Technical Report

TR-2011-002

Applications of Variational Data Assimilation in Computational Hemodynamics
by

Marta D’Elia, Lucia Mirabella, Tizaino Passerini, Mauro Perego, Marina Piccinelli,
Christian Vergara, Alessandro Veneziani

MATHEMATICS AND COMPUTER SCIENCE

EMORY UNIVERSITY



Applications of Variational Data Assimilation in
Computational Hemodynamics

Marta D’Elia, Lucia Mirabella, Tiziano Passerini, MaurorBgo, Marina
Piccinelli, Christian Vergara and Alessandro Veneziani

Abstract The development of new technologies for acquiring measaamdsmages
in order to investigate cardiovascular diseases raiseschallenges in scientific
computing. These data can be in fact merged with the nunesiitaulations for
improving the accuracy and reliability of the computatibtomls. Assimilation of
measured data and numerical models is well establishedteomdogy, whilst it is
relatively new in computational hemodynamics. Differeppeoaches are possible
for the mathematical setting of this problem. Among them fallow here a vari-
ational formulation, based on the minimization of the mitrhebetween data and
numerical results by acting on a suitable set of controlades. Several modeling
and methodological problems related to this strategy aemoguch as the analysis
of the impact of the noise affecting the data, and the desigffective numerical
solvers. In this chapter we present three examples wheretlzematically sound
(variational) assimilation of data can significantly impedhe reliability of the nu-
merical modelsAccuracyandreliability of computational models are increasingly
important features in view of the progressive adoption aharical tools in the
design of new therapies and, more in general, in the decisiaking process of
medical doctors.
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1 Introduction

In the last 20 years mathematical and numerical models hage progressively
used as a tool for supporting medical research in the caadamlar sciencén sil-
ico experiments can provide remarkable insights into a phgatthological process
completing more traditionah vitro andin vivo investigations. Numerical models
have been playing the role of “individual based” simulataisle to furnish a dy-
namical representation of the biology of a specific patiera aupport to the prog-
nostic activity. At the same time, the need for quantitategponses for diagnostic
purposes has strongly stimulated the design of new methodisnatruments for
measurements and imaging. On the one hand, we can simulgifelarge portions
of the cardiovascular system of a real patient properlyidiclg simplified models
for the peripheral sites (see e.qg. [73, 72, 33, 23, 65]). @mother hand, thanks to
new instruments, images and measures nowadays providaslacid bioengineers
with a huge amount of data. These data offer obviously newiplesbenchmarks
for the numerical simulations (see e.g. [37]). However,dmelythe validation, it is
possible to merge simulations and measures by means of raphéstcated nu-
merical techniques. This procedure is call2ata Assimilation(DA) (see e.qg. [7]).
With this name we mean the ensemble of methods for mergingrodéd (generally
sparse and noisy) information into a numerical model basgd®@approximation of
physical and constitutive laws. The merging improves thaityuof the information
brought both by numerical results and by measurements:
- numerical simulations are improved by the merging of da# &llow to include
effects otherwise difficult to model (at the qualitative aragtitative level), such as
the presence of tissues surrounding an artery or the mofiteart affecting the
aortic dynamics;
- measures are in general affected by noise, so that assomitz results based on
physical and constitutive laws introduces a sophisticéitest, forcing the consis-
tency with basic principles.

In some fields, these techniques are quite mature and té@stealticular in geo-
physics and meteorology (see the excellent review of method7]). There are
basically two classes of methods for performing DA, boththwgitos and cons.

Variational Methods DA is performed by minimizing a functional, estimating
the discrepancy between numerical results and measuresplimization prob-
lem is solved by using the mathematical model as a constrgion the identifi-
cation of a proper set of control variables. In environmkstizdies this is often
the initial state of the system of interest. In some cabkglgingor Dynamic
Relaxation Methodghe functional to be minimized is properly “altered” so to
include the data to be assimilated directly in the equatifrise model.

Stochastic methods These are based on the extension to nonlinear problems of
theKalman filter, which is a statistical approach for prediction of lineasteyns
affected by uncertainty [69, 41, 81], relying upon a Bayesizgaximum likeli-
hood argument.
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On the contrary, there are relatively few studies devoted toathematically
sound assimilation of data in hemodynamics, probably bex#ue availability of
more and more accurate measurements is the result of tegypr@dvancements.
In particular, we mention [11, 51, 52, 53, 70], essentialigdd on Kalman filtering
techniques, and [26] for the variational approach.

