use the standard linear image formation model,

g(x, y) =

∫
R2

k(x, y; ξ, η)f(ξ, η)dξdη + η(x, y) , (1)

where f is the true object, g is the observed image, and η is additive noise. The kernel func-
tion k models the blurring operation, and is called the point spread function (PSF). In many
applications the kernel satisfies k(x, y; ξ, η) = k(x− ξ, y− η), and the blur is said to be spatially
invariant, otherwise the blur is said to be spatially variant. In the case of spatially invariant
blurs, the integration in equation (1) is a convolution operation, and thus the image restoration
problem is often referred to as deconvolution.

Typically we do not have a precise function definition for g because the observed image is
recorded digitally, and thus is known only at discrete values. Moreover, in many cases it is
necessary to estimate k from measured data. Therefore, it is natural to consider the digital
image restoration problem

g = Kftrue + η , (2)

which is obtained from equation (1) by discretizing the functions and approximating integration
with a quadrature rule. If the images are assumed to have m×n pixels, then K ∈ Rmn×mn and
g,f ,η ∈ Rmn. Two aspects of the digital image restoration problem (2) make it computationally
challenging:

• In most image restoration problems involving images with m × n pixels, K is an N ×N
matrix with N = mn = number of pixels in the image1. For example, if m = n = 103,
then K is a 106 × 106 matrix. Thus, the problem is large-scale. Fortunately the matrix
K can usually be represented by a compact data structure, such as when the blur is
spatially invariant. Approximation techniques for more complicated spatially variant blurs
include geometrical coordinate transformations [62, 83, 87], sectioning [37, 97, 98], PSF
interpolation [14, 33, 67, 68], and in some cases a sparse matrix data structure can be used
for K [32, 80].

• The matrix K is severely ill-conditioned, with singular values decaying to, and clustering
at 0. This means that regularization is needed to avoid computing solutions that are
corrupted by noise. Regularization can be enforced through well-known techniques such
as Wiener filtering and Tikhonov regularization, and/or by incorporating constraints such
as nonnegativity [31, 47, 48, 102].

Efficient implementation of an image restoration algorithm is obtained by exploiting structure
of the matrixK. For example, if the blur is spatially invariant and we assume periodic boundary
conditions, then K is a block circulant matrix with circulant blocks. In this case many image
restoration algorithms, such as the Wiener filter, can be implemented in the Fourier domain,
using fast Fourier transforms (FFT) [1, 49]. If spatial invariance is a poor approximation of
the actual blur, or periodic boundary conditions are poor approximations to the actual true
image scene, then the quality of reconstructions will be limited. Moreover, it is not possible to
incorporate additional constraints, such as nonnegativity, into simple filtering methods.

1There are situations, such as multi-frame problems, where K is M ×N with M 6= N . The algorithms discussed
in this chapter are not restricted to square matrices, and can be applied to these situations as well.

3



Iterative image restoration algorithms have many advantages over simple filtering techniques
[10, 59, 102]. Iterative methods can be very efficient for spatially invariant as well as spatially
variant blurs, they can incorporate a variety of regularization techniques and boundary con-
ditions, and can more easily incorporate additional constraints, such as nonnegativity [5, 70].
The cost of an iterative scheme depends on the amount of computation needed per iteration, as
well as on the number of iterations needed to reach a good restoration of the image. Conver-
gence can be accelerated using preconditioning, but if not done carefully, it can lead to erratic
convergence behavior that results in fast convergence to a poor approximate solution. In this
chapter, we describe a variety of iterative methods that can be used for image restoration, and
also describe some preconditioning techniques that can be used to accelerate convergence. We
show that many well-known iterative methods can be viewed as a basic method with a particular
preconditioner. This viewpoint provides a natural mechanism to compare a variety of iterative
methods.

2 Background

In this section, we present the essential background material needed to develop and implement
iterative image restoration methods, focusing on approaches that have the following general
form:

f0 = initial estimate of ftrue

for k = 0, 1, 2, . . .
• fk+1 = computations involving fk, K

and other intermediate quantities
• determine if stopping criteria are satisfied

end

Most well-known iterative methods have this basic form, including conjugate gradient type
schemes, the expectation-maximization method (sometimes referred to as the Richardson-Lucy
method), and many others. Since any one iterative method is not optimal for all image restora-
tion problems, the study of iterative methods is an important and active area of research. The
specific computational operations that are required to update fk+1 at each iteration depend on
the particular iterative scheme being used, but the most intensive part of these computations
usually involves matrix vector products with K and its transpose, K>.

The rest of this section is outlined as follows. In Section 2.1, we provide a brief introduction
to regularization, and in Section 2.2, we discuss efficient approaches to perform matrix-vector
multiplications with K for various types of blurs, including spatially invariant and spatially
variant. In Section 2.3, we describe a general preconditioning approach.

2.1 Regularization

The continuous image formation model (1) is useful for analysis purposes, since it is a classic
example of an ill-posed inverse problem, and a substantial amount of research has been done
to understand the properties of such problems; see, for example [10, 31, 48, 102]. We will not
discuss these theoretical properties in detail, but we do mention that even in the continuous
problem there may not be a unique function f that solves equation (1) and small changes in the
noise η can cause arbitrarily large changes in f [31, 42, 48, 102].
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The discrete problem (2) inherits these properties, which may be summarized as follows.
Define gtrue = Kftrue to be the noise-free blurred image, and let K = UΣV > be the singular
value decomposition of the N × N matrix K. That is, U and V are orthogonal matrices and
Σ is a diagonal matrix with entries satisfying σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. If K arises from
discretizing the integral equation (1), then, assuming the problem is scaled so that σ1 = 1, we
have:

• The singular values, σi, decay to, and cluster at 0, without a significant gap to indicate
numerical rank.

• The components |ui>gtrue|, where ui is the ith column of U , decay on average faster than
the singular values σi. This is referred to as the discrete Picard condition [47].

• The singular vectors vi (i.e., the columns of V ) corresponding to small singular values
tend to have more oscillations than the singular vectors corresponding to large singular
values.

With these properties we can easily see what effect the error term η has on the inverse solution:

finv = K−1g

= K−1(gtrue + η)

= V Σ−1U>(gtrue + η)

=
N∑
i=1

ui
>(gtrue + η)

σi
vi

=
N∑
i=1

ui
>gtrue

σi
vi +

N∑
i=1

ui
>η

σi
vi

= ftrue + error .

From this relation we can see that the high frequency components in the error are highly
magnified by division of small singular values. The computed inverse solution is dominated
by these high frequency components, and is in general a very poor approximation of the true
solution, ftrue.

In order to compute an accurate approximation of ftrue, or at least one that is not horribly
corrupted by noise, the solution process must be modified. This process is usually referred to
as regularization [31, 42, 47, 102]. One class of regularization methods, called filtering, can
be formulated as a modification of the inverse solution [47]. Specifically, a filtered solution is
defined as

ffilt =

N∑
i=1

φi
ui

>g

σi
vi , (3)

where the filter factors, φi, satisfy φi ≈ 1 for large σi, and φi ≈ 0 for small σi. That is,
the large singular value components of the solution are reconstructed, while the components
corresponding to the small singular values are filtered out.

It is sometimes possible to replace the singular value decomposition with the alternative
factorization,

K = QHΛQ ,

where Λ is a diagonal matrix, and QH is the Hermitian (complex conjugate) transpose of Q,
with QHQ = I. We refer to this as a spectral value decomposition; the columns of Q are

5



eigenvectors and the diagonal elements of Λ are the eigenvalues of K. Although every matrix
has an SVD, only normal matrices (i.e., matrices that satisfy K>K = KK>) have a spectral
value decomposition. However, if K has a spectral factorization, then it can be used, in place
of the singular value decomposition, to implement the filtering methods described above. The
advantage is that it is sometimes more computationally convenient to compute a spectral value
decomposition than it is a singular value decomposition; for example in the case of a spatially
invariant blur with periodic boundary conditions, the eigenvalues are obtained by taking a
Fourier transform of the PSF (this is often also referred to as the optical transfer function, or
OTF), the eigenvectors of K are the Fourier vectors, and fast Fourier transforms (FFT) can be
used for operations involvingQ (forward Fourier transform) and QH (inverse Fourier transform)
[1, 49].

Generally we will not distinguish between a singular or spectral value decomposition, and
use the generic acronym SVD to mean methods based on one or the other. We remark that
different choices of filter factors lead to different methods; popular choices are the pseudo-
inverse (or truncated SVD), Tikhonov, and Wiener filters [47, 50, 102]. Although the focus of
this chapter is on problems for which it is not computationally feasible to compute an SVD ofK,
we do consider using SVD approximations to construct preconditioners; this will be discussed
in more detail in Section 2.3.

If it is not computationally feasible to use an SVD based filtering method then it may be
preferable to use a variational form of regularization, which amounts to computing a solution of

min
f

{
‖g −Kf‖22 + λ2J (f)

}
, (4)

where the regularization operator J and the regularization parameter λ must be chosen. The
variational form provides a lot of flexibility. For example, one could include additional con-
straints on the solution, such as nonnegativity, or it may be preferable to replace the least
squares criterion with the Poisson log likelihood function [3, 4, 6]. As with filtering, there are
many choices for the regularization operator, J , such as:

• Tikhonov regularization [42, 95, 94, 96]: J (f) = ‖Lf‖22

• Total variation [24, 84, 102]: J (f) =

∥∥∥∥√(Dhf)
2

+ (Dvf)
2

∥∥∥∥
1

• Sparsity constraints [21, 36, 99]: J (f) = ‖Φf‖1

Tikhonov regularization, which was first proposed and studied extensively in the1960’s and
1970’s [63, 78, 94, 95, 96], is perhaps the most well known approach to regularizing ill-posed
problems. L is typically chosen to be the identity matrix, or a discrete approximation to a
derivative operator, such as the Laplacian. If L = I, then it is not difficult to show that the
resulting variational form of Tikhonov regularization, namely

min
f

{
‖g −Kf‖22 + λ2‖f‖22

}
, (5)

can be written in an equivalent filtering framework by replacing K with its SVD [47].
In the case of total variation regularization, Dh and Dv denote discrete approximations of

horizontal and vertical derivatives of the 2D image f , and the approach extends to 3D images
in an obvious way. Efficient and stable implementation of total variation regularization is a
nontrivial problem; see [24, 102] and the references therein for further details.
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In the case of sparse reconstructions, the matrix Φ represents a basis in which the image, f ,
is sparse. For example, for astronomical images that contain a few bright objects surrounded
by a significant amount of black background, an appropriate choice for Φ might be the identity
matrix. Clearly, the choice of Φ is highly dependent on the structure of the image f . The usage
of sparsity constraints for regularization is currently a very active field of research, with many
open problems [36].

Iterative methods applied directly to the least squares problem

min
f
‖g −Kf‖2

offer yet another choice of enforcing regularization. If the iterative method is applied directly to
this least squares problem then the iteration converges to finv = K−1g, which, as was discussed
above, is typically a poor approximation of ftrue. Fortunately, many iterative methods exhibit
a semi-convergence behavior with respect to the relative error,

‖fk − ftrue‖2
‖ftrue‖2

, (6)

where fk is the approximate solution at the kth iteration. Although this is discussed in more
detail in Section 4, here it is worth mentioning that the term semi-convergence refers to the
property that in the early iterations the relative error begins to decrease and, after some “op-
timal” iteration, the error then begins to increase. By stopping the iteration when the error is
low, we obtain a regularized approximation of the solution. Because the true object, ftrue, is not
known, the relative error (6) cannot be used as a practical measure for determining a stopping
iteration, and alternative approaches, such as methods based on knowledge of the noise (e.g.,
discrepancy principle) must be used.

As was mentioned in the previous paragraph, in the case of iterative regularization, it is
necessary to have a practical approach to determine an appropriate stopping iteration. In fact,
each of the regularization methods discussed above require choosing a regularization parameter.
For filtering methods, one has to decide what is meant by “large” and “small” singular values. In
the variational form, one has to choose the scalar λ, where as for iterative regularization methods
the index where the iteration is terminated plays the role of the regularization parameter. In each
case, it is a nontrivial matter to choose an “optimal” regularization parameter. Although there
are methods (e.g., generalized cross validation [38], discrepancy principle [31], L-curve [47], L-
ribbon [17], and many others [31, 47, 102]) that may be used to estimate the regularization
parameter, it may be necessary to solve the problem for a variety of parameters, and use
knowledge of the application to help decide which solution is best.

We also mention that when the majority of the elements in the image f are zero or near zero,
as may be the case for astronomical or medical images, it may be wise to enforce nonnegativity
constraints on the solution [4, 6, 102]. This requires that each element of the computed solution
f is not negative, which is often written as f ≥ 0. Though these constraints add a level of
difficulty when solving, they can produce results that are more feasible than when nonnegativity
is ignored. Some iterative methods that enforce nonnegativity will be discussed in Section 5.

