Technical Report

TR-2012-002

Dynamic coloring and list dynamic coloring of planar graphs

by

Seog-Jin Kim, Sang June Lee, Won-Jin Park

MATHEMATICS AND COMPUTER SCIENCE
EMORY UNIVERSITY

Dynamic coloring and list dynamic coloring of planar graphs

Seog-Jin Kim*, Sang June Lee[†], Won-Jin Park[‡]

January 2, 2012

Abstract

A dynamic chromatic number $\chi_d(G)$ of a graph G is the least number k such that G has a proper k-coloring of the vertex set V(G) so that for each vertex of degree at least 2, its neighbors receive at least two distinct colors. We show that $\chi_d(G) \leq 4$ for every planar graph except C_5 , which was conjectured in [5].

The list dynamic chromatic number $ch_d(G)$ of G is the least number k such that for any assignment of k-element lists to the vertices of G, there is a dynamic coloring of G where the color on each vertex is chosen from its list. Based on Thomassen's result [12] that every planar graph is 5-choosable, an interesting question is whether the list dynamic chromatic number of every planar graph is at most 5 or not. We answer this question by showing that $ch_d(G) \leq 5$ for every planar graph.

1 Introduction

A dynamic coloring of a graph G is a proper coloring of the vertex set V(G) such that for each vertex of degree at least 2, its neighbors receive at least two distinct colors. A dynamic k-coloring of a graph is a dynamic coloring with k colors. A dynamic k-coloring is also called a *conditional* (k,2)-coloring. The smallest integer k such that G has a dynamic k-coloring is called the *dynamic chromatic number* $\chi_d(G)$ of G.

The relationship between the chromatic number $\chi(G)$ and the dynamic chromatic number $\chi_d(G)$ of a graph G has been studied in several papers (see [2], [7], [8], [11]). The gap $\chi_d(G) - \chi(G)$ could be infinitely large for some graphs. An interesting problem is to study which graphs have small values of $\chi_d(G) - \chi(G)$.

One of the most interesting problems about dynamic chromatic numbers is to find upper bounds of $\chi_d(G)$ for planar graphs G. It was showed in [5, 9] that $\chi_d(G) \leq 5$ if G is a planar graph, and it was conjectured in [5] that $\chi_d(G) \leq 4$ if G is a planar graph other than C_5 . Note that the conjecture is an extension of Four Color Theorem except C_5 . As a partial answer, Meng–Miao–Su–Li [10] showed that the dynamic chromatic number of Pseudo-Halin graphs, which are planar graphs, are at most 4, and the first and third author [6] showed that $\chi_d(G) \leq 4$ if G is a planar graph with girth at least 7. In this paper we settle the conjecture in [5] by showing the following theorem.

Theorem 1. If G is a planar graph with $G \neq C_5$, then $\chi_d(G) \leq 4$.

We also study the corresponding list coloring called a *list dynamic coloring*. For every vertex $v \in V(G)$, let L(v) denote a list of colors available at v. An L-coloring is a proper coloring ϕ such that $\phi(v) \in L(v)$ for every vertex $v \in V(G)$. A graph G is called k-choosable if it has an L-coloring whenever all lists L(v) of L have size at least k. The *list chromatic number* ch(G) of G is the least integer k such that G is k-choosable. A dynamic k-coloring of k is a dynamic coloring

^{*}Department of Mathematics Education, Konkuk University, Seoul, South Korea (skim12@konkuk.ac.kr). This paper was supported by Konkuk University in 2011.

[†]Department of Mathematics, Emory University, Atlanta, USA (slee242@emory.edu, sjlee242@gmail.com).

[‡]Department of Mathematics, Seoul National University, Seoul, South Korea (wonjin96@snu.ac.kr).

of G which is an L-coloring of G. A graph G is called *dynamic* k-choosable if it has a dynamic L-coloring whenever all lists L(v) have size at least k. The *list dynamic chromatic number* $ch_d(G)$ of G is the least integer k such that G is dynamic k-choosable.