In this chapter we consider three possible applicationsAdfb@sed orvaria-
tional methodslin particular we present possible techniques for

1. merging velocity data into the numerical solution of thedmpressible Navier-
Stokes equations, so to eventually retrieve non primitaeéables like thaVall
Shear StresfNSS);

2. including images into the simulation of blood flow in a nmyidomain, so to
perform the fluid dynamics simulations including the meadumovement of the
vessel;

3. estimating physiological parameters of clinical inggrey matching numerical
simulations and available data.

In all these examples we face a common structure that cangietel@ as a clas-
sical feedback loop illustrated in the scheme below.

v =FW(Input,CV)

Data
Input @
FORWARD v POST - )
cv PROBLEM PROCESSING | f(v)

CONTROL J =dist(f(v),Data)
Control o
(+ Regularization)

At an abstract level, all these applications actually leasitive a problem in the
form: Find the Control Variable CV (belonging to a suitabledctional space) such
that it minimizes the distance

J =dist(f(v,Data)) (+ Regularizatioh, 1)

whereData is the set of (noisy) measuresthe solution of the Forward Problem
FW, which depends on sonheput variables andCV. Finally, f(-) represents a post
processing step for computing the quantity to be comparédtive data. “Regular-
ization” stands for some possible Tikhonov-like reguleaggzterm with the role of
making the mathematical and numerical problem more trée(@ee e.g. [19, 34]).
Control problems with constraints represented by parifeéréntial equations have
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been studied since a long time ([44, 46, 47, 30, 31, 45, 87, Bdfomputational
hemodynamics, these problems have been considered, fopéxdor the prescrip-
tion of defective boundary conditions [21, 24, 25].

There are several issues when solving these kind of probleartcularly rele-
vant for our applications are

1. Theexistencef an admissible CV that attains the minimal distance betvazga
and results. This can depend on the location (in space amj Gfrthe available
data and can be forced by a proper regularization term;

2. Thenoisethat invariably affects the data to be assimilated; this&hasjor im-
pact on the reliability of the entire data assimilation pes

In the examples presented below we will partially addressetissues, pointing
out available results and open problems for each applicaiiée will split each ex-
ample in three sections after the presentation of the spgedblem and its medical
motivations, namely (i) the formalization of the problemnrathematical and nu-
merical terms - with a specific link to the feedback loop abalig the discussion of
some preliminary numerical results and (iii) of the ass@tlgprospective research.
Far from being a conclusive review of methods and applioatithe present work
pinpoints several open challenging problems in the adoptfovariational meth-
ods for DA in computational hemodynamics. These are armtieghto become an
important tool for pursuing more reliability of numericaiailations in the general
perspective oflata driven simulationgl2] andinverse cardiovascular mathematics
Accuracy and reliability of scientific computing are in faat increasingly critical
issue for the progressive inclusion of numerical simutsim the validation proto-
col of medical devices/drugs as well as in the decision ngakinmedical doctors
[20].

2 Variational Assimilation of Velocity Data for the
Incompressible Navier-Stokes Equations

Bicuspid aortic valve (BAV) is the most common congenitatielefect, occurring
in about 1% of the population [38]. At a mean age of 17.8 yed#$ bf males with
normally functioning BAV already have aortic dilatatiorDj8vhich may eventually
lead to aortic regurgitation or dissection or aortic aneary. Medical doctors are
interested in developing a better understanding of the kigmaimics contributing
to aortic dilatation not only in patients with BAV but alsoather forms of congen-
ital heart disease in which aortic dilatation is common [@]ch an understanding
may allow early risk stratification, possibly leading to dglines for earlier inter-
vention in high-risk groups, with an anticipated resultaatuction in morbidity and
mortality for these patients. Some studies suggest that B&vphology results in
abnormal flow patterns in the ascending aorta, anticipdatinagvalves with signif-
icant asymmetry would result in highly disturbed flow paterConsequently, the
flow patterns, as detected by MRI flow-velocity encoding mdtiiogies (see Fig.
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1), have predictive value in determining which BAV morphmpjosariants would be
at greater risk of developing aortic dilatation. In ordewn#didate this hypothesis,

Measure site

Fig. 1 Left: Blood velocity measured with Magnetic Resonance éndbcending aorta of a patient
(courtesy of M. Brummer, Emory Children’s Healthcare ofahifa). Right: example of a possible
region of interesf2 with velocity measures inside the domain.