2.2 Matrix Structures and Matrix-Vector Multiplications

The efficiency of iterative methods depends on the number of iterations needed to compute the
desired solution, as well as on the cost required for each iteration. The computational cost of each
iteration can depend on many factors, but all methods will require matrix-vector multiplication

7



with K, and often also with its transpose K>. Because the size of K is extremely large, an
efficient storage scheme, exploiting structure and sparsity, should be used. In this subsection
we briefly discuss structures that arise most often in image restoration problems.

In most of our discussion, we assume images are represented as vectors, for example by storing
the pixel values in lexicographical order. This is mathematically convenient when describing
algorithms using linear algebra notation. However, we will sometimes need to think of images
as 2-dimensional arrays (i.e., m × n matrices). It will therefore be helpful to have notation
that describes the transformation from image array to vector, and from vector to image array.
Specifically, if F is an m× n image array of pixels, then we use the notation

ν(F ) = f ∈ Rmn

to transform the image array into a vector with mn elements. Similarly, we will use µ(·) to
denote the inverse transformation from a vector to an array,

µ(f) = F ∈ Rm×n .

Of course, f = ν(µ(f)) and F = µ(ν(F )).

2.2.1 Boundary Conditions

Pixels near the edges of a blurred image are likely to have been affected by information outside
the field of view. This situation often causes ringing artifacts in deblurred images. These
ringing artifacts can be reduced by incorporating boundary conditions, which are are used to
approximate the image scene outside the field of view. Boundary conditions can be incorporated
explicitly in the matrix K, but for iterative methods it is usually easier to pad images before
performing the matrix-vector multiplication. Commonly used boundary conditions include:

• Periodic boundary conditions imply that the image repeats itself in all directions.

• Zero boundary conditions imply a black boundary, so that the pixels outside the borders
of the image are zero.

• Replicating boundary conditions repeat the boarder elements outside the field of view.

• Reflective boundary conditions imply that the scene outside the image boundaries is a
mirror image of the scene inside the image boundaries.

Fig. 1 illustrates these choices for boundary conditions with a particular image. There are
many other choices for boundary conditions; see, for example, [34, 88]. We have found that
reflective boundary conditions are often better than either periodic, zero and replicating, and
they are relatively easy to implement. Thus, reflective boundary conditions are the default we
use in our software. However, we also mention work by Reeves [81], which can be implemented
very efficiently if the blur is spatially invariant and the support of the PSF is fairly narrow.
Specifically, the approach decomposes the problem into a sum of two independent restorations,
one uses a standard FFT-based filtering algorithm, while the other reconstructs values associated
with the unknown pixels outside the boundary of the observed image.

2.2.2 Spatially Invariant Blurs

In the case of spatially invariant blurs, the matrix K generally has a Toeplitz structure, but this
can depend on the imposed boundary condition [49]. However, the details are not extremely
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periodic zero replicating reflective

Figure 1: Examples of padding to incorporate boundary conditions. The top row is the image
before padding, and the bottom row shows the result after padding. The red dotted line indicates
the boundary of the image before padding.

important for iterative methods because we need only perform matrix-vector multiplications
with K and K>. Consider the multiplication

Kf .

If the blur is spatially invariant and periodic boundary conditions are used, then this multipli-
cation can be done by simply convolving the PSF (which defines K) with f . If we want to
enforce a different boundary condition, then we simply pad the vector f , as described in the
previous subsection, convolve the PSF with this padded object, and then extract the portion of
the result corresponding to the field of view. Note that this approach to compute the matrix-
vector multiplication requires storing only the PSF, and does not require explicitly constructing
the mn×mn matrix K. The convolution of the PSF and the padded vector can be done very
efficiently using FFTs; see, for example [70]. Matrix-vector multiplications with K> is done
similarly.

2.2.3 Locally Spatially Invariant Blurs

In the case of spatially variant blurs, there is not a single PSF that can be used to represent
the blurring operation; point sources in different locations of the image may result in different
PSFs. In the most general case, there is a different PSF for each pixel in the image. It is not
computationally feasible to construct all of these PSFs, so other approaches to representing K
need to be considered. Here we consider situations where there is a continuous and smooth
variation in the PSF with respect to the position of the point source, such as is shown in Fig. 2.

In this case it may be appropriate to assume that the blur is approximately locally spatially
invariant. Exploiting local spatial invariance was considered in [98, 97]. Here we describe
an approach where K is approximated with interpolation [14, 33, 67, 68, 70]. Specifically, by
partitioning the image into regions, and assuming that a spatially invariant PSF can be obtained
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Figure 2: PSFs for a spatially variant blur that changes smoothly and continuously with respect
to position of points sources.

for each region, the blurring matrix can be approximated by

K ≈
r∑
i=1

KiDi (7)

where Ki is defined by the PSF corresponding to the point source located at the center of the
i-th region and r is the overall number of regions. The masking matrix Di is diagonal, with
D1 + · · ·+Dr = I. In the case of piecewise constant interpolation, the diagonal entries of Di

are equal to one for pixels in region i, and zero otherwise. Higher order interpolation can also
be used, but requires additional computational cost [67, 68].

2.2.4 Sparse Spatially Variant Blurs

If there is more severe spatial variance that cannot be approximated well by the local spatially
invariant model, then it is important to exploit other structure in the problem. In some cases
(we will see a specific example in Section 3.4) it is possible to use a sparse matrix data format,
such as compressed row [29], to represent K. This requires only keeping track of the nonzero
entries and their locations in the matrix K. Efficient multiplications can be done with such
matrices; see, for example [29].

2.2.5 Separable Blurs

In some cases, the horizontal and vertical components of the blur can be separated. In this case,
K can be decomposed as a Kronecker product,

K = Kh ⊗Kv .

If the image has m × n pixels, then Kv ∈ Rm×m represents the vertical component of the
blurring, Kh ∈ Rn×n represents the horizontal component of the blurring, and

Kf = (Kh ⊗Kv)f = ν
(
Kv µ(f)Kh

>)
where we recall that µ(·) transforms a vector to an image array, and ν(·) transforms an image
array to a vector. Usually it is not computationally practical to explicitly construct the full
matrix K, however it is not so difficult to explicitly construct the much smaller matrices Kh and
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Kv, and by exploiting properties of Kronecker products, it is possible to efficiently implement
SVD based filtering methods [49]. Although in most realistic situations the blur is unlikely to
be exactly separable, it is possible to efficiently compute separable approximations of K, which
can be used to construct preconditioners.

2.3 Preconditioning

Preconditioning is a classical approach used in many areas of scientific computing to accelerate
convergence of iterative methods. Much is known about constructing effective preconditioners
for well-posed problems [8, 41, 86]. However, if not done carefully for ill-posed problems, such
as image restoration, preconditioning can lead to erratic convergence behavior that results in
fast convergence to a poor approximate solution. Some work has been done to overcome these
difficulties for problems where the blurring operator is known [45, 46, 72], including for spatially
variant blurs [67, 68, 71], and multi-frame problems [22]. Although there is an additional
cost when using preconditioning, for typical iterative methods the number of iterations can be
reduced dramatically, resulting in a substantial reduction in overall cost of the iterative scheme.
We discuss some of these issues in this section, and describe a general approach to construct
preconditioners for image restoration.

Speed of convergence of iterative methods is typically dictated by certain spectral properties
of the matrix K. Preconditioning refers to a process of modifying the spectral properties of the
matrix to accelerate convergence, and is often presented in the context of solving linear systems
Kf = g. The standard approach to preconditioning is to construct a matrix, R, that satisfies
the following properties:

• It should be relatively inexpensive to construct R.

• It should be relatively inexpensive to solve linear systems of the form Rz = w and R>z =
w.

• The preconditioned system should satisfy K̂ = KR−1 ≈ I (right preconditioning) or

K̂ = R−>K ≈ I (left preconditioning).

Then instead of applying the iterative method to the linear system Kf = g, we apply it to a
modified system K̂f̂ = ĝ, where

Right preconditioning: K̂ = KR−1, f̂ = Rf , ĝ = g

Left preconditioning: K̂ = R−>K, f̂ = f , ĝ = R−>g

One can also use a combination of right and left preconditioning, but for this brief discussion
we focus only on one sided preconditioning.

If the iterative method is applied to the preconditioned system, the most intensive part of the
computation at each iteration is matrix-vector multiplications with K̂ and K̂>, or equivalently,
matrix-vector multiplications with K and K> and linear system solves with R and R>. Thus,
the first two of the aforementioned requirements in constructing a preconditioner are related
to the additional computational costs of preconditioning; constructing R is a one time cost,
where as solving linear systems with matrices R and R> are required at each iteration. The
last requirement determines the speed of convergence; better approximations K̂ ≈ I, usually
imply faster convergence.

Note that if we design a preconditioner such that the singular values of K̂ are clustered
around 1, then K̂ ≈ I. That is, more singular values clustered around one, as well as tighter
clusters, usually implies faster convergence. Although this approach works well for well-posed
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problems, it does not work well for ill-posed problems such as image restoration, unless regu-
larization has already been incorporated into the matrix. For example, if we apply the iterative
method to the Tikhonov regularized least squares problem

min
f

∥∥∥∥[ g0
]
−
[
K
λL

]
f

∥∥∥∥
2

then clustering the singular values of [
K
λL

]
R−1

is the right idea.
However, if the iterative method is applied directly to

min
f
‖g −Kf‖2 ,

as in the case of iterative regularization (recall the discussion in Section 2.1), then clustering all
singular values around 1 will likely lead to very poor reconstructions. Indeed the SVD analysis
outlined in Section 2.1 suggests that the large singular values correspond to signal information we
want to reconstruct, while small singular values correspond to noise information we do not want
to reconstruct. By clustering all singular values around one, the signal and noise information
becomes mixed together, and it is impossible for the iterative method to distinguish between
signal information and noise information. In this situation, we get fast convergence to the (noise
corrupted) inverse solution.

Another difficulty, in the case of left preconditioning, is the risk of changing the statistical
characteristics of the problem. In particular, with left preconditioning, the problem is modified
as:

R−>g = R−>Kf +R−>η .

Thus, if an iterative method (such as maximum likelihood) implicitly assumes particular statis-
tical characteristics of the data and noise, then the left preconditioned system may not continue
to have these properties.

We will describe some specific preconditioning approaches when we begin to introduce partic-
ular iterative methods. As we will see, many well-known iterative methods are simply variations
of the same basic scheme but with different preconditioners.

2.4 MATLAB Notes

Implementation of even the most basic iterative method for image restoration is not trivial,
especially if we want to have the flexibility to use a variety of blurring operators and boundary
conditions. We have developed a MATLAB toolbox to simplify the process of using iterative
methods for image restoration. The software can be found at www.mathcs.emory.edu/~nagy/

RestoreTools, with the original implementation described in [70]. A significant update to this
software has been done while preparing this chapter.

The software uses an object oriented approach to hide the difficult implementation details
from the user. Throughout this chapter we include some information on the important aspects
of the software in case readers wish to test our iterative methods and preconditioning techniques
on their own data. We also provide sample test data with the software; this test data is described
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in Section 3. We omit most of the implementation details, and instead just provide an overview
of the more important tools in the software, and examples on how to use them.

Spatially Invariant Blurs.
For iterative methods, probably the most important object is the psfMatrix, which defines

the matrix K implicitly using a compact data structure. In the case of spatially invariant blurs,
we assume that there is an array containing a PSF and there is a vector containing the row and
column indices of the location of the corresponding point source (i.e., the center of the PSF).
For example, if a 256 × 256 PSF resulted from a point source located at row 128 and column
127, then we would define a vector

>> center = [128, 127];

With this data, the simple MATLAB statement

>> K = psfMatrix(PSF, center);

constructs an object containing information about the blurring operator. Some preprocessing is
done to prepare K for efficient matrix-vector multiplications, and the “∗” operator is overloaded
so that an operation such as g = Kf can be computed with the simple statement:

>> g = K*f;

Operator overloading allows for implementing iterative methods using standard MATLAB lin-
ear algebra operations, such as the matrix-vector multiplication K*f, just as if K was an explicitly
defined matrix.

The above example assumes compatibility between K and f . That is, f can be either an
m × n image array, in which case after multiplication g is also an image of the same size, or
f can be a vectorized form of the image, in which case after multiplication g is also a vector.
We remark that the constructor routine psfMatrix can accept additional input parameters,
including a boundary condition. The default boundary condition is ‘reflective’, which is
typically much better than zero and periodic boundary conditions at reducing ringing effects if
significant details are located near the edges of the observed image.