The list dynamic chromatic number has been studied at several papers [1, 3, 6] for some classes of graphs. One of particular interests is to find upper bounds on $ch_d(G)$ for planar graphs G. The first and third author [6] showed that $ch_d(G) \le 6$ for every planar graph G and $ch_d(G) \le 4$ if G is a planar graph of girth at least 7, which is sharp since there is a planar graph with $ch_d(G) = 5$ with girth 6. Based on the result by Thomassen [12] that every planar graph is 5-choosable, a natural interesting question is whether every planar graph is dynamic 5-choosable or not. In this paper we answer this question. We show the following theorem which is an extension of the result of Thomassen [12].

Theorem 2. If G is a planar graph, then $ch_d(G) \leq 5$.

2 Proof of the main results

In order to show Theorems 1 and 2, we will prove the technical lemma that for every planar graph G other than odd cycles, there exists a planar graph H with $G \subset H$ and V(G) = V(H) satisfying that a proper coloring of H gives a dynamic coloring of G (see Lemma 2). To prove Lemma 2, we first prove the case when planar graph G is 2-connected in Lemma 1. We shall then invoke induction to obtain Lemma 2 in full. In Lemma 1 the following propositions will be used.

Proposition 1. Let G be a 2-connected plane graph. The boundary of each face in G is a cycle.

The proof of Proposition 1 is given in Diestel [4, Proposition 4.2.6, page 89].

Proposition 2. Let G be a 2-connected plane graph. Each vertex of degree d in G is incident with d faces.

Proof. Let G be a 2-connected plane graph and let u be a vertex of G with degree d. Then G-u is a connected plane graph. Let v, e and f (v', e' and f') be the number of vertices, edges and faces of G (G-u), respectively. Hence we have v'=v-1 and e'=e-d. Using Euler's formula, we infer f'=v-e+f-v'+e'=f-(d-1) which implies that vertex u is incident with d faces in G.

Now we are ready to prove Lemma 1.

Lemma 1. If G is a 2-connected planar graph other than odd cycles, then there exists a planar graph H with $G \subset H$ and V(G) = V(H) such that for every vertex v of degree at least 2 in G, there are two vertices in $N_G(v)$ that are adjacent in H.

Proof. Let G be a 2-connected planar graph other than odd cycles. Fix a planar embedding of G, and for simplicity, denote the embedding by G. (Now G is a plane graph.) Note that since G is 2-connected, every vertex of G has degree at least 2. It suffices to show the following statement:

(*) There exists a plane multigraph H with $G \subset H$ (as plane embeddings) and V(G) = V(H) such that for every vertex $v \in V(G)$, there are two vertices in $N_G(v)$ that are adjacent in H.

To this end, we introduce several definitions and notation. For a vertex $v \in V(G)$, if vertices v and $x,y \in N_G(v)$ are incident with a common face F of G, then we can add the edge xy in face F to G so that the resulting multigraph G' = G + xy is still a plane graph. We call such edge xy an addible edge of v in G. For each vertex v, let A_v be the set of all addible edges of v in G. Note that since G is 2-connected, it follows from Proposition 2 that $|A_v| = d_G(v)$ where $d_G(v)$ is the degree of v in G.

Let $R := \{a_v : v \in V(G)\}$ be a set of addible edges obtained by choosing an arbitrary addible edge a_v from A_v for each vertex $v \in V(G)$. Let $H = G \cup R$ be the multigraph drawn on the plane by adding all edges in R to G. We call the edge a_v in R a red edge of v in H. Note that H may have multiple edges and edge crossings.

We define $\mathcal{F}(G)$ as the family of such multigraphs H. Note that each $H \in \mathcal{F}(G)$ satisfies the conditions in statement (*) except the condition that H is a plane multigraph. Let cr(H) be the number of edge crossings in H. Let H_{min} be a multigraph in $\mathcal{F}(G)$ such that

$$cr(H_{min}) = \min\{cr(H) : H \in \mathcal{F}(G)\}. \tag{1}$$

Observe that $cr(H_{min}) = 0$ if and only if statement (*) holds. We will show that $cr(H_{min}) = 0$.