clinical studies have been performed [35, 15] evaluatimgWssS in BAV patients
from MRI measurements. WSS is computed by a finite differeapg@roximation
based upon the velocity data and the blood viscosity meakiangever, these esti-
mates are clearly affected by both the discretization eanorthe noise of the data.
Numerical simulations of blood flow can be carried out in tbgion of interest to
improve this computation (see e.qg. [78]). In this contexasures inside the domain
of interest are not strictly needed for solving the incorspitele fluid problem, that
requires only initial and boundary conditions. Howevegytltan be merged with
the numerical results for obtaining a better estimate oMI&S. This leads to the
following problem: How is it possible to incorporate veliyc{noisy) data available
in a domain of interest into the computation of the incomsitde Navier-Stokes
equations? A similar problem in the context of the fluid megbs.of the heart has
been studied in [37] (and successively analyzed in [17hiswork, available ve-
locity data belong to a plane cutting the domain. As it hastmsserved in [37, 14],
in principle, if the data belong to surfaces that split thgioa of interest into regular
subdomains (as a plane), an immediate approach for theikg&mwould be to
solve the equations in each subdomain. In fact, the aveilddia can be prescribed
as standard boundary conditions. This naif approach, hemveges not consider the
presence of the noise. As a matter of fact, no filtering iuhiiced in this way and
the noise is spread into each subdomain, resulting in sigmifiinaccuracies (see
[14]). For this reason, we resort here to a variational apgino
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2.1 Mathematical formulation and numerical approximation

Let us denote by2 a domain inRY (d = 2, 3; in real applicationsl = 3, however
here we limit numerical results to the 2D case). We assumntdhieadomain of in-
terestQ (see Fig. 1, right) features an inflow bounddry, an outflow boundary
lout @and the physical wall of the vessBl . lin and i,y can possibly consist of
more parts (like in a vascular bifurcation). Variables denest are the velocity
and the pressure = p; p which are assumed to obey the incompressible Navier-
Stokes equations i2. Here we have denoted Ipy the fluid density. At this stage,
we consider the steady problem. We assume to have velocigunes Data) u™
available atNs sites x; € Q. Following the general description given in the Intro-
duction, we assume that the CV is represented by the inflomalstres$. This is
an arbitrary choice, an extensive comparison with otheicetsas still to be done.
Post-processing(-) in this case is given by the Dirac delta distributions, sumt t
f(u) is the vector of the values of the computed velocity at thesmeament sites.
Then, the distancdist(f (u),u™) is defined aii’\'jl(u(xi) —u™(x;))2. The control
problem reads: Find

mhin/(u., h) = dist(f (u), u™) + Regularizatioth)
—0-(vOu)+ (u-Oju+0Op=sin Q,

O-u=0 in Q, (2)
st.<cu=0 on Myai,

—vOu-n+pn=h on lip,

—vOu-n+pn=g on lout,

wheren denotes the outward unit vector normal to the boundary. Atdeian rhe-
ology is supposed to hold, since it is a common assumptioargeland medium
vessels [23] and is the kinematic viscosity. Since we are considering fixeohge-
tries, we assume homogeneous Dirichlet boundary conditioifi,;. When solv-
ing problems in the form (2) there are in general two possisl. In the first one, we
first write the necessary conditions associated with théimoous constrained opti-
mization problem, the so callé¢arush Kuhn Tucke(KKT) system [57, 34]. These
are obtained by augmenting the original functional with fhariational formula-
tion of) the constraint given by FW (in this case the steadyi®&aStokes problem),
weighted by unknown multipliers and then by setting to zéederivatives of the
augmented functional with respect to the multipliers (sotitain thestate problen
to the variablesddjoint problem) and to CV pptimality conditiony Successively,
the resulting problem is discretize@gtimize then DiscretizeOD - approach). In
the second approach, we first discretize the different corapts of the problem (the
functional to be minimized and the constraints) and theffoper the optimization

1 Notice that we use the word “sites” for the location of meamgnts, as opposed to the word
“nodes” for points where velocities are computed. We do sstime at this level particular posi-
tions for the sites, even though in the applications it isoeable to assume that they are located
on planes transverse to the blood stream.
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of the discrete systenDfscretize then OptimizeDO - approach). In [14] we com-
pared the two strategies, and found that the DO is more effidier the problem at
hand. For this reason we proceed with the latter approach.