Locally Spatially Invariant Blurs
For locally spatially invariant blurs, we assume that the data PSF and center are cell arrays

containing PSFs and corresponding point source locations for various regions of the image. The
dimension of the cell arrays are assumed to be the same as the region partitioning of the image.
That is, for example, if the image is partitioned into 6× 6 regions of size k× k each, and a PSF
is taken from each region, then we store all of the PSFs in a 6× 6 cell array. Similarly we store
the coordinates of each point source in a 6× 6 cell array. If these cell arrays are denoted as PSF
and center, then we can use any of the same statements used to construct the psfMatrix, and
to perform matrix-vector multiplications as we used in the spatially invariant case described
above.

We again emphasize that an advantage of using this object oriented approach, with operator
overloading, is that iterative methods developed in the scientific computing community typically
use matrix-vector notation. With our psfMatrix, these iterative methods can be easily used for
image restoration problems.

Sparse Spatially Variant Blurs
In the case of sparse spatially variant blurs, we simply make use of MATLAB’s very efficient

built-in sparse matrix tools. An example of this is given in Section 3.4.

Separable Blurs
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In the case of separable blurs, we have implemented a kronMatrix object that efficiently
works with Kronecker products. In general, we do not expect a blur to be separable, so this
object is mainly used to implement certain preconditioners; this is discussed in more detail in
Section 2.3.

3 Model Problems

In this section, we describe several examples that can be used to test the iterative methods and
preconditioning techniques described in this chapter. These examples include spatially invariant
and spatially variant blurs of the types described in the previous section.

3.1 Spatially Invariant Gaussian Blur

Gaussian PSFs are often used to test image deblurring methods. A general Gaussian PSF is
given by

k(s, t) =
1

2π
√
γ

exp

{
−1

2

[
s t

]
C−1

[
s
t

]}
(8)

where

C =

[
α2

1 ρ2

ρ2 α2
2

]
, and γ = α2

1α
2
2 − ρ4 > 0 .

The shape of the Gaussian PSF depends on the parameters α1, α2 and ρ. If ρ = 0, then

k(s, t) =
1

2πα1α2
exp

{
−1

2

(
s2

α2
1

+
t2

α2
2

)}
and if, additionally, α ≡ α1 = α2, then

k(s, t) =
1

2πα2
exp

{
− 1

2α2

(
s2 + t2

)}
.

Notice that in the simplest case, where ρ = 0 and α1 = α2, the PSF is circularly symmetric and
separable (that is, the blur can be decomposed into a product of two 1-dimensional blurs, one
each for the horizontal and vertical directions). Fig. 3 shows three examples of Gaussian PSFs,
and corresponding blurred images are shown in Fig. 4. The PSFs are displayed using a false
colormap, rather than in grayscale, for better visualization.

We remark that in generating the simulated blurred images shown in Fig. 4, we actually
used a true image with 618× 600 pixels. After convolving a 256× 256 Gaussian PSF with this
image, we cropped the result down to size 256×256. This approach simulates obtaining a finite
dimensional image of an infinite scene, and will allow us to illustrate how the choice of boundary
condition can affect the quality of the restored image.

3.2 Spatially Invariant Atmospheric Turbulence Blur

When imaging objects in space using ground based telescopes, the PSF depends on the wavefront
of incoming light at the telescope’s mirror; if the wavefront function is known, then k is known.
More specifically, k(x, y; ξ, η) = k(x− ξ, y − η), with

k(s, t) =
∣∣∣F−1

{
P (s, t)ei(1−ω(s,t))

}∣∣∣2 =
∣∣∣F−1

{
P (s, t)eiφ(s,t)

}∣∣∣2 , (9)
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Figure 3: Examples of Gaussian PSFs. The top row is a mesh plot of the PSF, and the bottom row
shows how the contours differ for various values of α1, α2 and ρ (a false colormap is used, rather
than grayscale, for better visualization). Images blurred with these PSFs are shown in Fig. 4.
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α1 = α2 = 4, ρ = 0 α1 = 4, α2 = 2, ρ = 0 α1 = 4, α2 = 2, ρ = 2

Figure 4: Examples of blurred images using the Gaussian PSFs shown in Fig. 3. The image in the
top row is the true object, and the bottom row shows the blurred images.

where ω(s, t) is a function that models the shape of the wavefront of incoming light at the
telescope, i =

√
−1, P (s, t) is a characteristic function that models the shape of the telescope

aperture (e.g., a circle or an annulus), F−1 is the 2-dimensional inverse Fourier transform, and
φ(s, t) = 1− ω(s, t) is the phase error, or the deviation from planarity of the wavefront ω.

In the ideal situation, where the atmosphere causes no distortion of the incoming wavefront,
ω(s, t) = 1 and φ(s, t) = 0. In this diffraction limited case,

k0(s, t) =
∣∣F−1 {P (s, t)}

∣∣2
where P (s, t) is the pupil aperture function. Note that if P (s, t) = 1 for all s and t, then
k0(s, t) is a delta function, and (except for noise) there is no distortion in the observed image
g. However, in a realistic situation, P (s, t) = 1 in at most a finite region (e.g., within a circle or
annulus defined by the telescope aperture), and thus it is impossible to obtain a perfect image.
The best result we can hope to obtain is the noise free, diffraction limited image

f0(x, y) =

∫
R2

k0(x− ξ, y − η)f(ξ, η) .

The distortion of the wavefront from atmospheric turbulence depends on many factors, in-
cluding weather, temperature, wavelength, and the diameter of the telescope. For example,
viewing objects directly above the telescope site on a clear night will have significantly better
seeing conditions than looking during daylight hours at objects close to the horizon. Astronomers
often quantify seeing conditions in terms of the ratio d/r0, where d is the diameter of the tele-
scope and r0 is called the Fried parameter, which is related to the wavelength, and provides a

16



statistical description of the level of atmospheric turbulence at a particular site [51]. It is not
essential to understand the precise definitions and characteristics of the Fried parameter, except
that:

• Good seeing conditions correspond to “small” d/r0, such as d/r0 ≈ 10.

• Poor seeing conditions correspond to “large” d/r0, such as as d/r0 ≈ 50.

Fig. 5 shows examples of wavefronts and corresponding PSFs for d/r0 = 10, 30, 50. The wave-
fronts and PSFs are displayed using a false colormap, rather than in grayscale, for better vi-
sualization. Note that the profile of the wavefronts looks similar, but the color bar shows that
there is substantially more fluctuation in the wavefront during poor seeing conditions. Blurring
caused by these PSFs is illustrated in Fig. 6.
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Figure 5: Examples of wavefronts (top row) and PSFs (bottom row) for d/r0 = 10, 30, 50 (a false
colormap is used, rather than grayscale, for better visualization). Blurred images for these PSFs
are shown in Fig. 6.

3.3 Spatially Variant Gaussian Blur

It is more difficult to simulate a spatially variant blur, but one fairly simple example can be
obtained by modifying the Gaussian PSF to include spatial variation as follows:

k(s, t) =
1

2πα1(s)α2(t)
exp

{
−1

2

(
s2

α2
1(s)

+
t2

α2
2(t)

)}
(10)

Spatially variant Gaussians have been used to test image restoration algorithms, see for example
[2, 65]. Because the blur is spatially variant, one cannot use simple convolution to apply the
blur. However, in this case the blur is separable,

k(s, t) =

(
1√

2πα1(s)
exp

{
−1

2

(
s2

α2
1(s)

)})(
1√

2πα2(t)
exp

{
−1

2

(
t2

α2
2(t)

)})
,
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d/r0 = 10 d/r0 = 30 d/r0 = 50

Figure 6: Examples of blurred images using PSFs shown in Fig. 5. The image in the top row is the
true object, and the bottom row shows the blurred images.

and so the matrix K can be represented as a Kronecker product,

K = Kh ⊗Kv ,

where we refer readers to the discussion of separable blurs in Section 2.2.5. Usually it is not
computationally practical to explicitly construct the full matrix K, however it is not so difficult
to explicitly construct the much smaller matrices Kh and Kv.

The amount of variation in the blur is defined by α1(s) and α2(t). Note that if these are
constants, then we get a spatially invariant Gaussian blur discussed in Section 3.1. We illustrate
with three different examples:

• First, we consider a case in which the center of the image has only a mild distortion, and
the blur becomes more severe as we move away from the center of the image. This can be
simulated by using:

α1(s) = 3
4 (3|s|+ 1) and α2(t) = 3

4 (3|t|+ 1),

where we assume −1 ≤ s, t ≤ 1.

• Next, we consider the alternative situation where the blur is more severe near the center
of the image, and becomes less so near the edges. This can be simulated using:

α1(s) = 3
4 (−3|s|+ 4) and α2(t) = 3

4 (−3|t|+ 4),

where we assume −1 ≤ s, t ≤ 1.

• Finally, we consider a situation where there is only a small amount of blurring in the lower
right portion of the image, and it becomes more severe as we move toward the upper left
corner of the image. This can be simulated using:

α1(s) = 3− s
2 and α2(t) = 3− t

2 ,
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where we assume −1 ≤ s, t ≤ 1.

To visualize the variation in the blur, Fig. 7 shows blurred point sources in various locations in
the image domain. Examples of blurred images with these spatially variant PSFs are shown in
Fig. 8.

case 1 case 2 case 3

Figure 7: Spatially variant Gaussian Blurred images of point sources in various regions of the image
domain. Blurred images for these PSFs are shown in Fig. 8.

The purpose of this example is to create data that can be used to test the approximation
of spatially variant blur with a locally spatially invariant model, as described in Section 2.2.3.
That is, because we are unlikely to have an explicit formula for the PSF, such as is given by
equation (10), we approximate K using the interpolation model given in equation (7). Recall
that to form such an approximation, all that is needed is a set of PSFs in different regions of
the spatial domain.

3.4 Spatially Variant Motion Blur

In this section, we consider blur caused by motion of a rigid object, or equivalently motion
blur caused by rigid movements of the imaging device. If the relative motion has constant
speed and direction, then the blurring operation is spatially invariant. However, if the speed
and direction varies during the image acquisition time, then the blur is spatially variant, and
difficult to describe with a concise mathematical formula, as in the case of the spatially variant
Gaussian blur. However, if it is possible to continuously measure the relative position of the
object and the imaging device, then it is possible to construct a sparse approximation of the
blurring matrix K.

Although it may not be possible to know precisely and continuously the relative position
of the object and detector, there are applications in which this information can be either ap-
proximated [97], or measured to high accuracy [32, 80]. The purpose of this subsection is not
to describe motion estimation techniques, but to describe how to construct the matrix if the
relative position information is known, so that we can use it as a test case for iterative image
restoration algorithms.

To describe how to construct the matrix K, and to simulate spatially variant motion blur,
assume the observed image g is the (normalized) sum of images at incremental times during
acquisition. Each of the individual images represents a snapshot of the object in a fixed position.
To obtain a mathematical model, let f(x, y) be a continuous function representing the object,
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case 1 case 2 case 3

Figure 8: Examples of blurred images using spatially variant Gaussian PSFs shown in Fig. 7. The
image in the top row is the true object, and the bottom row shows the blurred images.

and let F be a discrete image, whose (k, `) entry is given by

F (k, `) = f(xk, y`), k = 1, 2, . . . n, ` = 1, 2, . . . n.

Now suppose F1 is a discrete image obtained from the object f after a rigid movement. Then
there is an affine transformation A ∈ R3×3 such that x̂k

ŷ`

1

 =

 a11 a12 a13

a21 a22 a23

0 0 1

 xk
y`

1


and

F1(k, `) = f(x̂k, ŷ`).