For a proof by contradiction, we suppose that $cr(H_{min}) > 0$. Then we will show that there is a multigraph $H' \in \mathcal{F}(G)$ such that $cr(H') < cr(H_{min})$, which contradicts to the minimality of $cr(H_{min})$.

Under the assumption $cr(H_{min}) > 0$, there are two adjacent vertices of G whose red edges in H_{min} cross each other. Let F be the face where the crossing occurs. Note that the boundary of F is a cycle by Proposition 1. Let $V(F) = \{v_1, v_2, \ldots, v_f\}$ be the set of all (distinct) vertices in the boundary of face F in G in a counterclockwise direction, where f is the degree of face F.

Now we are going to obtain $H' \in \mathcal{F}(G)$ such that $cr(H') < cr(H_{min})$ as follows. Delete all red edges of v_1, v_2, \ldots, v_f from H_{min} and denote the resulting graph by W. Then we show that we can add red edges of v_1, v_2, \ldots, v_f to W so that each new red edge of v_i does not cross each other and any other red edges in W. Hence the resulting graph H' satisfies $cr(H') < cr(H_{min})$. Now we describe how to add red edges of v_i in H'. We consider two cases. The first case is when the degree of F is even, and the second case is when the degree of F is odd.

Case 1. When the degree f of face F is even.

Draw the red edges $v_1v_3, v_3v_5, \ldots, v_{f-1}v_1$ to W inside face F to be the red edges of v_2, v_4, \ldots, v_f in H'. Next, for each $v_i \in V(F)$, where i is odd, we will draw the red edge of v_i in a face which is incident with v_i other than F and does not contain any red edges of all neighbors of v_i . Now we claim that such a face exists for each v_{odd} , where v_{odd} denotes a vertex in V(G) with odd index.

Let d_i be the degree of vertex v_i in G. Let $u_1, u_2, \ldots, u_{d_i-2}$ be all neighbors of v_i in G other than v_{i-1} and v_{i+1} . Note that from Proposition 2, there are d_i faces incident with v_i in G. Let $F_1, F_2, \ldots, F_{d_i-1}$ be the faces incident to v_i in G other than F. Since the red edges of v_{i-1} and v_{i+1} are inside face F, the set of all red edges of $u_1, u_2, \ldots, u_{d_i-2}$ can be contained in at most $d_i - 2$ faces among $F_1, F_2, \ldots, F_{d_i-1}$. Hence there is at least one face F_j which does not contain any red edges of all neighbors of v_i .

Let H' be the resulting graph after adding the new red edge of $v_i \in V(F)$ to W for all i. Now we justify that the red edge of each $v_i \in V(F)$ in H' does not cross any other red edges in H'. First note that the red edge of each v_{even} in H' does not cross any other red edges in H', where v_{even} denotes a vertex in V(G) with even index. This is because the red edges of v_{even} in H' are only red edges inside F in H' and they do not cross each other. Next, let us consider the red edges of v_{odd} . Observe that if the red edge of v_{odd} is placed in a face which does not contain any red edges of all neighbors of v_{odd} in G, we infer that the red edge of each v_{odd} in H' does not cross any other red edges in H'.

Case 2. When the degree f of face F is odd.

Since G is not an odd cycle, there is at least a vertex in V(F) whose degree at least 3 in G. Without loss of generality, let v_1 be a vertex in V(F) with $d_G(v_1) \ge 3$.

If we try to draw the red edges of $v_i \in V(F)$ in the way in Case 1, there are two adjacent vertices v_1 and v_f with odd indices. Since v_1 and v_f are adjacent, the choice of the red edges of v_1 and v_f depend on each other. So we first consider the red edges of v_1 and v_f .