2.1.1 Thediscrete DA Oseen problem

Let us consider preliminarily the linear Oseen problem. Mbalinear convection
term (u- O)u is replaced with(3 - O0)u, wheref is a known advection field. The
discretized optimization problem reads

. 1 a
min 7 (V, H) = 3[IDV —U"|3-+ J)|LH]3

B RT
WhereV:[U], S:{C+A B }

P B o}
©)

Here,U andP are the discretization of velocity and pressure. In paldicwe resort

to an inf-sup compatible finite element (FE) discretizafieee e.g. [66], Chapters 7,
9). H is the discretization of the control varialiieIn formulating the minimization
problem, we need to introduce some special matrices. Q islidoeete operator
corresponding td in (2), i.e. the matrix such thdQU]; is the numerical solution
evaluated at the site and corresponded by the d4td";. Matrix D is defined as
D=[Q J. Ry isarestriction matrixwhich selects the degrees of freedom (DOF)
of the velocityU onTli,; Min is the mass matrix restricted to inlet boundary nodes; C,
AP and B are the discretization of the diffusion, advection divérgence operators
respectively. Foa > 0, ||LH||3 is a Tikhonov regularization term (see e.g. [36]).
Matrix L is such that ['L is positive definite. The Lagrange functional associated
with the problem (3) is

s.t. &/ =R MinH +F.

1 a
Z(V,HA) = 5[IBV = UMZ+ 5 [LH[3+AT(SV — RpMinH —F), - (4)

whereA € RNt js the discrete Lagrange multiplier. The associated KK Tesyis

reads
D'(DV -U™) +S'A =0

aLTLH —M]RinA =0 (5)
SV -RIMinH —F=0.
In [13] we proved the following proposition.

Proposition 1. Sufficient conditions for the well-posedness of the disaptimiza-
tion problem are:

1l.a>0;
2. for a= 0, Null(D) NRangéS *RT Min) = {0} (%).

This result basically states that, in absence of regulédoizavell-posedness is guar-
anteed if enough measurement sites are placed at the inflomdaoy. This proposi-



8 D’Elia et al.

tion stems from the analysis of the system obtained afteglitrénation ofV andA
from the system (5) (the so-calleeduced HessignIn Fig. 2 we report the singular
values of the reduced Hessian when the sufficient conditipis fulfilled (left) and
violated (right). In the latter case, it is evident that imgeal a violation of such
condition may lead to discrete ill-posed problerf86].

10° | —

(=3
°*

Singular Values
L4
Singular Values

"\

0 10 20 30 40 50 60 0 20 40 60

Fig. 2 Singular values of the reduced Hessian for a non reguladasd & = 0): on the left, the
condition ) is fulfilled, on the right it is violated.

On the contrary, no constraints need to be fulfilled when ikbdnov regulari-
zation is actived > 0). However, in practice, the selectionafequires to find the
proper trade-off between the requirement to solve a welllitammed problem (large
a) and to keep the perturbation of the original problem as kasglossible (smad).

A possible approach (see [8, 36]) is to select the parameterding to the discrep-
ancy principle (DP), i.e. to seleetin such a way that the perturbation of the regu-
larization term affects the solution with the same ordethef discrepancy induced
by the noise. The proper choice of the parameter following d&pproach may be
however computationally expensive. There is another plessiay for forcing the
well-posedness exploiting the result of Proposition 1.uadly, let us assume that
some data are available at the inflow, not necessarily fatjithe well-posedness
sufficient condition(x). If we extend the given data to the entire set of DOH;pf
by interpolation of the available data (e.g. piecewisedimgthe resulting problem
satisfies conditioitx). This results in fact in an additional term to the functiopal
that plays the role of a regularizing term (see [13]). A maoxieesive analysis of
this approach, and the interplay between the interpolatiwhthe noise affecting
the original data is currently under investigation.

2.1.2 Thenonlinear Navier Stokes problem

When we consider the nonlinear advection t¢omJ)u the problem becomes much
more difficult since now we have a nonlinear constraint [B7possible approach is
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to combine the DA procedure for the linear case with clas$ixed point lineariza-

tion schemes (i.e. Picard and Newton). Thus, the DA asdiarigroblem is solved
iteratively. We report the simple case of the Picard meti@iden a guess for the
velocity at stegk, sayUg, we solve

C+AY% BT

1 a
min =||DVi1(Hie1) — UM|2 + S [ILH 1|2
Hk+12|| ki 1(Hkr1) 12+ 5 lILHill2 WhereS:[B o} ©)

st. Vi1 = Ri-lr-innHk+1+ F

up to the fulfillment of a convergence criterion. When usihg Newton method,

the convergence strongly depends on the initial guess, smanon procedure is to

perform a few Picard iterations (6) and use the resultingaig} as an initial guess

for the Newton method. In our approach the loop for solvinglbnlinear system

is merged with the one for the optimization problem, thusucidg the computa-

tional cost. Numerical experience (next subsection) shbasconvergence is not
prevented by this further approximation. Other approachese however pursued,
for an introduction to optimization with nonlinear constta see [57].