Note that because the continuous image f is not known at every point (x, y) (all that is known
is the discrete image F ), it may not be possible to evaluate f(x̂k, ŷ`), unless x̂k = xk̂ and ŷ` = yˆ̀

for some 1 ≤ k̂ ≤ n and 1 ≤ ˆ̀≤ n. However, an approximation of f(x̂k, ŷ`) can be computed by
interpolating known values of f near f(x̂k, ŷ`). Suppose (as illustrated in Fig. 9) that f(xk̂, yˆ̀),
f(xk̂+1, yˆ̀), f(xk̂, yˆ̀+1) and f(xk̂+1, yˆ̀+1) are four known pixel values surrounding the unknown
value f(x̂k, ŷ`). Nearest neighbor interpolation uses the known pixel value closest to f(x̂k, ŷ`);
for example, in the illustration in Fig. 9 we have

F1(k, `) = f(x̂k, ŷ`) ≈ f(xk̂, yˆ̀+1).
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In the case of bilinear interpolation, a weighted average of the four pixels surrounding f(x̂k, ŷ`)
is used for the approximation:

F1(k, `) = f(x̂k, ŷ`)

≈ (1−∆xk)(1−∆y`)f(xk̂, yˆ̀) + (1−∆xk)∆y`f(xk̂, yˆ̀+1)

+ ∆xk(1−∆y`)f(xk̂+1, yˆ̀) + ∆xk∆y`f(xk̂+1, yˆ̀+1) ,

where ∆xk = x̂k − xk̂ and ∆y` = ŷ` − yˆ̀. The above discussion assumes that each pixel is a
square with sides of length one; incorporating arbitrary size dimensions for pixels is not difficult.

f (x
k̂
, y

ℓ̂
)

f (x
k̂
, y

ℓ̂+1)

f (x
k̂+1, yℓ̂)

f (x
k̂+1, yℓ̂+1)

f (x̂k, ŷℓ)

f (x
k̂
, y

ℓ̂
)

f (x
k̂
, y

ℓ̂+1)

f (x
k̂+1, yℓ̂)

f (x
k̂+1, yℓ̂+1)

f (x̂k, ŷℓ)

Nearest neighbor. Bilinear.

Figure 9: Illustration of interpolation. The graphic on the left illustrates using the nearest (known
pixel) neighbor to f(x̂k, ŷ`) to approximate its value. The graphic on the right illustrates bilinear
interpolation (weighted average of the four known pixels) to approximate f(x̂k, ŷ`).

If we define vectors f = ν(F ) and f1 = ν(F1) from the discrete image arrays (e.g., through
lexicographical ordering), we can write

f1 = K1f

where K1 is a sparse matrix that contains the interpolation weights. Specifically, the kth row of
K1 contains the weights for the pixel in the kth entry of f1. For example, in the case of bilinear
interpolation, there are at most four nonzero entries per row, given by

(1−∆xk)(1−∆y`), (1−∆xk)∆y`, ∆xk(1−∆y`), ∆xk∆y`.

In the case of nearest neighbor interpolation, there is just one nonzero entry in each row. We
emphasize that by using a sparse data format (e.g., compressed row [29]) to represent K, we
need only keep track of the nonzero entries and their locations in the matrix K. Moreover, this
discussion assumes the affine transformation A is known, because this provides the necessary
information to construct the interpolation weights.

As previously discussed, we assume the observed motion blurred image is the (normalized)
sum of images at incremental times during the acquisition. That is, we assume

g =

T∑
t=1

wtft + η

where ft = Ktf is a vector representing the discrete image at time t, wt is the normalization
weight for the t-th image (for example, we could simply use wt = 1

T ), and η is additive noise.
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Thus, we obtain the deblurring problem given in equation (2), where the matrix modeling the
motion blur is

K =
T∑
t=1

wtKt. (11)

The sparsity structure of K depends on the severity of the motion blur, as well as on the
number of known positions of the object. To illustrate, suppose that the motion is described by
a shift and a rotation; specifically, suppose the object at the t-th position is shifted by (δxt, δyt)
and rotated (about the center) by θt. An affine transformation for this, assuming the image is
centered at (x, y) = (0, 0) is

A` =

 cos(θt) sin(θt) δxt
− sin(θt) cos(θt) δyt

0 0 1


To generate test problems, we take random values for δxt, δyt and θt. We can control the
severity of motion through how large we choose these values. Consider three examples, where
in each case we use 50 positions (i.e., t = 1, 2, . . . , 50):

• First we consider the case where the object moves only slightly during the acquisition
time. In this case the values for δxt and δyt are chosen from a uniform distribution in the
interval (0, 2), and the values for θt are chosen from a normal distribution with mean 0
and standard deviation of π/40.

• In the second example we increase the severity of the motion by taking δxt and δyt from a
uniform distribution in the interval (0, 5), and the values for θt are chosen from a normal
distribution with mean 0 and standard deviation of π/20.

• In the third example we further increase the severity of the motion by taking δxt and δyt
from a uniform distribution in the interval (0, 10), and θt from a normal distribution with
mean 0 and standard deviation of π/10.

The sparsity pattern for the matrices K for these specific cases, using bilinear interpolation, is
shown in Fig. 10. Notice that more severe motion results in a decrease in sparsity of K. Blurred
images for these cases are shown in Fig. 11.

small motion medium motion severe motion

Figure 10: Sparsity pattern of the matrix K for various amounts of object movement. Blurred
images for these matrices are shown in Fig. 11.
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small motion medium motion large motion

Figure 11: Examples of motion blurred images, using the blurring matrices shown in Fig. 10. The
image in the top row is the true object, and the bottom row shows the blurred images.

3.5 MATLAB Notes

Test data for the examples described in this section are available at www.mathcs.emory.edu/

~nagy/RestoreTools. The data are saved as mat files, and can be opened in MATLAB with
the load command. Each of the mat files contains the true image ftrue and the blurred, noisy
image g, as well as some statistical information about the noise, η. The noise was generated
using a combination of Poisson (background photon) and Gaussian white (readout) noise, with

‖η‖2
‖Kftrue‖2

= 0.01.

The specific details of the noise model will be discussed in more detail in Section 5.2.2. For the
data discussed in Sections 3.1–3.3 we include PSFs and their centers, while for the motion blur
examples described in Section 3.4 we include the sparse matrices K.

A summary of the data is as follows:

• Three examples of spatially invariant Gaussian blurs, using the PSF given in equation (8),
and with the following parameters:

GaussianBlur440.mat corresponds to the case α1 = α2 = 4 and ρ = 0.

GaussianBlur420.mat corresponds to the case α1 = 4, α2 = 2 and ρ = 0.

GaussianBlur422.mat corresponds to the case α1 = 4, α2 = 2 and ρ = 2.

• Three examples of blurring caused by atmospheric turbulence. The PSF is described by
equation (9), and wavefronts were created with three different values of d/r0. Specifically,
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AtmosphericBlur10 corresponds to d/r0 = 10.

AtmosphericBlur30 corresponds to d/r0 = 30.

AtmosphericBlur50 corresponds to d/r0 = 50.

• Spatially variant Gaussian blur, using the PSF given by equation (10).

VariantGaussianBlur1.mat uses α1(s) = 3
4 (3|s|+ 1) and α2(t) = 3

4 (3|t|+ 1).

VariantGaussianBlur2.mat uses α1(s) = 3
4 (−3|s|+ 1) and α2(t) = 3

4 (−3|t|+ 1).

VariantGaussianBlur3.mat uses α1(s) = 3− 2
2 and α2(t) = 3− t

2 .

For each of these we generated 49 PSFs in a 7×7 region partitioning of the image domain.
Thus, when this data is loaded into MATLAB, PSF and center will be cell arrays as
described in Section 2.4.

• Spatially variant motion blur, using the examples described in Section 3.4. Specifically,

VariantMotionBlur small.mat contains data for the small motion simulation.

VariantMotionBlur medium.mat contains data for the medium motion simulation.

VariantMotionBlur large.mat contains data for the large motion simulation.

4 Iterative Methods for Unconstrained Problems

In this section, we describe some iterative methods that can be used to solve unconstrained
image restoration problems. We focus on methods that can be applied directly to

min
f
‖g −Kf‖2

in an iterative regularization scheme, or to the Tikhonov least squares problem

min
f

∥∥∥∥[ g0
]
−
[
K
λL

]
f

∥∥∥∥
2

.

We note that if we define the quadratic function ψ(f) = 1
2f

>K>Kf − f>K>g, then the
following minimization problems are equivalent:

min
f
ψ(f) and min

f
‖g −Kf‖2 .

This equivalence is often used to describe and design iterative methods.
Iterative methods for unconstrained image restoration problems have the general form,

f (k+1) = f (k) + τkd
(k)

where d(k) is a step direction and τk is a step length. Different choices for these terms leads to
different iterative methods.

4.1 Richardson Iteration

The Richardson iteration, which is often called the Landweber method [31, 47, 48, 102], is
generally used as an iterative regularization method. The basic iteration takes the form:

f (k+1) = f (k) + τK>
(
g −Kf (k)

)
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That is, the step

d(k) = K>
(
g −Kf (k)

)
is the steepest descent direction for the quadratic function ψ(f), and the step size τ remains
constant for each iteration. It can be shown that to ensure convergence the step size must satisfy

0 < τ <
2

σ2
max

where σmax is the largest singular value of K. Although it might be difficult to compute
σ2

max = ‖K>K‖2, a default choice for τ can be found using the well-known bound [39]

σ2
max = ‖K>K‖2 ≤ ‖K‖1‖K‖∞.

In general, the matrix norms ‖K‖1 and ‖K‖∞ are easy to compute. In fact, if K has no
negative entries, as is the case in image restoration problems, and if we define 1 to be a vector
with every entry equal to 1, then

‖K‖∞ = max element in the vector K1, and

‖K‖1 = max element in the vector K>1.

Thus, using this bound, a default choice for τ can be

τ =
1

‖K‖1‖K‖∞
≤ 1

σ2
max

<
2

σ2
max

.

It can be shown [47] that the Richardson iteration can be interpreted as an SVD filtering
method as described in equation (3). In particular, if the initial guess is f (0) = 0, then the filter
factors for the kth iteration are given by

φ
(k)
i = 1− (1− τσ2

i )k , i = 1, 2, . . . , N ,

where σi is the i-th largest singular (or spectral) value of K. To visualize what this tells us
about convergence properties of the Richardson iteration, assume that σmax = τ = 1. In this
case, we see that in the early iterations solution components corresponding to large singular
values are reconstructed, while we need many iterations before components corresponding to
small singular values are reconstructed. That is,

0 ≈ φ(k)
N ≤ φ(k)

N−1 ≤ · · · ≤ φ
(k)
1 ≈ 1 ,

as should be the case for an SVD filtering method. However, it may take many iterations
to reconstruct components corresponding to intermediate singular values. For example, using
again σ1 = τ = 1, then with the intermediate singular value σj = 0.01, we obtain filter factors

φ
(k)
j = 1− (1− τσj)k = 1− (0.99)k, and thus k would need to be very large to obtain φ

(k)
j ≈ 1.

Whether or not we want to reconstruct this component of the solution depends on the problem,
but because we expect the singular values to decay to zero, a value of σj = 0.01 is, in general, not
very small and is likely to correspond to signal subspace rather than noise subspace information.

From this analysis, we expect that the basic Richardson iteration converges very slowly.
However, as will be seen below, the method can be accelerated with preconditioning. It also
provides a good introduction to discussing other iterative methods, including ones that enforce
a nonnegativity constraint. An algorithm for the Richardson iteration can be stated as follows:
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Algorithm: Richardson Iteration

given: K, g

choose: initial guess for f
step length parameter τ

compute:

r = g −Kf
d = K>r

while (not stop) do

f = f + τd

r = g −Kf
d = K>r

end while

As with any iterative regularization method, it is important to choose appropriate criteria
for terminating the while loop. This is a nontrivial topic. About this topic we mention only
an approach known as the Morozov’s discrepancy principle [64], which terminates the iteration
when

‖g −Kf (k)‖2 ≤ δε

where ε is the expected value of the noise η and δ > 1. The discrepancy principle is easy to
implement, but it does require a good estimate of ε. Other approaches to estimating a stopping
iteration are described in [48, 102].

4.2 Preconditioned Richardson Methods

We now consider preconditioning of the basic Richardson method. Recall that preconditioning
is a technique used to modify the problem in such a way as to accelerate convergence. In the
case of right preconditioning, we replace K with K̂ = KR−1 and f with f̂ = Rf . After some
algebraic manipulation, the main part of the iteration can be written as:

f (k+1) = f (k) + τM−1K>
(
g −Kf (k)

)
(12)

where M = R>R.
In the case of left preconditioning, we replace K with K̂ = R−>K and g with ĝ = R−>g.

After some algebraic manipulation, the main part of the iteration can be written as:

f (k+1) = f (k) + τK>M−1
(
g −Kf (k)

)
(13)

where M = R>R.
Algorithms for these preconditioned Richardson iterative methods can be written as:
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Algorithm: Richardson Iteration
Left Preconditioned

given: K, g, M

choose: initial guess for f
step length parameter τ

compute:

r = g −Kf
v = M−1r

d = K>v

while (not stop) do

f = f + τd

r = g −Kf
v = M−1r

d = K>v

end while

Algorithm: Richardson Iteration
Right Preconditioned

given: K, g, M

choose: initial guess for f
step length parameter τ

compute:

r = g −Kf
v = K>r

d = M−1v

while (not stop) do

f = f + τd

r = g −Kf
v = K>r

d = M−1v

end while

It is important to keep in mind that the convergence behavior, and the choice of τ depend on
the singular values of the preconditioned system. For example, consider the right preconditioned
system, K̂ = KR−1. Then the similarity transformation

R−1K̂>K̂R =
(
R>R

)−1
K>K = M−1K>K ,

shows that K̂>K̂ and M−1K>K have the same eigenvalues. Thus,

σ̂2
max = ‖K̂>K̂‖2 = ‖M−1K>K‖2 ≤ ‖M−1‖2‖K>K‖2 .

