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Abstract. In digital tomosynthesis imaging, multiple projections of an object are obtained
along a small range of di↵erent incident angles in order to reconstruct a pseudo-3D representation
of the object. In this paper we discuss a mathematical model for polyenergetic digital breast to-
mosynthesis image reconstruction that explicitly takes into account various materials composing the
object and the polyenergetic nature of the x-ray beam. Our model allows for computing weight
fractions of the individual materials that make up the object, which can then be used to reconstruct
pseudo-3D images. The reconstruction process requires solving a large-scale inverse problem, which
is done with a gradient descent iteration. Regularization is enforced by truncating the iteration. The
mathematical model is described in detail, as is an e�cient approach to compute the gradient of the
objective function. The e↵ectiveness of our approach is illustrated with real data taken of an object
with known materials that simulates an actual breast.
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larization, inverse problems, ill-posed problems, beam hardening artifacts
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1. Introduction. Image reconstruction algorithms used, for example, in com-
puted tomography (CT), require solving large-scale inverse problems of the form

b = K(X)s + ⌘ , (1.1)

where b is a vector that contains measured data, K is a matrix that depends on
unknown quantities X, s is a known vector, and ⌘ is used to represent errors in the
measured data, which can come from electronic noise and scatter. The definition of
K(X) depends on the specific application, as well as on any simplifying assumptions
made for the image formation process. Given b, s, and a definition for K, the aim
is to compute an approximation of X. It should also be noted that although we
may talk about reconstructing and visualizing (displaying) X, strictly speaking X
is usually not an “image” of an object, but rather it contains information about the
object, such as densities.

In this paper we consider discrete inverse problems of the form given by equation
(1.1) that arise in a limited angle x-ray tomography technique referred to as tomosyn-
thesis, where the function K(X) has certain structure that can be exploited when
implementing algorithms to solve the inverse problem. The precise structure, and
how it can be exploited, depends on how accurately we want to model the physics of
the image formation process; this is discussed further in Section 2.

Computing approximations of inverse problems are typically done by formulating
an optimization problem involving a fit-to-data term that incorporates regularization

⇤Department of Mathematics and Computer Science, Emory University. Email: vme-
jia@emory.edu.

†Department of Mathematics and Computer Science, Emory University. Email:
nagy@mathcs.emory.edu.

‡Department of Biomedical Engineering, Emory University and Georgia Institute of Technology.
Email: steven.feng@bme.gatech.edu.

§Department of Radiology and Imaging Sciences, and Winship Cancer Institute, Emory Univer-
sity. Email: isechop@emory.edu.

1



2 V. MEJIA BUSTAMANTE, J. NAGY, S. FENG AND I. SECHOPOULOS

to stabilize the inversion process. The fit-to-data term often takes into account sta-
tistical assumptions on the data and noise. In the medical imaging community, it
is widely accepted that measurements obtained by x-ray transmission imaging can
be accurately modeled as independently distributed Poisson random variables, with
additional background noise. We note that it was reported in [17] that no signifi-
cant di↵erence in reconstructed image quality was noticed when using the Poisson
model versus a Gaussian model, but since there is still no published support that one
provides superior performance over the other, for this work we use the more widely
accepted Poisson model.

In the Poisson statistical model [16], it is assumed that the measured data is a
realization of a Poisson random variable, and hence

b

k

= Poisson ([K(X)s]
k

+ ⌘

k

) k = 1, 2, . . . , N,

where b

k

, [K(X)s]
k

and ⌘

k

are, respectively, the k-th entries of the vectors b, K(X)s
and ⌘. The probability, or likeliness, of observing b given X is described by the
likelihood function

⇡(b |X) =
NY

k=1

([K(X)s]
k

+ ⌘

k

)bk exp(�([K(X)s]
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+ ⌘

k

))

b

k

!
.