2.2 Numerical results

We first present some simulations on an analytic test casevéstigate basic con-
vergence properties of the DA procedure without and wittptiesence of the noise,
in comparison with the FE convergence of the forward problEhen we address
a comparison between a classical Tikhonov regularizati@hthe data interpola-
tion method. Results have been obtained with the C++ findmeht libraryl i f ev
[16].

2.2.1 A consistency test

Let Q be the domaim2 = [-0.5, 1.5] x [0, 2] with a flow described by the analyt-
ical solutionus (x,y) = 1—e*cog2my), uz(x,y) = 2}\—nef‘xsin(2ny), p(x,y) =

%e”"%C, with A = (v~ —+/v-2+16m2), andC is a constant chosen to give a
zero mean pressure. Solution of the DA problem has beemauataly using inf-sup
compatible FEsF'bubbleP'). Regularization is obtained with L corresponding to
the discrete gradient operator amslelected according to the DP. The nonlinear term
has been solved by combining Picard and Newton methods.

As expected, in the noise-free case the assimilated velazbvers the solution
of the forward problem. In particular Fig. 3 shows that expdauadratic conver-
gence rate for the? norm of the velocity error when the mesh siag tends to 0.

In case of noisy data (Gaussian white noise), the error diggachanges. In par-
ticular, the error decreases as more data are availabl&igeé, left). We observe
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that the convergence rate with respect to the number of Niés of the order of
1/+/Ns. Moreover, when the number of sites and the mesh are fixed anepeat
the DA with different noise realizations, we observe a pesgive convergence of
the sample mean of the assimilated solution to the noisesfrkgion, with a rate
proportional to ¥+/N;, beingN; the number or realizations. (see Fig. 4, right). Note
that these results are consistent with the central limibttie. More details can be
found in [13].

——Ey

———py?

: Picard:Newton

Fig. 3 Test of consistency for the DA procedure of velocity datasedree data. The accuracy of
the computation is the same as for the solution of the FW probl

___reference curve N® S - --Noise-free error
s : s
_ - .Reference curve: © Nr
N
N ;
10" —e—Mmean error E100 NN —8—Sample mean error
10" o B
o
=] E
2 5
i < ui
. 3
e
.
~sl
i ] .
11 13 15 17 18 10 o 7 3
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Fig. 4 Test of consistency for the DA procedure of velocity datauaacy of the DA improves
when the number of site¥; (left) or of the noise realizatioN; (right) increases.
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2.2.2 Regularization & Interpolation

We compare the results obtained with the regularized prolffarametea tuned
again with the DP) and the interpolation of inflow data whessthdo not fulfill con-
dition (x) of Proposition 1. In Table 1 (left) in correspondence ofeliéint choices
of locations and numbeéX, of sites onflj,, we report the relative error and the
number of iterationsi(t ) for solving the reduced Hessian. The case where neither
Tikhonov regularization or interpolation are performedegported as a reference
test. The addition of interpolated data on the DOF@prhas the effect of forcing
the well posedness of the problem, as can be inferred fromsittgular values of
the reduced Hessian in the case reported in Figure 2. Alsaltsereported in Ta-
ble 1 show that, in terms of accuracy, the interpolation pdate is comparable
with Tikhonov regularization. This fact, combined with tbemputational saving
associated with the generation of the interpolating fumstas opposed to applying
the DP, makes interpolation an efficient regularizatiomitégue, competitive with
common available methods.

Nin|interpolation a | By |it
14 no 0 |0.068 14
14 no 0.0210.0614 15 SNR EWSSDA EWSSFW
14 yes 0 |0.05918 100| 0.2536| 0.2667
14 yes 0.021{0.054 16 20 | 0.2591| 0.3030
8 no 0 |0.19911 10 | 0.2738| 0.3861
8 no 0.0380.137 18 5 | 0.3149| 0.6114
8 yes 0 |0.13917
8 yes 0.0380.12917

Table1 Left: Comparison of the results of a regularized DA vs a neguitarized interpolated DA.
Right: Relative errors of the WSS computed with the DA procedure and a forlader-Stokes
noisy simulation in a 2D carotid bifurcation for differeralues of the SNR.