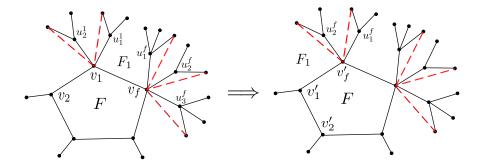


Figure 1: Relabeling in Subcase 2.2. Dashed lines represent red edges.

First we define several notation about vertices v_1 and v_f . Let d_1 and d_f be the degrees of v_1 and v_f in G, respectively. Let $u_1^1, u_2^1, \ldots, u_{d_1-2}^1$ be all neighbors of v_1 in G other than v_f and v_g . Similarly, let $u_1^f, u_2^f, \ldots, u_{d_f-2}^f$ be all neighbors of v_f in G other than v_1 and v_{f-1} . From Proposition 1, each edge in G is incident with 2 faces in G. Let F_1 be the face in G that is incident with edge v_1v_f other than F. Let $F_1^1(=F_1), F_2^1, \ldots, F_{d_1-1}^1$ be all faces in G that are incident with v_1 other than F. Similarly, let $F_1^f(=F_1), F_2^f, \ldots, F_{d_f-1}^f$ be all faces in G that are incident with v_f other than F.

We consider the positions of all red edges of $u_1^1,\ldots,u_{d_1-2}^1,u_1^f,\ldots,u_{d_f-2}^f$. Since all red edges of $u_1^1,\ldots,u_{d_1-2}^1$ can be contained in at most d_1-2 faces among $F_1^1,F_2^1,\ldots,F_{d_1-1}^1$, there is at least a face which does not contain any red edges of $u_1^1,\ldots,u_{d_1-2}^1$. If there is a face that does not contain any red edges of $u_1^1,\ldots,u_{d_1-2}^1$ and the face is different from F_1^1 , we select one of the faces and say F_*^1 . Otherwise, we set $F_*^1=F_1^1=F_1$. Similarly, we define F_*^f for vertex v_f .

If either $F^1_* \neq F_1$ or $F^f_* \neq F_1$ occurs, we can draw the red edges of v_1 and v_f in F^1_* and F^f_* , respectively, so that the red edges of v_1 and v_f do not cross each other and any other red edges in W. Otherwise, we cannot draw the red edges of v_1 and v_f without edge crossings, because face $F_1 = F^1_1 = F^f_1$ is the only face in which we can draw the red edges of v_1 and v_f . Hence we consider two subcases: one is when either $F^1_* \neq F_1$ or $F^f_* \neq F_1$ occurs and the other is when $F^1_* = F^f_* = F_1$.

Subcase 2.1: When $F_*^1 \neq F_1$ or $F_*^f \neq F_1$.

We describe how to draw the red edges of all $v_i \in V(F)$ in H'. First we draw the red edges of v_1 and v_f in faces F^1_* and F^f_* , respectively. Then we draw the red edges $v_1v_3, v_3v_5, \ldots, v_{f-2}v_f$ inside face F to be the red edges of $v_2, v_4, \ldots, v_{f-1}$ in H'. Next, for each v_i , where i is odd and $i \neq 1, f$, we draw the red edge of v_i by the same way as in Case 1.

Now we explain that the red edge of each $v_i \in V(F)$ in H' does not cross any other red edges in H'. Clearly, the red edges of v_1 and v_f do not cross each other and any other red edges in W. With the argument in Case 1, the red edge of each $v_i \in V(F) \setminus \{v_1, v_f\}$ does not cross any other red edges in H'.

Subcase 2.2: When $F_*^1 = F_*^f = F_1$.