A fit-to-data term could then be to maximize ⇡(b |X), or to minimize the negative
of ln(⇡(b |X)). Ignoring the constant term associated with b

k

!, we therefore obtain
the fit-to-data term

L(X) =
NX

k=1

(([K(X)s]
k

+ ⌘

k

)� b

k

ln([K(X)s]
k

+ ⌘

k

)) . (1.2)

The image reconstruction problem, especially with limited data, is well known
to be ill-posed, and regularization is needed to stabilize the inversion process in the
presence of noise. Developing regularization approaches for general nonlinear inverse
problems can be significantly more challenging than it is for the linear case. Neverthe-
less, some general computational approaches have been successful, including iterative
regularization and variational approaches [10, 11, 12]. In this paper we use itera-
tive regularization. Specifically, we apply an iterative gradient descent method to
minimize L(X), and use a stopping rule to enforce regularization.

The rest of this paper is organized as follows. In Section 2 we describe a gen-
eral (nonlinear) mathematical model for tomosynthesis imaging that incorporates the
polyenergetic nature of the x-ray beam, and we show what simplifications are needed
to obtain the standard (linear) model that assumes a monoengergetic x-ray beam. We
also describe how the model can incorporate specific information about the materials
that make up the object being imaged. In Section 3 we consider an iterative regu-
larization approach, using gradient descent, to solve the polyenergetic tomosynthesis
image reconstruction inverse problem. Numerical experiments using real projection
data of a phantom breast object, with known materials, are presented in Section 4,
and concluding remarks are given in Section 5.

2. Tomosynthesis Imaging. Modern conventional x-ray systems that use dig-
ital technology have many benefits to the classical film x-ray systems, including a
linear response, improved workflow and decreased re-takes, and somewhat lower ra-
diation dose. The term “conventional” is used to refer to a system that produces a
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2-dimensional projection image of a 3-dimensional object, as opposed to computed
tomography (CT), which produces 3-dimensional images. Because of their improved
response and ease of use, digital x-ray systems are widely used in medicine, from
emergency rooms, to mammography, to dentistry. The greatest contribution of the
introduction of digital detectors to radiography is the ease of performing image pro-
cessing on digital images and the ability to use more advanced image acquisition
techniques, such as digital tomosynthesis.

Digital tomosynthesis is a technique that can produce 3-dimensional image in-
formation of an object using slightly modified conventional digital x-ray systems [7].
The idea underlying tomosynthesis is that multiple 2D image projections of the object
are taken at varying incident angles, and each 2D image provides di↵erent informa-
tion about the 3D object. See Figure 2.1 for an illustration of a typical geometry for
breast tomosynthesis imaging. See [7] and references therein for a survey of previous
approaches to the tomosynthesis image reconstruction problem.
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(a) Front view (b) Side view with x-ray tube at 0�

Fig. 2.1. Typical geometry of a tomosynthesis imaging device used in breast imaging. The
illustration on the left shows the x-ray source at 7 di↵erent locations.

2.1. A General Mathematical Model. To describe a mathematical model of
the image formation process, let b

(✓)
i

be the quantity measured at the i-th pixel of a
digital x-ray detector, obtained when the x-ray source is at an incident angle ✓. Using
Beer’s law [13], these measured values are related to the object’s attenuation (that
is, the fraction of the x-ray absorbed or scattered by the object) through the integral
equation

b

(✓)
i

=

Z

"

s(")e
�

R
L✓

µ(~x,") d`

d" + ⌘

(✓)
i

, i = 1, 2, . . . , N

p

and ✓ = 1, 2, . . . , N

✓

(2.1)
where

• N

p

is the number of pixels (typically a few million) in the digital x-ray de-
tector.