2.2.3 Assimilated derived quantitiesin nontrivial geometries

In view of real hemodynamics applications, we present a destnative test case in
non-trivial geometries (representing a 2D simplified maafethe aortic arch and
an arterial bifurcation). Since in these cases we do not hawnalytical solution,
we have computed a “reference” solution on an extremely fieshhgrid (using
parabolic inflow conditions and homogeneous Neumann conditit the outflow)
in both cases. Successively, a noise with several valuesgofiBto-Noise Ratio
(SNR) has been added to the solution. This generates a setsyfaata to be as-
similated represented by the black vector field in Figureei, Results of the as-
similation are significantly close to the reference solutids a matter of fact, we

i i ; . Ju-u
consider as an index of the accuracy for the solution the Eji= w To
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test the competitiveness of the DA procedure we compareethéve error of the
assimilated velocity with the one of the velocity obtaineadinfi a forward simula-
tion where noisy data ofj, are prescribed as a Dirichlet condition; in this case we
obtainEj; = 8.1e-2 ancE; = 16.0e-2. This pinpoints the role of DA as a
process for de-noising the available data thanks to matheshanodels. The DA
procedure in fact corrects the measurements according fmhysical principles un-
derlying the mathematical model. This is evident not onhtlfee primitive variable,
but also checking non-primitive interesting quantitiesFigure 5, right, we report
the vorticity map recovered from an assimilated velocitydfien a geometry ap-
proximating an arterial bifurcation. For the same simolatiwe check the accuracy
of the WSS. Accuracy results are reported in Table 1, righe WSS is retrieved
in two ways. In the first case, we perform the DA procedure a&dthe assimilated
velocity field for extracting the WSS. In the second case, & again the inflow
noisy data as boundary conditions for a forward computaifdhe incompressible
Navier-Stokes equations on the same mesh where DA is peztbrim particular, in
the table we report the relative errors, i.e. the differasfdbe WSS compared with
the noise-free reference solution on the fine mesh. It iseaitithat the DA leads to
a more accurate estimate of the WSS, the improvement beimg evident as the
SNR gets smaller.

Fig. 5 Left: DA assimilation on 2D a curved domain. Black arrows e data to be assimilated.

The red arrows (colores refer to the pressure) are the seftr the DA procedure. The results of
DA are closer to the reference solution, highlighting thie if DA as a filtering procedure for the

noise of the data. Right: vorticity in a 2D bifurcation congdi by the DA procedure

2.3 Perspectives

Assimilation of (velocity) data into the simulation of ancompressible fluid is a
problem whose interest goes beyond the specific medicaktagphs, and different



Data Assimilation in Hemodynamics 13

methods are viable. In [37] Least Squares Finite Elemeetssed because of their
versatility in managing different boundary conditions[26], merging of velocity
data is carried out by using a “virtual” forcing term as CV.relewe resorted to a
control approach that in preliminary test cases providesysing results. Sufficient
conditions for the well posedness of the linearized Oseehlpm are given. Many
challenges are however open by these preliminary resudtgoml (and before) an
extensive use of DA in clinical practice, there are at least tnain concerns that
deserve an accurate consideration.

1. Analysis of the impact of the nois&n extensive analysis of this aspect is in
order to identify the reliability of the results. Modelinget impact of uncertainty
on the solution of partial differential equations is an opdate topic (see e.g.
[55, 59] and the recent work [18], comparing Galerkin vs @cdition methods).
Different approaches can be pursued and different sourfcesise should be
considered, depending on the measurement devices (sefleapd Chapter
3 of [42]). A sensitivity analysi®f quantities of interest such as the WSS on
the noise affecting the data would clarify the robustneghefprocedure to the
perturbations. More advanced approaches are based on themhmethod, the
Bayesan approach, the polynomial chaos (see e.g. [79pnEixe investigations
on this aspects, with different approaches, will be cardetias a follow up of
the present results.

2. Unsteady problem&Vhen solving unsteady problems, following again a DO ap-
proach, we first discretize in time and at each instants sthlgeoptimization
problem. In this case, the extension of the method devisethéosteady case
is pretty immediate. However, possible computational eong arise from the
nesting of the time and the optimization loops. Selectioapygropriate effective
preconditioners is in order. Another issue refers to thaihtonditions that in
general are not known. In meteorological applicationsse¢hare included in the
set of CV and used for driving the assimilation proceduredrdiovascular ap-
plications an alternative approach consists of forcingoakeity of the solution.
This approach will be investigated elsewhere.