We relabel the vertices $v_1, v_2, \ldots, v_f \in V(F)$ so that $v_1 = v_f'$ and $v_i = v_{i-1}'$ for $1 \le i \le f$. Note that $(v_1, v_2, \ldots, v_f) = (v_f', v_1', \ldots, v_{f-1}')$ (see Figure 1). Under the assumption $d_G(v_f') = d_G(v_1) \ge 3$, we have $F_*^f \ne F_1$ with the new label and hence we have Subcase 2.1. By the argument in Subcase 2.1, we can draw the red edges of all $v_i' \in V(F)$ in H' without edge crossings. \square

Now we show that the 2-connected condition in Lemma 1 can be removed so that the same conclusion holds for arbitrary planar graphs except odd cycles.

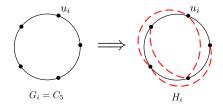


Figure 2: H_i when $G_i = C_5$

Lemma 2. If G is a planar graph other than odd cycles, then there exists a planar graph H with $G \subset H$ and V(G) = V(H) such that for every vertex v of degree at least 2 in G, there are two vertices in $N_G(v)$ that are adjacent in H.

Proof. We use induction on k, the number of edges in G. First, Lemma 2 holds trivially for k=1. Now suppose that every planar graph with at most k edges other than odd cycles has a supergraph satisfying all properties of H in Lemma 2. Let G be a planar graph with k+1 edges other than odd cycle. Lemma 1 gives that if G is 2-connected, then G has a supergraph satisfying all properties of H in Lemma 2. Hence we may assume that G is not 2-connected, that is, G has a cut-vertex G.

Let $\widetilde{G}_1, \widetilde{G}_2, \ldots, \widetilde{G}_l$, where $l \geq 2$, be the components of G - u. Set $\widehat{G}_1 = \widetilde{G}_1$ and $\widehat{G}_2 = \bigcup_{2 \leq i \leq l} \widetilde{G}_i$. For each $i \in \{1, 2\}$ let G_i be the supergraph of \widehat{G}_i with $V(G_i) = V(\widehat{G}_i) \cup \{u_i\}$ such that $N_{G_i}(u_i) = \{w \in V(\widehat{G}_i) : uw \in E(G)\}$. In other words, vertices $u_1 \in V(G_1)$ and $u_2 \in V(G_2)$ are two copies of $u \in V(G)$. Let $G_1 * G_2$ denote the graph obtained from $G_1 \cup G_2$ by identifying $u_1 \in V(G_1)$ and $u_2 \in V(G_2)$ as vertex u. Note that $G = G_1 * G_2$.

Since G is a planar graph with k+1 edges, both G_1 and G_2 are planar graphs with at most k edges. For $i \in \{1,2\}$, if G_i is not an odd cycle, then by the induction hypothesis there exists a planar graph H_i with $G_i \subset H_i$ and $V(G_i) = V(H_i)$ such that for every vertex v of degree at least 2 in G_i , there are two vertices in $N_{G_i}(v)$ that are adjacent in H_i .

On the other hand, if G_i is an odd cycle, then there exists a planar graph H_i with $G_i \subset H_i$ and $V(G_i) = V(H_i)$ such that for every vertex v in G_i except one vertex u_i , there are two vertices in $N_{G_i}(v)$ that are adjacent in H_i . For example, when an odd cycle C_{2k+1} is denoted by $v_1v_2 \dots v_{2k+1}v_1$, for $i \in \{1, \dots, k\}$, draw $v_{2i-1}v_{2i+1}$ on the unbouned face of the cycle and draw $v_{2i}v_{2i+2}$ inside the cycle where indices are taken modulo 2k+1. Denote the resulting plane graph by H. Then every vertex v of C_{2k+1} except v_1 has adjacent neighbors in H. (See Figure 2 for C_5 .)

Since both H_1 and H_2 are planar graphs, there are planar embeddings of H_1 and H_2 such that vertices u_1 and u_2 are on the outer face the embeddings of H_1 and H_2 . Hence there exist planar embeddings H_1' of H_1 and H_2' of H_2 satisfying the following property:

- (a) Vertex $u_1 \in V(H'_1)$ is the rightmost part of H'_1 , that is, there is no other part of H'_1 to the right side of u_1 .
- (b) Vertex $u_2 \in V(H'_2)$ is the leftmost part of H'_2 , that is, there is no other part of H'_2 to the left side of u_2 .