• N

✓

is the number of projection images obtained when the x-ray source is
moved to a new position, which is defined by an angle ✓. In a typical to-
mosynthesis system 15  N

✓

 30.
• " represents the spectrum of energies that are emitted by the source x-ray

beam, which can, for example, range from 10 keV to 28 keV.
• s(") is the energy fluence, which is a product of the x-ray energy with the

number of incident photons at that energy.
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• L

✓

is the line on which the x-ray beam travels through the object.
• µ(~x, ") is the linear attenuation coe�cient, which depends on the energy of the

x-ray beam and on the material in the object at the position ~x; lower energy
will be attenuated more than higher energy, and denser materials such as
bone or calcifications will attenuate more than soft tissue.

• ⌘

(✓)
i

represents additional contributions (noise) measured at the detector,
which can include x-ray scatter and electronic noise.

Discretizing the integrals in equation (2.1) leads to the discrete image formation model

b

(✓)
i

=
N"X

"=1

s

"

exp
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NvX

`=1

a

(✓)
i,`

µ

`,"

!
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(✓)
i

,

⇢
i = 1, 2, . . . , N

p

✓ = 1, 2, . . . , N

✓

(2.2)

where
• N

v

is the number of voxels (typically a few billion) in the discretized 3D
object.

• N

"

is the number of discrete energy levels. Because N

v

is extremely large, in
general N

"

⌧ N

v

.

• a

(✓)
i,`

is the length of the x-ray that passes through voxel `, contributing to
pixel i.

Defining a matrix A(✓) with entries a

(✓)
i,`

and a matrix M with entries µ

`,"

, equation
(2.2) can be written in matrix-vector form as

b(✓) = exp
⇣
�A(✓)M

⌘
s + ⌘(✓)

, ✓ = 1, 2, . . . , N

✓

(2.3)

where the exponentiation operation is done element-wise on the matrix �A(✓)M. A
discrete model that comprises all projections can be written as

b = exp (�AM) s + ⌘ (2.4)

where

b =

2

66664

b(1)

b(2)

...

b(N✓)

3

77775
and A =

2

66664

A(1)

A(2)

...

A(N✓)

3

77775

We remark that the N

p

⇥ N

v

ray trace matrices A(✓) are sparse, but because of the
large dimensions involved in a typical application, computer memory can be an issue
if they are constructed and stored explicitly, even when using an e�cient sparse data
format. As previously mentioned, s is a product of the source x-ray energy with the
number of incident photons at that energy. An accurate estimate of the x-ray energy
distribution can be obtained using well-known x-ray spectra models [5], and calibra-
tion measurements can be obtained by taking x-ray transmission measurements of
objects (e.g. high-purity aluminum) that have known dimension, density and ma-
terial composition [15]. Information about the additive noise term, ⌘, can be also
estimated through preprocessing or calibration steps [14].

Using this x-ray spectra modeling, the image reconstruction problem assumes b, A
and s are known, and it is necessary to solve the inverse problem (2.4) for attenuation
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coe�cients M, or equivalently we need to solve the general inverse problem (1.1),
where

K(X) ⌘ exp (�AX) , with X ⌘M .

It is computationally challenging to solve this nonlinear inverse problem; typically,
simplifying assumption are used to get an approximate linear model that is much
easier to solve, but may result in unwanted artifacts in the reconstructed image.

2.2. Linear Approximation of the Mathematical Model. In a real imaging
system, x-rays emitted from the source are polyenergetic, meaning that they are made
up of photons having a wide range of energies [13]. But as was described in the
previous subsection, an accurate polyenergetic model requires solving a large scale
nonlinear inverse problem to compute the attenuation coe�cients. With the exception
of our recent work [4], all tomosynthesis breast image reconstruction methods assume
the source x-rays are monoenergetic, which means N

"

= 1, M is a vector, and s is
a scalar. With this simplifying assumption, equation (2.4) is typically rewritten as a
linear inverse problem

b̂ = AX + ⌘ ,

where X ⌘M, and the entries of b̂ are

b̂

i

= � log

✓
b

i

s

◆
.