3 Image Assimilation in a Moving Domain Simulation

Rigid-wall models for blood motion in arteries are oftenaete enough for a quan-
titative analysis of hemodynamics (see e.g. [71]). Howeleare are situations in
which the magnitude of the mechanical forces involved apdigformation experi-
enced from the vessels cannot be neglected and their effemtdd be appropriately
considered while modeling the coupled system.

The standard strategy to simulate the blood flow in a compliassel is to write
the models for both the blood (the incompressible Naviek& equations) and
the wall (see e.g. [39]) together with appropriate matcliogditions at the inter-
face between the two domains (Fluid-Structure Interactiesl). At the numerical
level, the coupled model is then solved either with a mohiiapproach or by seg-
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regated solvers managing iteratively the sequence of fluitdsalid problems (see
e.g. [28]). This strategy allows the accurate computatidyoth fluid and solid me-
chanics and is challenging from both the modeling and thearioal point of view.
In fact, the constitutive laws for modeling the arterial &tlll deserve extensive
investigations especially in the presence of vasculargiagfies (see e.g. [82]), not
to mention the difficulty to obtaiim vivomeasurements that can accurately estimate
the model parameters for an individual patient (see SecMdjeover, vessels are
subject to external loads due to the presence of the surimgitidsues, which are
in general unknown or not easy to model. We mention for exartip effects of
cardiac motion on the aortic arch. From the numerical pointi@w, the strongly
heterogeneous nature of the problem raises issues comgaraimerical stability
and efficiency of FSI algorithms (see e.g. [10, 27]).

Here we consider an alternative approach based on a DA proggtat exploits
the technological development experienced in the lastdkbg medical imaging
techniques. The advent of high resolution imaging devitiesva the fast acquisi-
tion of 4D (space + time) images. From those images it is ptes$d reconstruct
anatomical structures not just in one specific instant, luhultiple ones over the
cardiac cycle. Following this approach, the vessel motiosiead of being com-
puted, is retrieved from images and plugged into the NaStekes solver. The main
advantage of this approach is the direct inclusion into fhukations of patient-
specific data, i.e. the motion of the vessel (depending andtshanical characteris-
tics and those of the surrounding organs). This is done tiradlie use of medical
images at a limited additional computational cost with ez$ppo the case in which
the geometry is assumed to be fixed. We will denote this agpréB Image Based
(4DIB). A similar technique has been proposed in [71, 76] selthe authors apply
this image-based motion approach to intra-cranial anewsyand coronary arteries
respectively, even if implementing different strategiesome steps of the proce-
dure.

3.1 Mathematical and numerical formulation

The workflow of the 4DIB approach consists in the followinggst (for more details,
we refer to [64]). We assume to have an image set that regeeien vessel of
interest at several time framét} within a heart beat.

1) Segmentation Depending on the nature of the source images, their dimensio
ality and the complexity of the geometry to be reconstrucsedmentation can be
performed on single 2D planes or directly on 3D datasetdeEgifit segmentation
methodologies and different ways to represent the final tsade available. For an
introduction, see [2, 6]. In the applications presente@ h&tevel set technique was
used for the 3D segmentation of vessels, specifically theeatation tool available
within the Vascular Modeling Toolkit (VMTK) software pacge [1]. At the end of
this step, a triangulated surface is available for each tiarae.
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2) Motion tracking - This consists in solving eegistration problen{see e.qg. [22]),
i.e. finding the alignment of the geometries of two conseedutime frames, so to
have a displacement field that maps the points on the surfabe tumen at a given
time frame to the surface in the subsequent one. This is anegample of inverse
problems that can be cast in the form of the feedback looparritroduction. For
this reason, we detail this step in the next subsection.

3) Simulation -From the sequence of maps describing the motion of the surfac
points from one time frame to the subsequent one, the vglotihe boundary of
the moving domain is estimated at the image acquisitiondirii@en, this is inter-
polated to define the velocity of the boundary at each timeirisn the simulation.