Thus, as with the case of the unpreconditioned Richardson iteration, a default choice for τ can
be

τ =
1

‖M−1‖2‖K‖1‖K‖∞
≤ 2

‖M−1K>K‖2
=

2

‖K̂T K̂‖2
,

assuming that we can compute an estimate of ‖M−1‖2. A similar result holds for left precon-
ditioning.

We now give a few examples of preconditioners, and show that some of them lead to other
well-known iterative methods.

4.2.1 A Diagonal Matrix Preconditioner: Cimmino’s Method

We begin with a very simple preconditioner that results in the Cimmino method. Specifically,
we consider using the following diagonal matrix as a left preconditioner:

R = diag

(
‖k1‖2√
c1

,
‖k2‖2√
c2

, . . . ,
‖kN‖2√
cN

)
, M = RTR = diag

(
‖k1‖22
c1

,
‖k2‖22
c2

, . . . ,
‖kN‖22
cN

)
,
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where ki
> is the ith row of K and ci are positive numbers. We could choose τ to be

τ =
1

‖M−1‖2‖K‖1‖K‖∞

where ‖M−1‖2 = max
1≤i≤N

{
ci/‖ki‖22

}
. Another choice, proposed by Cimmino [9, 48], is to use

τ =

N∑
i=1

ci .

It is not difficult to show that with this value, τ < 2/σ̂2
max. Observe that if we choose c1 = · · · =

cN = 1, then we obtain

M−1 = diag

(
1

‖k1‖22
,

1

‖k2‖22
, . . . ,

1

‖kN‖22

)
and τ = 2/N ,

where N is the number of pixels in the image. In this case, τ is less than one, resulting in small
steps at each iteration. This may or may not lead to slow convergence; if the direction vector d
is good, then a small step size might be appropriate.

In an implementation of Cimmino’s method, inverting the diagonal matrix M is trivial, but
construction of the preconditioner requires computing ‖ki‖22, the squared norms of rows of K. If
the blur is spatially invariant, then we can assume that these norms are approximately constant,
equal to the sum of squares of the PSF pixel values; exact equality occurs in the case of periodic
boundary conditions.

4.2.2 Triangular Matrix Preconditioners: SOR Methods

The methods of successive over-relaxation (SOR) have been well studied in the applied math-
ematics and scientific computing community, especially in the context of solving partial differ-
ential equations [12, 39, 41, 86]. They have recently been proposed for use in image restoration
[93, 103], so we give a brief description of these methods here.

The SOR methods are based on matrix splittings. Specifically, since the matrix K>K is
symmetric, we can split it up as

K>K = T +D + T>,

where D is the diagonal part and T is the strictly lower triangular part of K>K. If we then
set

M = D + τT ,

we obtain the standard SOR method. A similar approach is the symmetric successive over-
relaxation (SSOR) method [86], which uses the preconditioner

M =
1

2− τ
(D + τT )D−1 (D + τT ) > .

The term over-relaxation is used because τ is considered a relaxation parameter, and in well-
posed problems arising, for example, from discretization of partial differential equations, an
optimal value for τ is chosen greater than one (i.e., the method uses over-relaxation).
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The SOR preconditioner requires less work to implement than SSOR, but it is not obvious
how to provide a general analysis of the filtering properties of SOR for ill-posed problems.
However, in the SSOR case M can be written as

M = R>R , where R =

√
1

2− τ
D−1/2 (D + τT ) > .

Thus the filtering properties of SSOR are explained by examining the singular values of the
preconditioned system K̂ = KR−1.

We mention that the properties of SOR for image restoration, in the simplified case of
spatially invariant blurs with periodic boundary conditions, were studied in [93, 103]. They
show that, contrary to well-posed problems arising in partial differential equations, the relaxation
parameter should satisfy τ � 1; that is, the method should use severe under-relaxation instead
of over-relaxation. We can see that this makes sense by supposing that K>K and M have the
same eigenvectors; that is, suppose

K>K = QTΛkQ and M = QTΛmQ ,

where Λk is a diagonal matrix containing the eigenvalues of K>K and Λm is a diagonal matrix
containing the eigenvalues of M . In this case,

M−1K>K = QTΛQ ,

where the diagonal matrix Λ contains the ratio of eigenvalues of K>K and M . In the worst
case, it could happen that one of the diagonal entries of Λ is the largest eigenvalue of K>K
divided by the smallest eigenvalue of M . This value could be very large, and so the upper
bound for τ , 2/‖M−1K>K‖2, could be very small.

It is important to observe that by choosing τ � 1 we obtain stability in the preconditioned
iteration. However, because τ is also the step size in the algorithm, small τ means small steps,
and thus convergence can be very slow. We say can be slow, because the initial direction vectors
could be very good, and it therefore could be the case that we need only a few iterations to
reconstruct a good approximation of ftrue before noise begins to corrupt the solution. It is
difficult to provide a general analysis of this for the SOR and SSOR preconditioners. It should
be mentioned that, in the context of set theoretic methods [26, 89, 90], Combettes [27] has
proposed a scheme to actually increase the relaxation parameter to a value greater than 2, with
the goal to improve the rate of convergence. It would be interesting to see if such an approach
can be applied to the SOR and SSOR methods. Another disadvantage of the SOR and SSOR
preconditioners is that solving systems with M can be relatively expensive compared to other
preconditioners. We discuss these issues in more detail for filtering based preconditioners.

4.2.3 Filtering Based Preconditioning

In this subsection, we describe an approach to construct preconditioners for image restoration
problems that was originally proposed in 1993 [46]. We first explain the basic idea in the ideal
situation where we can compute a singular value decomposition (SVD) of K. The SVD is
defined as

K = UΣV > ,

where U and V are orthogonal matrices, and Σ =diag(σ1, σ2, . . . , σN ) is a diagonal matrix con-

taining the singular values ofK. If we defineR = UΣrV
>, where Σr =diag(σ

(r)
1 , σ

(r)
2 , . . . , σ

(r)
N ),
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then in the case of left preconditioning,

K̂ = R−1K = V Σ̂V > ,

where Σ̂ = diag(σ̂1, σ̂2, . . . , σ̂N ), σ̂i = σi/σ
(r)
i . Recalling the convergence analysis and filtering

properties of the basic Richardson iteration, to obtain fast convergence of components corre-

sponding to large singular values (i.e., signal information), we should choose σ
(r)
i so that σ̂i ≈ 1

for large σi. On the other hand, to make sure we do not have fast convergence of the noise
subspace information (i.e., components of the solution corresponding to small singular values)

we should choose σ
(r)
i so that σ̂i is small. There are many ways to do this. In [45, 46] a truncated

SVD, or pseudo inverse like approach was proposed, where

σ
(r)
i ≈

{
σi σi ≥ tol

1, σi < tol

where tol is a specified truncation tolerance. Here we see that the singular values larger
than tol of the preconditioned system are clustered at one, and are well separated from the
remaining “small” singular values. Determining how to choose the truncation tolerance is related
to determining regularization parameters. Various techniques can be used, including the discrete
Picard condition, L-curve, and generalized cross validation (GCV); see [45, 46, 70] for more
details.

Another approach for choosing σ
(r)
i is to use a Tikhonov regularization type approach, where

σ
(r)
i =

√
σ2
i + λ2 ,

where λ is a specified regularization parameter for the preconditioner. As with the truncation
tolerance, various techniques to choose λ, including the discrete Picard condition, L-curve, and

GCV. A comparison of these and other choices for choosing σ
(r)
i is given in [16].

Computing the SVD of K is typically too expensive for large scale problems, and in the cases
where it is possible to compute, we might as well use direct filtering methods instead of iterative
methods. However, this discussion suggests that filtering preconditioners can be constructed
with SVD approximations. A general approach to computing an SVD approximation is to
choose, a priori, orthogonal (or unitary, if we want to consider complex bases) matrices Ũ and

Ṽ , and determine a diagonal matrix Σ̃ such that

Σ̃ = arg min
Σ
‖Ũ>KṼ −Σ‖F

where ‖ · ‖F denotes the Frobenius norm, and where the minimization is done over all diagonal

matrices, Σ. We then use as a preconditionerR = ŨΣrṼ
>, where we use one of the approaches

discussed above for choosing the diagonal entries σ
(r)
i from σ̃i.

To make this approach efficient, the construction of, and computations with Ũ and Ṽ should
be inexpensive. Several approaches have been proposed in the literature:

• By choosing Ũ = Ṽ = F , the discrete Fourier transform matrix, computations with Ũ

and Ṽ can be done very efficiently with FFTs. The resulting approximation, K̃ = ŨΣ̃Ṽ >

is a block circulant matrix with circulant blocks, and is the best such approximation of K;
see [23] for more details. The cost of constructing the approximation, and computations
with the preconditioner are O(N logN).
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• Instead of using the FFT basis to build Ũ and Ṽ , we could use another fast transform,
such as the discrete cosine transform (DCT) [23]. As with FFTs, construction of this
approximation, and computations with the resulting preconditioner are O(N logN).

• Another alternative is use a separable approximation of U and V , so that Ũ and Ṽ have
the form

Ũ = Uh ⊗Uv and Ṽ = Vh ⊗ Vv

where ⊗ denotes Kronecker product. This approximation can be obtained by finding the
best separable (i.e., x-y) approximation of the PSF. Construction of this approximation,
and computations with it, are O(N3/2). This is slightly more than the O(N logN) compu-
tations of the fast transforms, but it is still very efficient, and a separable basis may prove
to be a much better approximation than the FFT or DCT for some problems [52, 53, 66].

Note that the cost of matrix vector multiplications with K can usually be done with FFTs
(including the spatially variant case; see [67, 68]), so even if preconditioning is not used, the
cost of each iteration is at least O(N logN). Thus, if convergence of the iterative method is much
faster when using preconditioning, there can be a dramatic overall savings in computational cost
compared to using no preconditioning.

We refer to the approach described in this subsection as a filtering preconditioner because
the idea is very similar to applying an approximate pseudo-inverse filter at each iteration. These
preconditioners can be constructed for both spatially invariant and spatially variant blurs [70].
It is not possible to say that one approach is better than the others; the optimal approach
depends on the PSF as well as on the image data.

4.3 Steepest Descent Methods

In the steepest descent method, as in the case of the Richardson iteration, we take a step
direction that is the negative gradient of ψ(f), but we allow the step size to change at each
iteration. In particular, the step size is chosen to minimize ψ(f) in the direction of the negative
gradient. That is,

f (k+1) = f (k) + τkd
(k) ,

where d(k) = K> (g −Kf) and τk = arg min
τ
ψ(f (k) + τkd

(k)). It is not difficult to show that

τk = arg min
τ
ψ(f (k) + τd(k)) =

‖d(k)‖22
‖Kd(k)‖22

.

Thus, the basic iteration requires computing

r(k) = g −Kf (k)

d(k) = K>r(k)

τk = ‖d(k)‖22/‖Kd(k)‖22
f (k+1) = f (k) + τkd

(k)

A direct implementation of these steps would require three matrix-vector multiplications –
two with K and one with K>. This can be reduced to two matrix-vector multiplications by
observing that

r(k+1) = g −Kf (k+1) = g −K(f (k) + τkd
(k)) = r(k) − τkKd(k) . (14)
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Using this recursion for r(k+1), the steepest descent algorithm can be written as

Algorithm: Steepest Descent

given: K, g

choose: initial guess for f

compute:

r = g −Kf
while (not stop) do

d = K>r

w = Kd

τ = ‖d‖22/‖w‖22
f = f + τd

r = r − τw
end while

As with the Richardson iteration, the discrepancy principle can be used as a stopping cri-
terion if steepest descent is used for image restoration problems. Because of the variable step
size, it is difficult to provide a theoretical analysis of the filtering properties of steepest de-
scent, but some experimental results investigating this topic, and application of filtering based
preconditioners for steepest descent can be found in [69].

We mention that other criteria can be used for choosing the step length, such as the Brakhage
ν methods [15], and Barzilai and Borwein’s lagged steepest descent scheme [7].

4.4 Conjugate Gradient Methods

Conjugate gradient methods are usually much more efficient than gradient descent based meth-
ods, such as the Richardson iteration and steepest descent. There are two closely related con-
jugate gradient based methods for least squares problems: CGLS [12] and LSQR2 [76, 77]. We
focus our discussion on LSQR.