Although it is much easier to solve, there are disadvantages to using a simplified linear
model. For example, ignoring the energy dependence in the mathematical model can
lead to artifacts in the reconstructed image, apparent in dark streaks near high density
objects, such as calcifications. This will be illustrated in our experimental results in
Section 4. Few researchers have studied methods for eliminating these so called beam
hardening artifacts, and then only in the case of whole-body CT [1, 3, 6, 8, 9]. In our
previous work [4], we showed that it is possible to remove beam hardening artifacts
in tomosynthesis imaging.

In this paper, we consider a new approach that improves on our previous work.
First, we generalize the mathematical model for material decomposition, which al-
lows for computing quantitative information about the materials in the object, and
it provides a sparse decomposition of the unknown into basis components. Moreover,
we describe e�cient iterative methods to solve the inverse problem, and we present
results using real projection data that clearly shows our approach is superior to ex-
isting methods. The rest of this section describes the mathematical model we use for
material decomposition.

2.3. Multimaterial Model. In this section we provide a general frame work
for material decomposition. This is a generalization of our previous work [4]. First we
note that, under the assumption that the densities of di↵erent components are similar,
the linear attenuation coe�cients µ

`,"

, of the composite material making the object
(e.g., the breast) can be approximated as a linear combination of individual materials.
That is, suppose that there are N

m

distinct materials making up the object, and that

µ

`,"

⇡
NmX

m=1

w

`,m

c

m,"

, (2.5)

where
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• c

m,"

are known linear attenuation coe�cients for the m-th material in voxel
` at x-ray energy ". These coe�cients, for a variety of specific materials, can
be obtained from [2].

• w

`,m

are unknown weight fractions (or percentages) of the m-th material in
the `-th voxel of the object.

We also assume that the weight fractions for each voxel should add to 1 (or percentages
should add to 100), which means:

NmX

m=1

w

`,m

= 1 , ` = 1, 2, . . . , N

v

or, equivalently,

w

`,1 = 1�
NmX

m=2

w

`,m

. (2.6)

Substituting relations (2.5) and (2.6) into equation (2.2), we obtain
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=
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a
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NmX
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`,m

(c
m,"

� c1,"

)

!!
+ ⌘

(✓)
i

. (2.8)

In matrix-vector form, equations (2.7) and (2.8), respectively, can be written as

b = exp
�
�AWCT

�
s + ⌘ (2.9)

= exp
⇣
�A

⇣
1cT

1 + X bCT

⌘⌘
s + ⌘ . (2.10)

In equation (2.9), our notation is as follows:
• C is an N

"

⇥N

m

matrix, with entries c

",m

. That is, each column of C contains
the known attenuation coe�cients of the m-th material.

• W is an N

v

⇥ N

m

matrix, with entries w

`,m

. That is, each column of W
contains the unknown weight fractions of the m-th material.

In equation (2.10), our notation is as follows:
• If we denote the columns of C as c1, c2, . . . , cNm , then c1 is the first column

of C, and

bC =
⇥

c2 � c1 c3 � c1 · · · c
Nm � c1

⇤
.

• If we denote the columns of W as w1, w2, . . . , wNm , then we define the un-
known in our resulting inverse problems as

X =
⇥

w2 w3 · · · w
Nm

⇤
.

Thus, our goal is to solve the general inverse problem (1.1), where

K(X) ⌘ exp
⇣
�A

⇣
1cT

1 + X bCT

⌘⌘
.
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3. Iterative Solution of Inverse Problem. Consider the inverse problem,

b = K(X)s + ⌘ ,

and recall that a maximum likelihood solution is obtained by minimizing

L(X) =
NX

k=1

(([K(X)s]
k

+ ⌘

k

)� b

k

ln([K(X)s]
k

+ ⌘

k

)) , (3.1)

where, in our tomosynthesis application, N = N

p

N

✓

. In this paper we use the gradi-
ent descent method to compute a minimum of L(X), and enforce regularization by
truncating the iteration. To compute a minimum of L(X), we need to compute the
gradient,

rL(X) = vec

✓
@L

@x

i,j

◆
,

where we can see from equation (3.1) that

@L
@x

i,j

=
NX
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+ ⌘
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◆
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[K(X)s]
k

.