Let $H_1 * H_2$ denote the graph obtained from $H_1 \cup H_2$ by identifying $u_1 \in V(H_1)$ and $u_2 \in V(H_2)$ as vertex u. We will show that $H_1 * H_2$ satisfies all properties of H in Lemma 2.

Case 1. For some $i \in \{1, 2\}$, G_i is not an odd cycle and $d_{G_i}(u_i) \geq 2$.

One can easily check that $V(G) = V(G_1 * G_2) = V(H_1 * H_2)$ and $G = G_1 * G_2 \subset H_1 * H_2$. Also one can easily check that $H_1 * H_2$ has a planar embedding by using the plane graphs H_1' and H_2' . Hence $H_1 * H_2$ is a planar graph.

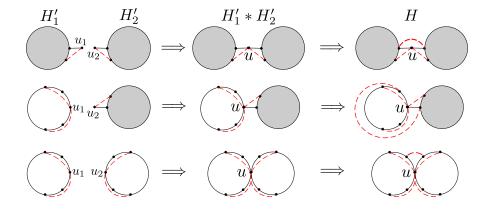


Figure 3: Adding a red edge of u to $H'_1 * H'_2$

By the property of H_1 and H_2 , it is clear that for every vertex $v \in V(G)$ of degree at least 2 in G, except u, there are two vertices in $N_G(v)$ which are adjacent in H_1*H_2 . Next we will show that there are two vertices in $N_G(u)$ which are adjacent in H_1*H_2 . Without loss of generality, we may assume that G_1 is not an odd cycle and $d_{G_1}(u_1) \geq 2$. Note that the supergraph $H_1 \supset G_1$ has a red edge of u_1 which are incident with two vertices in $N_{G_1}(u_1)$. Therefore for every vertex $v \in V(G)$ of degree at least 2 in G there are two vertices in $N_G(v)$ which are adjacent in H_1*H_2 . Thus H_1*H_2 satisfies all properties of H in Lemma 2.

Case 2. For each $i \in \{1, 2\}$, G_i is an odd cycle or $d_{G_i}(u_i) = 1$.

For $i \in \{1,2\}$, denote a planar embedding of H_i satisfying the property (a) and (b) by H_i' . Let $H_1'*H_2'$ be a planar embedding of H_1*H_2 using the planar embedding H_1' and H_2' . Then by the argument in Case 1, the graph H_1*H_2 satisfies all properties of H in Lemma 2 but the property that for vertex u, there are two vertices in $N_G(u)$ which are adjacent in H_1*H_2 .

We intend to find a plane graph $H \supset H_1'*H_2'$ which satisfies all properties of H in Lemma 2 by adding a red edge of u to $H_1'*H_2'$ without edge crossings. For each $i \in \{1,2\}$, if $d_{G_i}(u_i) = 1$, then there is only one red edge incident with $u_i \in V(G_i)$ in the outer face of H_i' . Also if G_i is an odd cycle, then H_i can be drawn on the plane so that there is only one red edge incident with $u_i \in V(G_i)$ in the outer face of H_i' . Hence there are only two red edges incident with $u \in V(G)$ in the outer face of $H_1'*H_2'$. Moreover, there are two neighbors of u which are incident to outer face of $H_1'*H_2'$. One can easily check that the red edge of u can be added to u without edge crossings (see Figure 3). In Figure 3, a shaded disk represents a planar graph that is not an odd cycle and a white disk represents an odd cycle. Dashed lines represent red edges.

Therefore, every planar graph G with k+1 edges other than odd cycles has a desired supergraph satisfying all properties of H in Lemma 2, completing the proof of Lemma 2.