4.4.1 LSQR and Filtering

LSQR is based on the Golub-Kahan (sometimes referred to as Lanczos) bidiagonalization (GKB)
process, which computes the factorization

K = WBY > (15)

2Note that while the acronym CGLS is obviously obtained from the phrase “conjugate gradient method for least
squares”, the precise meaning of the acronym LSQR is less clear (it was not explicitly defined in the original papers
by Paige and Saunders [76, 77]). LSQR is an iterative method to solve “least squares” problems, and it uses an
efficient “QR” factorization updating scheme at each iteration.
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where W and Y are orthogonal matrices, and B is bidiagonal,

B =


γ1

β2 γ2

β3 γ3

. . .
. . .

 .
Because W and Y are orthogonal matrices, we can rewrite equation (15) as

KY = WB and K>W = Y B> .

From these relationships, we obtain

Kyk = γkwk + βk+1wk+1 and K>wk = βkyk−1 + γkyk , (16)

where yk is the k-th column of Y and wk is the k-th column of W . The recursions in equation
(16) can be used to iteratively compute the columns of W and Y , as well as the coefficients γk
and βk that define B. Specifically, given K and g, we compute:

GKB Iteration

β1 = ‖g‖2
w1 = g/β1

ŷ1 = K>w1

γ1 = ‖ŷ1‖2
y1 = ŷ1/γ1

for k = 2, 3, . . .

ŵk = Kyk−1 − γk−1wk−1

βk = ‖ŵk‖2
wk = ŵk/βk

ŷk = K>wk − βkyk−1

γk = ‖ŷk‖2
yk = ŷk/γk

If we define Wk+1 =
[
w1 · · · wk wk+1

]
, Yk =

[
y1 · · · yk

]
, and

Bk =


γ1

β2 γ2

. . .
. . .

βk γk
βk+1

 . (17)

then it is not difficult to show that the GKB iteration results in the matrix relations

K>Wk+1 = YkBk
> + γk+1yk+1ek+1

> (18)

KYk = Wk+1Bk, (19)
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where ek+1 denotes the (k + 1)st standard unit vector.
Given these relations, and recalling that the first column of Wk is g/‖g‖2, an approximate

solution fk of ftrue can be computed from the projected least squares problem

min
f∈R(Yk)

‖Kf − g‖22 = min
f̂
‖Bkf̂ − β1e1‖22 (20)

where β1 = ‖g‖2, and fk = Ykf̂ . It can be shown that fk converges to the solution of the least
squares problem min ‖g−Kf‖2. We omit specific implementation details, and refer to [76, 77].
However, we do mention the following important points:

• When k is small, solving the projected problem in equation (20) is very simple because the
matrix Bk is a sparse (k+1)×k matrix. In fact, using plane rotations [39], it is possible to
efficiently update the solution of the projected least squares problem from iteration k − 1
to iteration k.

• If we only want to compute f , then it is not necessary to save all vectors in the matricesWk

and Yk; updating vectors and coefficients in the k-th iteration only requires information
from iteration k − 1.

An important property of GKB is that for small values of k the singular values of the matrix
Bk approximate very well certain singular values of K, with the quality of the approximation
depending on the relative distance between the singular values of K; specifically, the larger
the relative spread, the better the approximation [12, 40, 85]. For ill-posed inverse problems,
the singular values of K decay to and cluster at zero, such as σi = O(i−c) where c > 1, or
σi = O(ci), where we use the big-O notation to mean “on the order of”, 0 < c < 1 and
i = 1, 2, . . . , n [100, 101]. Thus the relative gap between large singular values of K is generally
much larger than the relative gap between small singular values. Therefore, if the GKB iteration
is applied to a linear system arising from discretization of an ill-posed inverse problem, such as
in image restoration, then the singular values of Bk converge very quickly to the largest singular
values of K.

This property implies that if LSQR is applied to the least squares problem min
f
‖Kf − g‖2,

then at early iterations the approximate solutions fk will be in a subspace that approximates a
subspace spanned by the large singular components of K. Thus for k � n, fk is a regularized
solution. However, eventually fk should converge to the inverse solution, which is corrupted
with noise (recall the discussion in Section 2.1). This means that the iteration index k plays
the role of a regularization parameter; if k is too small, then the computed approximation fk
is an over smoothed solution, while if k is too large, fk is corrupted with noise. More extensive
theoretical arguments of this semi-convergence behavior of conjugate gradient methods can be
found elsewhere; see [43] and the references therein.

Finally, we mention that the filtering based preconditioners described in Section 4.2.3 can
be used with LSQR.

4.4.2 A Hybrid Method

One of the main disadvantages of iterative regularization methods is that it can be very difficult
to determine appropriate stopping criteria. To address this problem, work has been done to
develop hybrid methods that combine variational approaches with iterative methods. That is, an
iterative method, such as the LSQR implementation of the conjugate gradient method, is applied
to the least squares problem min

f
‖Kf − g‖22 , and variational regularization is incorporated

within the iteration process.
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Instead of early termination of the iteration, hybrid approaches enforce regularization at each
iteration of the GKB method. Hybrid methods were first proposed by O’Leary and Simmons in
1981 [75], and later by Björck in 1988 [11]. The basic idea is to regularize the projected least
squares problem (20) involving Bk, which can be done very cheaply because of the smaller size
of Bk. More specifically, because the singular values of Bk approximate those of K, as the GKB
iteration proceeds, the matrix Bk becomes more ill-conditioned. The iteration can be stabilized
by including Tikhonov regularization in the projected least squares problem (20), to obtain

min
f̂

{
‖Bkf̂ − β1e1‖22 + λ2‖f̂‖22

}
(21)

where again β1 = ‖g‖2 and fk = Ykf̂ . The regularization parameter λ needs to be chosen,
either a priori using knowledge of the data, or through regularization parameter choice methods.
Thus at each iteration it is necessary to solve a regularized least squares problem involving the
(k+1)×k bidiagonal matrix Bk. Notice that since the dimension of Bk is very small compared

to K, it is much easier to solve for f̂ in equation (21) than it is to solve for f in the full
Tikhonov regularized problem (5). More importantly, when solving equation (21) one can use
sophisticated parameter choice methods [25, 57]to find a suitable λ at each iteration.

To summarize, hybrid methods have the following benefits:

• Powerful regularization parameter choice methods can be implemented efficiently on the
projected problem.

• Semi-convergence behavior of the relative errors observed in LSQR is avoided, so an im-
precise (over) estimate of the stopping iteration does not have a deleterious effect on the
computed solution.

Realizing these benefits in practice, though, is nontrivial. Thus, various authors have considered
computational and implementation issues, such as robust approaches to choose regularization
parameters and stopping iterations; see for example, [13, 19, 25, 44, 56, 57, 60, 75]. The biggest
disadvantage of the hybrid approach is that all yk vectors must be kept throughout the iteration
process, and thus the storage requirements grow as the iteration proceeds.

4.5 MATLAB Notes

In describing the algorithms, we refer to some of our MATLAB implementations. Most of the
methods have the form:

[f, info] = IRmethod(K, g, options)

where IR denotes “Iterative Restoration”, method will refer to the particular method being
described; for example, IRlsqr uses LSQR. In the case of hybrid methods, we use the HyBR
(hybrid bidiagonal regularization) implementation described in [25], and refer to it as IRhybr.

The input and output variables are as follows:

• K (required input) is a matrix that can be a MATLAB full or sparse matrix, or a psfMa-
trix object. Other objects can be used as well, provided the appropriate operators (e.g.,
mtimes) and functions (e.g., norm) are overloaded with appropriate methods.

• g (required input) is a blurred, noisy image.

• options (optional) is a structure, built using IRset.m, that can be used to set certain
optional input values:
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– Initial guess for f ; default is f0 = K>g.

– Maximum number of iterations; ifK is anm×nmatrix, then the default is min(m,n, 100).

– Stopping tolerance for the relative residual ‖g −Kf‖2/‖g‖2; default is 10−6.

– Stopping tolerance for the normal equations residual ‖K>(g −Kf)‖2/‖K>g‖2; de-
fault is 10−6.

– Flag to indicate whether or not an error bar should be displayed on the screen to
indicate progress relative to the maximum number of iterations; default action is to
show the error bar.

– The true object, ftrue, which can be used to return relative error information about
the iterations, ‖fk − ftrue‖2/‖ftrue‖2.

For example, the statement

options = IRset(’MaxIter’, 27, ’Rtol’, 1e-4);

sets the maximum number of iterations to 27, and the relative residual tolerance to 10−4.

• f is the computed restoration after the iteration completes.

• info (optional) is a structure that contains information about the iteration, including:

– The number of iterations performed.

– A vector containing the residual norm ‖g−Kfk‖2 at each iteration. The first compo-
nent of this vector is the residual norm corresponding to the initial guess, so the length
of the vector is one more than the number of iterations performed by the method.

– A vector containing the normal equations residual norm ‖K>(g −Kfk)‖2 at each
iteration. The first component of this vector is the normal equations residual norm
corresponding to the initial guess, so the length of the vector is one more than the
number of iterations performed by the method.

– A vector containing the norm of the solution ‖fk‖ at each iteration. The first compo-
nent of this vector corresponds to the initial guess, so the length of the vector is one
more than the number of iterations performed by the method.

– If the true solution ftrue was set in options, then this is a vector containing the
relative error norm ‖fk − ftrue‖2/‖ftrue‖2 at each iteration. The first component of
this vector corresponds to the initial guess, so the length of the vector is one more
than the number of iterations performed by the method.

– Flag that provides information about why the iteration terminated:

1 ⇒ residual tolerance was satisfied

2 ⇒ normal equations residual tolerance was satisfied

3 ⇒ maximum number of iterations was reached.

For more details, see the MATLAB help or doc information on IRset as well as for any
IRmethod.

5 Iterative Methods with Nonnegativity Constraints

Since pixels in an image generally represent measured intensity values, it is natural to include
a nonnegativity constraint in the iterative algorithm. For example, in the case of iterative
regularization methods, we may want to develop algorithms that solve

min
f≥0
‖g −Kf‖22 ,
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or in the case of variational regularization, we modify the minimization problem given in equation
(4) to include the constraint f ≥ 0:

min
f≥0

{
‖g −Kf‖22 + λ2J (f)

}
.

As in the case of the unconstrained problem, the regularization operator J and the regularization
parameter λ must be chosen.

In this chapter we focus only on iterative regularization methods that can be obtained as
natural extensions of the unconstrained iterative algorithms discussed in previous sections. In
the case of variational regularization and nonnegativity constraints in the context of image
restoration, we refer to [6, 102]. More general optimization methods can also be used for the
variational case; see for example [55, 74].

5.1 Projection Methods

In the case of Richardson and steepest descent methods, a nonnegativity constraint can be easily
incorporated into the iteration by projecting the iteration f (k) onto the nonnegative orthant.
That is, the ith entry of a projected vector f is given by

[P(f)]i =

{
fi if fi ≥ 0
0 if fi < 0.

Thus, to incorporate nonnegativity in each of the algorithms discussed in Sections 4.1, 4.2 and
4.3 all that is needed is to choose an initial guess f ≥ 0 and to replace the update step

f = f + τd

with
f = P(f + τd) .

Properties of the projected Richardson method, including preconditioning have been studied;
see, for example [79, 16]. The specific case of projected SOR for well posed problems was
first studied by Cryer [28], while its use for ill-posed problems in image restoration has been
considered more recently in [93, 103]. Properties of a general projected steepest (gradient)
descent method can be found in one of many references on numerical optimization methods,
such as [55, 74], and a discussion in the context of image restoration can be found in [102].
In the case of the Barzilai and Borwein’s lagged steepest descent method with nonnegativity
constraints see [58]. Incorporating nonnegativity into conjugate gradient methods is not as
simple; for some suggestions at how this might be done see [18, 54], or for more general set
theoretic approaches, see [26, 89, 90].

5.2 Statistically Motivated Methods

In this subsection we again consider the linear image formation model

g = Kftrue + η

and develop iterative methods to approximate ftrue that incorporate statistical information.
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5.2.1 A General Iterative Scheme

We begin by assuming the noise vector, η, is a random vector with mean E(η) = 0, and we
denote the covariance matrix as Cη, where [Cη]i,j = E(ηiηj). The Gauss-Markov theorem

[30, 35] states that, if K has full rank, then the best unbiased linear estimator (BLUE) for ftrue

can be found by solving
K>C−1

η (g −Kf) = 0 .