As discussed in the previous section, we are interested in considering problems where

K(X) ⌘ exp
⇣
�A

⇣
1cT

1 + X bCT

⌘⌘
. Thus, to complete our derivative calculations,

we need to compute
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where ĉ
j

is the j-th column of bC, � denotes component wise multiplication, and ↵
denotes component wise division. Thus,

rL(X) = vec
�
AT V (X)

�

where

V (X) = vec
�
AT

⇥
v1(X) v2(X) · · · v

Nm�1(X)
⇤�

and

v
j

(X) = ((b↵ (K(X)s + ⌘)� 1)� (K(X)(s� ĉ
j

))) , j = 1, 2, . . . , N

m

� 1.

Although it is possible to compute the Hessian for this problem, we omit the derivation
from this paper for two important reasons. First, implementation of a Hessian solve
for Newton type methods would be very expensive, and secondly, as we show in our
numerical results, because the limited angle information from tomosynthesis causes
the problem to be severely ill-posed, a gradient descent method requires relatively few
iterations to compute a reasonably accurate regularized solution.

It is di�cult to precisely quantify the cost of implementing a gradient descent
method for this problem because, for example, the sparsity of A depends on the
geometry of the x-ray source and detector. However, a rough idea can be determined
by counting the number of matrix-vector multiplications with A and AT per iteration.
A function evaluation, that is computing K(X)s, requires N

m

�1 multiplications with
A, and computation of the gradient requires an additional N

m

�1 multiplications with
AT , where N

m

is the number of basis materials used to model the object. Recall that
A is an N

p

N

✓

⇥N

v

matrix, where N

p

is the number of pixels in each measured x-ray
projection image, N

✓

is the number of obtained projections, and N

v

is the number of
voxels used for the discretization of the object. We note that the sparsity and structure
of each A(✓) is completely dependent on angle of acquisition, and A(✓) is neither
symmetric nor structurally symmetric. If the object is discretized into n

x

⇥ n

y

⇥ n

z

voxels (that is, N

v

= n

x

n

y

n

z

), then the maximum number of non zeros in a row is
n

x

+ n

y

+ n

z

2
. With typical values of n

x

= 1280, n

y

= 2048, and n

z

= 50, it is not

practical to explicitly construct A(✓). However, matrix-vector multiplications with A
and AT can be implemented e�ciently with function calls. Moreover, we remark that
we have a very e�cient parallel implementation of the gradient descent method to
solve the inverse problem described in this paper, but because of space limitations,
the parallel implementation will be described in a separate publication.

4. Numerical Experiments. In this section we present some numerical results
to show the e↵ectiveness of our spectral reconstruction method on real data taken
of phantom breast objects with known materials. Specifically, we used two di↵er-
ent phantom objects, one with homogeneous background material that allows for
quantitative evaluation of image reconstruction quality, and another phantom with
heterogeneous background material that provides a more realistic representation of
actual breast tissue.

Projection images of these objects were acquired using a clinical breast tomosyn-
thesis system (Selenia Dimensions, Hologic Inc.) used exclusively for research. This
system acquires 15 projections over a 15 degree angular range, and reconstructs the
imaged volume using the filtered backprojection (FBP) algorithm. FBP is often used
in commercial systems because it is a well-understood method, and because it solves
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the linear approximation (monoenergetic) model, it computes reconstructions very
quickly.

To compare the obtained reconstructions of our spectral algorithm with the FBP
reconstructions produced by the tomosynthesis system, the 2 or 3 separate material
reconstructed images were combined to obtain one image representing the estimated
linear attenuation coe�cient of each voxel, and these were then transformed into
Hounsfield Units (HU) [13].