We shall apply Lemma 2 together with the Four Color Theorem and Thomassen's result [12] that every planar graph is 5-choosable in order to prove Theorems 1 and 2. Since Lemma 2 does not consider the case when G is an odd cycle, we first state previous results in [1, 7, 11] on $\chi_d(C_n)$ and $ch_d(C_n)$ for (odd) cycles C_n as follows:

$$\chi_d(C_n) = ch_d(C_n) = \begin{cases} \le 4 & \text{if } n \neq 5 \\ = 5 & \text{if } n = 5 \end{cases}$$
 (2)

Now we are ready to prove Theorems 1 and 2 in Introduction.

Theorem 1. If G is a planar graph with $G \neq C_5$, then $\chi_d(G) \leq 4$.

Proof. From (2) we have that every cycle C_n with $n \neq 5$ satisfies that $\chi_d(C_n) \leq 4$. Hence we assume that G is a planar graph that is not a cycle. From Lemma 2, there is a planar graph H with $G \subset H$ and V(G) = V(H) such that for every vertex v of degree at least 2 in G, there exist two vertices in $N_G(v)$ that are adjacent in H.

Since H is planar, H has a proper 4-coloring f by the Four Color Theorem. Hence the coloring f of H is also a proper 4-coloring of G. Note that for every vertex v of degree at least 2 in G, there are two vertices in $N_G(v)$ that are adjacent in H. Hence the 4-coloring f of H is a dynamic 4-coloring of G. Therefore $\chi_d(G) \leq 4$.

Theorem 2. If G is a planar graph, then $ch_d(G) \leq 5$.

Proof. From (2) we have that every cycle C_n is dynamic 5-choosable. Hence we assume that G is a planar graph that is not a cycle. For each vertex v in G, let L(v) denote the list of colors available at v with $|L(v)| \geq 5$. We are going to show that G has a dynamic L- coloring ϕ .

From Lemma 2, there exists a planar graph H with $G \subset H$ and V(G) = V(H) such that for every vertex v of degree at least 2 in G, there exist two vertices in $N_G(v)$ that are adjacent in H. Since every planar graph is 5-choosable, H has a proper L-coloring ϕ with 5 colors. Hence, the coloring ϕ of H is also a proper L-coloring of G. Note that for every vertex v of degree at least 2 in G, there are two vertices in $N_G(v)$ that are adjacent in H. Hence, the L-coloring ϕ of H is a dynamic L-coloring of G with 5 colors. Therefore $ch_d(G) \leq 5$.

References

- [1] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, *Discrete Applied Mathematics* 157 (2009) 3005-3007.
- [2] M. Alishahi, On Dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152–156
- [3] L. Esperet, Dynamic list coloring of bipartite graphs, *Discrete Appl. Math.* 158 (2010) 1963–1965.
- [4] R. Diestel, Graph Theory 3rd ed, Springer 2006.
- [5] S. Fan, H.-J. Lai, and Y. Chen, Conditional coloring for planar graphs and graphs of higher genus, manuscript.
- [6] S.-J. Kim and W.-J. Park, List dynamic coloring of sparse graphs, *Lecture Notes in Computer Science*, Volume 6831 LNCS, 2011, Pages 156-162
- [7] H.-J. Lai, J. Lin, B. Montgomery, and H. Poon, Upper bounds of dynamic chromatic number, *Ars Combinatoria* 68 (2003) 193–197.
- [8] H.-J. Lai, J. Lin, B. Montgomery, T. Shui, and S. Fan, Conditional colorings of graphs, *Discrete Math.* 306 (2006) 1997–2004.
- [9] Lin and Zhao, Dynamic coloring of planar graphs, J. Shengzhou Univ, Not. Saci. Ed (2010)
- [10] X. Meng, L. Miao, B. Su, and R. Li, The Dynamic Coloring Numbers of Pseudo-Halin Graphs, *Ars Combinatoria* 79 (2006) 3–9.
- [11] B. Montgomery, Dynamic coloring of graphs, Ph.D. dissertation, West Virginia University, 2001.
- [12] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Ser. B 62 (1994), 180–181.