To incorporate nonnegativity constraints into this model, define a diagonal matrix D with
diagonal entries

[D]i,i =

{
1 if [ftrue]i > 0
0 if [ftrue]i = 0

so that Kftrue = KDftrue. With this notation, it can be shown (see [5]) that the BLUE
approximation for ftrue can be found by solving

DK>C−1
η (g −KDf) = 0 ,

or equivalently by solving
f �DK>C−1

η (g −KDf) = 0 , (22)

where � denotes component wise multiplication. Unfortunately it is not possible to directly use
the relationship given in equation (22) because D is defined by the unknown true object, ftrue.
However, observe that if f is a best unbiased linear estimator, then f is zero whenever ftrue is
zero. Furthermore, for any vector v, we have f �Dv = f �v. It therefore follows that the best
unbiased linear estimator is a solution of the nonlinear equation

f �K>C−1
η (g −Kf) = 0 .

One simple approach to solving this nonlinear equation is to use the fixed point iteration

f (k+1) = f (k) + τkd
(k) ,

where the direction vector is d(k) = f (k) �K>C−1
η

(
g −Kf (k)

)
. Notice the similarity of this

basic iteration with that used in the unconstrained steepest descent method. In this case, since
we want to maintain nonnegative values in the updated f (k+1), care is needed in choosing the
step length τk. We do this through a bounded line search. Specifically, we first find the step
length τuc corresponding to the unconstrained minimization problem

τuc = arg min
τ

∥∥∥C−1/2
η g −C−1/2

η K(f (k) + τd(k))
∥∥∥2

2
=

d(k)>v(k)

‖C−1/2
η Kd(k)‖22

, (23)

where v(k) = K>C−1
η (g −Kf (k)) = K>C−1

η r(k). Next we find the step length that reaches
the boundary of the set of nonnegative solutions,

τbd = min

{
− [f (k)]i

[d(k)]i

∣∣∣∣ [d(k)]i < 0

}
, (24)
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and use τk = min{τuc, τbd}. Thus, if we set r(0) = g −Kf (0), a basic iteration to compute a
nonnegative approximation of ftrue is

v(k) = K>C−1
η r(k)

d(k) = f (k) � v(k)

w(k) = Kd(k)

τk = min{τuc, τbd} (see equations (23) and (24))

f (k+1) = f (k) + τkd
(k)

r(k+1) = r(k) − τkw(k)

where the recursion for computing r(k+1) is the same as in the unconstrained steepest descent
algorithm; see equation (14).

5.2.2 A General Noise Model

We now discuss what to use for C−1
η by considering a specific statistical model. In particular,

we use the model described in [91, 92] (see also [6, 102]) for CCD arrays, in which each pixel is
assumed to be the sum of realizations from three random variables

[g]i = Poisson ([Kftrue]i) + Poisson(β) + Normal(0, σ2)

where

• [g]i is the i-th pixel in the observed image.

• Poisson ([Kftrue]i) is a Poisson random variable with parameter (i.e., mean and variance)
equal to the ith pixel value of the noise-free blurred image, [Kftrue]i. This term represents
the number of object dependent photoelectrons measured at the i-th pixel of the CCD
array.

• Poisson(β) is a Poisson random variable with parameter (i.e., mean and variance) equal
to β. This term represents the number of background photoelectrons, arising from both
natural and artificial sources, measured at the i-th pixel of the CCD array.

• Normal(0, σ2) is a Gaussian random variable with mean zero and variance σ2. This term
represents random errors caused by CCD electronics and the analog-to-digital conversion
measured in voltages. It is often referred to as readout noise.

These random variables are assumed to be independent of each other, as well as independent
for each pixel. Thus, we can write the observed image as a realization of a random vector:

g = Poisson(Kftrue) + Poisson(β1) + Normal(0, σ2I)

where 1 is a vector of all ones, and 0 is a vector of all zeros.
We use the central limit theorem [30, 35] to approximate this model so that it involves a single

distribution. First note that in image restoration problems the entries in K are nonnegative, as
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are the pixel values of ftrue. Thus, [Kftrue]i + β + σ2 > σ2, and so

Kftrue + β1 + σ21 + Normal(0,diag(Kftrue + β1 + σ21))

= Normal(Kftrue + β1 + σ21,diag(Kftrue + β1 + σ21))

≈ Poisson(Kftrue + β1 + σ21)

= Poisson(Kftrue) + Poisson(β1) + Poisson(σ21)

≈ Poisson(Kftrue) + Poisson(β1) + Normal(σ21, σ2I)

= Poisson(Kftrue) + Poisson(β1) + Normal(0, σ2I) + σ21

= g + σ21 ,

where the approximations are due to the central limit theorem, and where the notation diag(z)
is used to denote a diagonal matrix whose i-th diagonal entry is given by the i-th entry in the
vector z. We therefore obtain the approximate image formation model

g = Kftrue + β1 + Normal(0,diag(Kftrue + β1 + σ21) ,

or
g − β1 = Kftrue + Normal(0,diag(Kftrue + β1 + σ21) . (25)

Observe that equation (25) is in the form discussed in Section 5.2.1, where

Cη = diag(Kftrue + β1 + σ21) ,

and where we use g−β1 in place of g. Since we do not know ftrue we cannot explicitly construct
Cη, but we can consider some ways to approximate it.

5.2.3 Algorithms

First we remark that often β and σ2 are known, or can be estimated, and that incorporating
this information into Cη is not difficult. The real issue is how to approximate Kftrue. Three
possibilities are to use 0, or g − β1, or an iteration dependent approximation Kf (k).

If we replaceKftrue with 0 when constructing an approximation ofCη, and if we assume that
β = 0 (i.e., there is only Gaussian white noise), then the basic iteration described in Section 5.2.1
results in the modified residual norm steepest descent (MRNSD) algorithm [5, 54, 73].
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Algorithm: MRNSD

given: K, g

choose: initial guess for f ≥ 0

compute:

r = g −Kf
while (not stop) do

v = K>r

d = f � v
w = Kd

τuc = d>v/‖w‖22
τbd = min(−f(d < 0)� d(d < 0))

τ = min(τuc, τbd)

f = f + τd

r = r − τw
end while

In the above algorithm, � denotes component wise multiplication and � denotes component
wise division. Furthermore, the computation f(d < 0)� d(d < 0) means only perform element
wise division when the components of d are negative.

In the case where we replace Kftrue with g − β1 when constructing an approximation of
Cη, we obtain the weighted modified residual norm steepest descent (WMRNSD) algorithm [5].
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Algorithm: Weighted MRNSD

given: K, g, σ2, β

choose: initial guess for f ≥ 0

compute:

c = g + σ21

g = g − β1

r = g −Kf
while (not stop) do

v = K>(r � c)
d = f � v
w = Kd

τuc = d>v/‖w � c1/2‖22
τbd = min(−f(d < 0)� d(d < 0))

τ = min(τuc, τbd)

f = f + τd

r = r − τw
end while

The WMRNSD algorithm can be interpreted as a preconditioned version of MRNSD; see
[73] for further details. In the algorithm we store the diagonal entries of Cη in a vector c, the
square root c1/2 is done component wise, and component wise division with c and c1/2 is used

in place of computing matrix inverses C−1
η and C

−1/2
η .

Finally we consider the case where we replace Kftrue with the iteration dependent approxi-
mation Kf (k) when constructing an approximation of Cη.
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Algorithm: k-weighted MRNSD

given: K, g, σ2, β

choose: initial guess for f ≥ 0

compute:

c = Kf + β1 + σ21

g = g − β1

r = g −Kf
while (not stop) do

v = K>(r � c)
d = f � v
w = Kd

τuc = d>v/‖w � c1/2‖22
τbd = min(−f(d < 0)� d(d < 0))

τ = min(τuc, τbd)

f = f + τd

r = r − τw
c = Kf + β1 + σ21

end while

An interesting observation about using Kf (k) when constructing an approximation of Cη
was made in [5]. Note that if the blur is spatially invariant and we use periodic boundary
conditions, then K>1 = 1 (in fact, this relation is approximately true for most blurs and
boundary conditions). Then, if we take τk = 1 for all k, the iteration for f (k+1) can be written
as

f (k+1) = f (k) + τkd
(k)

= f (k) + f (k) �K>(g − β1−Kf (k))� (Kf (k) + β1 + σ21)

= f (k) + f (k) �K>
(

(g + σ21)� (Kf (k) + β1 + σ21)− 1
)

= f (k) + f (k) �
(
K>

(
(g + σ21)� (Kf (k) + β1 + σ21)

)
− 1
)

= f (k) + f (k) �K>
(

(g + σ21)� (Kf (k) + β1 + σ21)
)
− f (k)

= f (k) �K>
(

(g + σ21)� (Kf (k) + β1 + σ21)
)

Summarizing this, we obtain the Richardson-Lucy algorithm [61, 82, 102]:
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Algorithm: Richardson-Lucy

given: K, g, σ2, β

choose: initial guess for f ≥ 0

compute:

c = Kf + β1 + σ21

g = g + σ21

r = g −Kf
while (not stop) do

v = K>(g � c)
f = f � v
r = g −Kf
c = Kf + β1 + σ21

end while

Although the residual is not needed in the above algorithm, we compute it anyway since it
is often used in the stopping criteria.

It was observed in [5] that the weighted MRNSD method (i.e., the algorithm that uses
C−1
η = diag(g + σ21) often preforms much better (in terms of speed of convergence as well as

in quality of solution) than the other approaches discussed in this section. Some of these issues
will be discussed in more detail in the next section.

5.3 MATLAB Notes

The algorithms described in this section can be implemented very much like those for the
unconstrained image restoration problem. In the case of the statistically motivated problems, it
is necessary to include additional information about the noise, such as β and σ2, if it is available.
In all of the data described in Section 3.5, and which is available at www.mathcs.emory.edu/

~nagy/RestoreTools, we include the noise information in a structure NoiseInfo:

• NoiseInfo.PoissonParam is the Poisson parameter, β.

• NoiseInfo.GaussianStdev is the standard deviation, σ, for the white Gaussian noise.

6 Examples

In this section we present some numerical results illustrating the effectiveness of the iterative
methods described in this chapter. We use the test data described in Section 3 to see how the
methods perform on a variety of images and blurring models. We use the relative restoration
error

‖f (k) − ftrue‖2
‖ftrue‖2

as a measure for the accuracy of the reconstructions. We present the relative errors achieved
within the first 100 iterations. The blurred and noisy images g contain both Poisson and
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Gaussian components, as described in Section 5.2.2, with Poisson parameter β = 10 for the
background noise, and standard deviation σ = 5 for the Gaussian readout noise. KTg is used
as an initial guess. All computations were done in MATLAB 7.10.

6.1 Unconstrained Iterative Methods

In this subsection we show results obtained for the unconstrained iterative methods. In our
implementation of the Richardson iteration we use τ = 1

‖K‖1‖K‖∞ as a default choice for the

step length.
Our first example is a test problem that is widely used for testing algorithms in astronomical

image restoration. The true object and blurred image (d/r0 = 30), both of size 256 × 256, are
shown in Fig. 6. In Fig. 12 we compare the performance of the unconstrained iterative methods
for this example. The results show that LSQR, CGLS, and HyBR (the hybrid method) signif-
icantly outperform the Richardson iteration and steepest descent in achieving better relative
errors at the same number of iterations. Note that in Fig. 12, the convergence history of CGLS
and LSQR are indistinguishable for this example. Although this makes sense since the two
algorithms are mathematically equivalent, it is often stated in the literature that LSQR has
slightly better numerical stability properties than CGLS.
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Figure 12: Convergence history of the unconstrained methods and restorations computed at 47th
iteration, using the spatially invariant atmospheric turbulence blur data.

The semi-convergence behavior of LSQR and CGLS, which was discussed in Section 4.4, is
clearly seen; after achieving a minimal value at iteration k = 47, the errors for these two methods
increase if the iterations are allowed to proceed. Notice that HyBR avoids this semi-convergence
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behavior. We note that HyBR has a default stopping criteria, which is based on generalized
cross validation [25]. For this test data it suggests terminating at iteration k = 39, but we force
it run for 100 iterations so that we can observe how it avoids the semi-convergence behavior that
occurs with LSQR and CGLS. The solution obtained by CGLS is not shown since its restoration
error is the same as that of LSQR. The LSQR solution has the smallest restoration error and is
visually the best; see Fig. 12.

For the second experiment, we choose the spatially invariant Gaussian blur example. The
256 × 256 true image and the blurred image (α1 = 4, α2 = 2, ρ = 2) with noise are shown in
Fig. 4. Fig. 13 shows the restoration errors and the restored images for different unconstrained
iterative methods. We observe small differences in the convergence history of this test prob-
lem compared with the previous one. LSQR and CGLS, which again are indistinguishable,
reveal the semi-convergence behavior earlier when the methods are run to high iteration counts.
Richardson iteration and steepest descent are again the slowest. However the restoration errors
corresponding to these methods tend to approach more quickly the minimum restoration error
achieved by LSQR and CGLS. The hybrid method shows a similar convergence behavior as in
the previous example but it achieves the minimum error of LSQR and CGLS within 100 iter-
ations. We note that HyBR suggests to stop at iteration 16 for this test problem, but we run
it for 100 iterations to observe the stable convergence behavior. LSQR and CGLS achieve the
minimum error at iteration 29.
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Figure 13: Convergence history of the unconstrained methods and restorations computed at 29th
iteration, using the spatially invariant Gaussian blur data.