4.1. Homogeneous Background Tissue. The first phantom we used con-
sisted of four stacked semi-circular, 1 cm thick plates consisting of a homogeneous
mixture of 50% breast adipose and 50% breast glandular tissue equivalent material
with a fifth plate inserted in the center consisting of only adipose tissue equivalent ma-
terial with nine 1 cm diameter holes throughout this plate. The nine holes were filled
with 1 cm diameter targets consisting of di↵erent materials. For the images involving
soft tissue lesions, six of the hole-filling targets consisted of an adipose-glandular tis-
sue mixture with varying glandular-to-adipose ratios (0%:100%, 20%:80%, 40%:60%,
. . ., 100%:0%) with the remaining three holes being filled with other targets not used
for analysis here. For the images involving microcalcifications, the targets consisted
of 100% adipose material with added inserts representing calcium specks of multiple
diameters (0.130, 0.165, 0.196, 0.230, 0.290 and 0.400 mm). This homogeneous phan-
tom, due to its constant background, allows for simpler objective analysis of image
quality by allowing for comparison between lesion signal and background.

Our spectral algorithm needed only 16 gradient descent iterations to get good
reconstructed images. Further iterations did not improve the resolution, but it did
increase the noise in the image. It is important to note that we currently do not
have an automatic approach to choosing regularization parameters (in this case, the
stopping iteration), and so our choice of stopping at iteration 16 was determined by
experimentation.

Figure 4.1 shows an FBP reconstructed image (left) and a combined material
reconstruction image (right) of the homogeneous phantom with the six homogeneous
mixture inserts with varying glandular tissue mass fraction (% glandular mass fraction
for each lesion is specified in the images). The seventh insert seen in the image
was used only to fill in the hole and was not used in the present analysis. As can
be seen, the contrast of the signals is not only improved by our spectral algorithm
(right image), but also the increasing glandular density is better represented with our
spectral reconstruction algorithm.

The signal di↵erence-to-noise ratio (SDNR), a common image quality metric, was
computed for each of the six signal inserts using the equation:

SDNR =
µsignal � µback

�back

where µsignal and µback denote the mean of the voxel values in a region of interest
(ROI) in the lesion and in the background (next to the lesion), respectively, while
�back denotes the standard deviation of the background ROI. A graph of the SDNR
vs. each lesion’s known glandular fraction is shown in Figure 4.2, where it can be
seen that our spectral reconstruction results in a larger increase in SDNR with lesion
glandular fraction, improving visibility.

A zoomed-in version of the 100% glandular lesion are shown in Figure 4.3; ver-
tical signal profiles (i.e., line slices) through the center of these lesions are shown in
Figure 4.4. These figures demonstrate the improvement in homogeneity of our spec-
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Fig. 4.1. Reconstruction slices of a homogeneous phantom with six homogeneous mixture in-
serts. The left image is the FBP reconstruction produced by the tomosynthesis system, and the right
image is the reconstruction produced by our spectral algorithm.

Fig. 4.2. Plot of signal di↵erence-to-noise ratio.

tral reconstructed signal, compared to the distinct artifacts and cupping found in the
FBP reconstruction.

Comparison of the obtained reconstructions when the microcalcification inserts
were placed in the homogeneous phantom can be seen in the images in Figure 4.5,
as well as the vertical signal profiles in Figure 4.6. In Figure 4.5, where the largest
microcalcification cluster is shown, the large size of these high density signals intro-
duces artifacts in the FBP reconstruction (left) (the dark regions above and below
each speck, in the direction of the x-ray source motion), which are not present in our
spectral reconstruction (right). Graphs of the corresponding vertical profiles through
the center of the center speck, in addition to the vertical profile of the background
next to the speck (see Figure 4.6) distinctly show the presence of the streak artifact.
For these profiles, the voxel values of both the signal and background profiles for
each reconstruction were normalized by subtracting the minimum value of the corre-
sponding signal profile and then dividing by the maximum value. This allowed for a
comparison between the two reconstruction algorithms using the same y-scale.