In the third experiment, we address the performance of the unconstrained iterative methods
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in the spatially variant Gaussian blur example. The true image is 316 × 316 and we use the
blurred noisy image corresponding to case 2 in Fig. 8. The minimum restoration error for LSQR
and CGLS is achieved at iteration 20 (Fig. 14). It can be seen that HyBR has the lowest relative
errors for this test problem. HyBR suggests to stop at iteration 16 for this test problem, but,
as with previous examples, we run it for 100 iterations.
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Figure 14: Convergence history of the unconstrained methods and restorations computed at 20th
iteration, using the spatially variant Gaussian blur data.

As a last experiment we address the spatially variant motion blur example. The true object
and its blurred and noisy image (medium motion) are shown in Fig. 11. The image size is
256× 256. The convergence history and the restored images for this test problem are shown in
Fig. 15. The solution with minimum error for LSQR and CGLS is reached at iteration count
k = 35. We again note that the hybrid method would normally stop at iteration 95 for this test
problem (with a stopping condition corresponding to flat GCV curve) but we let it perform the
maximum number of iterations.

In general, we can observe that as expected Richardson iteration is the slowest unconstrained
iterative method. Steepest descent shows lower relative errors than Richardson iteration but it
has a similar slow convergence rate. LSQR and CGLS outperform both Richardson iteration
and steepest descent. However both of these methods show the semi-convergence behavior
which is common among conjugate gradient type methods. The hybrid method avoids this
semi-convergence behavior and in some of the test problems reaches an overall lower relative
error compared to LSQR and CGLS.
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Figure 15: Convergence history of the unconstrained methods and restorations computed at 35th
iteration, using the variant motion blur data.
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6.2 Nonnegativity Constrained Iterative Methods

In this section we use methods that enforce nonnegativity at each iteration. For the spatially
invariant atmospheric turbulence blur example we compare the convergence history of all the
nonnegatively constrained iterative methods explained in Section 5. Figure 16 shows the restora-
tion errors obtained for the first test problem. Observe that, as with the unconstrained version,
the nonnegatively constrained Richardson iteration has the slowest convergence rate. We see
that KWMRNSD is the most effective algorithm for the atmospheric blur data. Also, we ob-
served that the rest of our test problems produced similar results, in that WMRNSD and KWM-
RNSD (k-weighted MRNSD) outperform all other constrained algorithms. Thus for the rest of
this section, we show only the convergence history of WMRNSD and KWMRNSD compared
to the convergence history of the unconstrained LSQR. This comparison for the atmospheric
turbulence blur is shown in Fig. 17.
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Figure 16: Convergence history of the nonnegatively constrained methods, using the spatially
invariant atmospheric turbulence blur data.

We also compare WMRNSD and KWMRNSD with LSQR for the spatially invariant Gaus-
sian blur test problem. The convergence history and restored images are shown in Fig. 18. LSQR
reaches its minimum relative error at iteration k = 29. Compared with LSQR, the convergence
of the KWMRNSD relative errors is very similar at early iterations. After LSQR reaches its
minimum error, the relative errors for KWMRNSD keep decreasing. Visually, the restorations
look similar.

We now examine the performance of WMRNSD, KWMRNSD, and LSQR when applied to
the spatially variant Gaussian blur example. The convergence history of the relative errors
and the restored images are shown in Fig. 19. The restored images correspond to the turning
point in the convergence-history curve of LSQR. It can be seen that in this test problem the
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Figure 17: Convergence history of WMRNSD, KWMRNSD, the unconstrained LSQR, and restora-
tions computed at 47th iteration, using the spatially invariant atmospheric turbulence blur data.
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Figure 18: Convergence history of WMRNSD, KWMRNSD, the unconstrained LSQR, and restora-
tions computed at 29th iteration, using the spatially invariant Gaussian blur data.
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unconstrained LSQR outperforms the other two constrained methods. Note that one difficulty
with the constrained algorithms presented in this chapter is that if a pixel value becomes zero
in the iteration, it usually remains zero for subsequent iterations. By looking at the center of
the image, such a situation appears to occur with this test problem, and some of the fine details
are lost.

We also observe from the convergence plot for this example that the system is highly ill-
conditioned. Specifically, inversion of noise corrupts the approximations after just a few itera-
tions; relative errors corresponding to LSQR quickly increase after iteration k = 20. We can also
observe that the relative errors corresponding to WMRNSD and KWMRNSD show a tendency
of increasing at higher iterations. In such cases it is important to have a reliable stopping crite-
ria. Recalling the convergence history (Fig. 14) for the unconstrained problem, HyBR seems to
be the best choice for this test problem since it can control the semi-convergence and estimate
an appropriate stopping iteration.
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Figure 19: Convergence history of WMRNSD, KWMRNSD, the unconstrained LSQR, and restora-
tions computed at 20th iteration, using the spatially variant Gaussian blur data.

The results for the spatially variant motion blur example are shown in Fig. 20. We can
observe that KWMRNSD has superior convergence properties compared to WMRNSD at early
iterations. Also, both nonnegatively constrained methods perform better than the unconstrained
LSQR at higher iterations. The WMRNSD and KWMRNSD restorations show less artifacts
compared to LSQR.
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Figure 20: Convergence history of WMRNSD, KWMRNSD, the unconstrained LSQR, and restora-
tions computed at 35th iteration, using the variant motion blur data.
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7 Concluding Remarks and Open Questions

In this chapter we have described a variety of iterative methods that can be used for image
restoration, and compared their performance on a variety of test problems. The data and MAT-
LAB codes used in this chapter are available at www.mathcs.emory.edu/~nagy/RestoreTools.
The numerical experiments illustrate that there is not one best method for all problems, which
explains the vast literature on this topic. It is important to emphasize that our presentation
is far from being a complete survey. For example, we did not discuss Bayesian methods, such
as those described in [20], or more sophisticated constrained algorithms such as those described
in [3, 6]. Moreover, we only briefly mentioned techniques for choosing regularization parame-
ters and stopping criteria; for some additional work on these topics, see, for example, [4, 57].
One other class of methods that we did not discuss, but is worth further study in the context
of constrained iterative algorithms, is projections onto convex sets (POCS) [26, 89, 90]. The
POCS approach provides a powerful mechanism, with rigorous mathematical justification, to
incorporate a variety of constraints on the object and PSF.
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[13] Å. Björck, E. Grimme, and P. van Dooren. An implicit shift bidiagonalization algorithm
for ill-posed systems. BIT, 34(4):510–534, 1994.

[14] A. F. Boden, D. C. Redding, R. J. Hanisch, and J. Mo. Massively parallel spatially-variant
maximum likelihood restoration of Hubble Space Telescope imagery. J. Opt. Soc. Am. A,
13:1537–1545, 1996.

[15] H. Brakhage. On ill-posed problems and the method of conjugate gradients. In H. W. Engl
and C. W. Groetsch, editors, Inverse and Ill-Posed Problems, pages 165–175. Academic
Press, Boston, 1987.

[16] P. Brianzi, F. Di Bendetto, and C. Estatico. Improvement of space-invariant image de-
blurring by preconditioned Landweber iterations. SIAM J. Sci. Comput., 30:1430–1458,
2008.

[17] C. Calvetti, P. C. Hansen, and L. Reichel. L-curve curvature bounds via Lanczos bidiag-
onalization. Electron. Trans. Numer. Anal., 14:20–35, 2002.

[18] D. Calvetti, G. Landi, L. Reichel, and F. Sgallari. Non-negativity and iterative methods
for ill-posed problems. Inverse Problems, 20:1747–1758, 2004.

[19] D. Calvetti and L. Reichel. Tikhonov regularization of large linear problems. BIT,
43(2):263–283, 2003.

[20] D. Calvetti and E. Somersalo. Introduction to Bayesian Scientific Computing. Springer-
Verlag, New York, 2007.

[21] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.

[22] R. H. Chan, J. G. Nagy, and R. J. Plemmons. FFT-based preconditioners for Toeplitz-
block least squares. SIAM J. Numer. Anal., 30:1740–1768, 1993.

[23] R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems. SIAM
Review, 38:427–482, 1996.

[24] T. F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and
Stochastic Methods. SIAM, Philadelphia, PA, 2005.

[25] J. Chung, J. G. Nagy, and D. P. O’Leary. A weighted GCV method for Lanczos hybrid
regularization. Elec. Trans. Numer. Anal., 28:149–167, 2008.

[26] P. L. Combettes. The foundations of set theoretic estimation. Proceedings of the IEEE,
91:182–208, 1993.

[27] P. L. Combettes. Convex set theoretic image recovery by extrapolated iterations of parallel
subgradient projections. IEEE Trans. Image Proc., 6:493–506, 1997.

[28] C. W. Cryer. The solution of a quadratic programming problem using systematic overre-
laxation. SIAM J. Control, 9(3):385–392, 1971.

55



[29] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2006.

[30] M. H. DeGroot. Probability and Statistics. Addison-Wesley, Reading, MA, 1989.

[31] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer
Academic Publishers, Dordrecht, 2000.

[32] T. L. Faber, N. Raghunath, D. Tudorascu, and J. R. Votaw. Motion correction of PET
brain images through deconvolution: I. Theoretical development and analysis in software
simulations. Phys. Med. Biol., 54(3):797–811, 2009.

[33] M. Faisal, A. D. Lanterman, D. L. Snyder, and R. L. White. Implementation of a mod-
ified Richardson-Lucy method for image restoration on a massively parallel computer to
compensate for space-variant point spread function of a charge-coupled device camera. J.
Opt. Soc. Am. A, 12:2593–2603, 1995.

[34] Y.-W. Fan and J. G. Nagy. Synthetic boundary conditions for image deblurring. Linear
Alg. Applic.,, 434:2244–2268, 2010.

[35] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, New York,
1971.

[36] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems. IEEE
J. Selected Topics in Signal Processing, 1(4):586–597, 2007.

[37] D. A. Fish, J. Grochmalicki, and E. R. Pike. Scanning singular-value-decomposition
method for restoration of images with space-variant blur. J. Opt. Soc. Am. A, 13:1–6,
1996.

[38] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[39] G. H. Golub and C. Van Loan. Matrix Computations, third edition. Johns Hopkins Press,
1996.

[40] G. H. Golub, F. T. Luk, and M. L. Overton. A block Lanczos method for computing
the singular values and corresponding singular vectors of a matrix. ACM Trans. Math
Software, 7(2):149–169, 1981.

[41] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

[42] C. W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Integral Equations
of the First Kind. Pitman, Boston, 1984.

[43] M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research
Notes in Mathematics, Longman Scientific & Technical, Harlow, Essex, 1995.

[44] M. Hanke. On Lanczos based methods for the regularization of discrete ill-posed problems.
BIT, 41(5):1008–1018, 2001.

[45] M. Hanke and J. G. Nagy. Restoration of atmospherically blurred images by symmetric
indefinite conjugate gradient techniques. Inverse Problems, 12:157–173, 1996.

[46] M. Hanke, J. G. Nagy, and R. J. Plemmons. Preconditioned iterative regularization for
ill-posed problems. In L. Reichel, A. Ruttan, and R. S. Varga, editors, Numerical Linear
Algebra, pages 141–163. de Gruyter, Berlin, 1993.

[47] P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia, PA,
1997.

56



[48] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia,
PA, 2010.

[49] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images: Matrices, Spectra and
Filtering. SIAM, Philadelphia, PA, 2006.

[50] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs,
NJ, 1989.

[51] S. M. Jefferies and M. Hart. Deconvolution from wave front sensing using the frozen flow
hypothesis. Optics Express, 19:1975–1984, 2011.

[52] J. Kamm and J. G. Nagy. Kronecker product and SVD approximations in image restora-
tion. Linear Algebra Appl., 284:177–192, 1998.

[53] J. Kamm and J. G. Nagy. Optimal Kronecker product approximation of block Toeplitz
matrices. SIAM J. Matrix Anal. Appl., 22:155–172, 2000.

[54] L. Kaufman. Maximum likelihood, least squares, and penalized least squares for PET.
IEEE Trans. Med. Imag., 12:200–214, 1993.

[55] C. T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[56] M. E. Kilmer, P. C. Hansen, and M. I. Español. A projection-based approach to general-
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