From these figures we can see that in the FBP reconstruction, the signal at the
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Fig. 4.3. A zoom in on the 100% glandular lesion areas from Figure 4.1. The left image is the
FBP reconstruction produced by the tomosynthesis system, and the right image is the reconstruction
produced by our spectral algorithm.

Fig. 4.4. Vertical profile through the center of the images shown in Figure 4.3.

microcalcification is lower than the background at least 1 mm from the center in each
direction, while for our spectral reconstruction the signal matches the background
almost immediately, with some slight (and narrower) reduction only present towards
one side. It can also be seen from the graphs that the spectral reconstruction produces
a narrower peak, representing improved spatial resolution. Figure 4.7 displays another
pair of images showing a cluster with smaller microcalcifications. This figure shows
somewhat improved visibility of the specks in our spectral reconstruction (right), with
the left-most speck (indicated by an arrow in the figure) more visible compared to the
FBP version (left).

4.2. Heterogeneous Background Tissue. The second phantom we used in-
cluded the same 1 cm plate with holes and inserts as described in the previous subsec-
tion, but this time stacked in the center of four 1 cm thick plates with a heterogeneous
mixture of adipose and glandular tissue equivalent materials. This phantom better
tests the abilities of the tomosynthesis system and reconstruction algorithm due to the
presence of overlapping signals, but in general only allows for qualitative evaluation,
since with random structured backgrounds quantitative evaluation is challenging.

Images of the reconstructions of these heterogeneous phantoms are shown in Fig-
ure 4.8, which demonstrate that the improvements shown in the previous subsection
can also be observed in these more challenging cases. Specifically, the more apparent
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Fig. 4.5. Comparison of microcalcification reconstructions. The left image is the FBP recon-
struction produced by the tomosynthesis system, and the right image is the reconstruction produced
by our spectral algorithm.

Fig. 4.6. Comparison of line plots through the microcalcification reconstructions. The left
image is the FBP reconstruction produced by the tomosynthesis system, and the right image is the
reconstruction produced by our spectral algorithm.

increase in contrast with increasing glandular fraction in the circular lesion signals
(top) and the lack of streak artifacts in the microcalcifications (bottom) can be seen
in our spectral reconstructions (right). We terminated our spectral reconstruction at
30 gradient descent iterations, when we observed stagnation in the decrease in the
relative function values; see Figure 4.9.

5. Concluding Remarks. In this paper we described a nonlinear inverse prob-
lem for tomosynthesis image reconstruction that accurately models the polyenergetic
nature of the x-ray beams, and that can incorporate knowledge about materials com-
posing the object. Regularization was enforced by terminating the iteration. It is
possible that explicit regularization methods, such as variational approaches, might
be more e↵ective. This is an important topic for future research.

The polyenergetic nature of the x-ray beams more accurately models the physics
of the problem, while standard approaches such as FBP assume a monoenergetic x-ray
beam. Thus, our spectral algorithm should, theoretically, produce better reconstruc-
tions than standard algorithms; the numerical experiments presented in this paper
indicate that this is indeed the case. Moreover, we showed that iterative methods can
be e�ciently implemented by taking into account the various materials composing the
object. The e↵ectiveness of our spectral reconstruction algorithm was illustrated with
real data taken of an object with known materials that simulates an actual breast.
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Fig. 4.7. Comparison of a cluster of smaller microcalcification reconstructions. The left im-
age is the FBP reconstruction produced by the tomosynthesis system, and the right image is the
reconstruction produced by our spectral algorithm.

Fig. 4.8. Reconstructions of the heterogeneous phantoms. The top row contains circular lesions
of increasing glandular fraction, and the bottom row contains microcalcifications. The images on
the left were obtained by FPB, and the images on the right were obtained by our spectral algorithm.
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Fig. 4.9. Plot of function values for the phantom object with heterogeneous background material.
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