To ensure the continuity of the time derivative of the poirgkcity, a cubic spline
time interpolation is chosen. The displacement and thegligcity w of the whole
domain, computed at each time step of the simulation, a@dredd by the harmonic
extension of the boundary fields. Once the domain motionadlae, the incom-
pressible Navier-Stokes equations for a Newtonian fluidrimo&ing domain can be
written in theArbitrary Lagrangian Eulerian(ALE) formulation (see, e.qg., [40])

%—vAu—i—(u—w)-DquDp:s in Q(t)

O-u=0 in Q(t), )
u=w on ly(t),

+Boundary Conditions on Fin(t) and Mou(t).

On the wall the fluid velocity is prescribed equal to the vesséocity (Dirichlet
condition), while inflow and outflow boundary data can beiesgd by measures or
designed to reproduce a physiological or pathological ieha

3.1.1 Assimilation of segmented vascular surfaces

Registration is a procedure for aligning images taken fraffiergnt devices, from
different viewpoints or at different time instants. Manyfelient methodologies ex-
ist depending on the source of images, their dimensionalitythe type of move-
ment to be recovered, particularly whether we have smalbgel deformations.
In particular, a wide number of different approaches hawntuetailed for surface
registration (see e.qg. [49, 86, 9, 3)]).

Here we resort to an algorithm relying upon a minimizatioogedure [22]. The
registration is performed over 3D surfaces representiegvéssel at the different
time frames. More precisely, given M+1 time frames corresfiog to M+1 trian-
gulated surfaces, the tracking process consists in M ragjish steps between each
couple of consecutive time steps. Within each stage thetgoinone surface, the
source surface”, are mapped to the subsequent one, calletkttyet surface7. A
displacement field for the whole surface mesh is computedatat the end of this
tracking procedure, M displacement fields are availablerilgiag the vessel wall
motion at the instants of the image acquisitions.
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The map between two consecutive frames is computed by ndimigha func-
tional in the form (1). In particular, let us denote wigt{:) the (unknown) map
from . to 7. Referring to the feedback loop in the Introduction, thevfard prob-
lem FW is the actual application @f to the source surface’ (Input), so thaf
v = f(v) = ¢(). TheData are represented by the target surfa€eThe control
variable set CV is given by the mathematical representatidghe map¢ (-). This
can be parametrically described by assuming, e.g., thatonigs to a functional fi-
nite dimensional space spanned by a basis functiogyssa thatp = ¥ a;i, being
g; real coefficients. In this casg are the CV. However, since the map is supposed to
be strongly space-dependent, in [64] we resortecimmaparametric mapmplicitly
defined with a collocation approach by the position of theasooh the source im-
age. This means that the coordinates of the vertexes cothpytihe minimization
process implicitly define the map point-wise. The map is eended to the entire
source surface by a piecewise linear interpolation of theesof the vertexes.

Finally, to complete the picture, we need to specify the d&imof the distance
betweeng () and the dataZ and the regularizing term. Different choices are
available, strictly problem dependent. Let us introdu@edistance of the image of
a point on.¥ to the surfaceZ as

o(9(x), 7)=inf{|l¢(x) ~y[ :ye T}, xeT. (8)

The distance betwee# and.7 can be then defined as

1/2
disto().7) = (151 [ (6(000,7)7 470 ©

where|.| .= [, d.¥ is a normalization factor. In practice the integral needseo
numerically approximated. For triangulated surfaces likeand .7 a reasonable
and viable approximation is

dist(¢(.7),7) = W (10)
J

dji = dist(¢(x;j),tri)
is the distance from vertek of . to trianglei in 7, ng (nt) is the number of
vertexes (triangles) of” (7). By using a tree search algorithm, it is possible the
reduce the computational complexity@(nslog(nr)) (see [4]).

This non-parametric registration by itself is in generbpidsed and multiple
solutions are expected. Some of them are clearly unphyaichheed to be filtered
out. For this reason a regularizing term is introduced,ifgr¢he solutions to be
“physically acceptable” by adding some regularizing prtips (see e.g. [63, 77]).
In particular, we resort to a regularizing term stemmingrfra simplified physical

where

2 the post-processing in this case is trivially the identjiplication.
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model of the vascular wall as an elastic thin membrane [5ddacting for traction
and bending internal forces. The membrane energy proviseeregularizing term.
In this way, displacementp(-) that would cause a large increase to the membrane
energy are heavily penalized (see [64]).

Additional constraints are required for preventing “fligs"triangles. Let

A = aredtri(x,y,z))

be the area of th¥" triangle before deformation and x,y,z its correspondinteses.
Correspondingly, let

¢ (A) = aredtri(¢(x), 6(y), ¢(2)))

be the area of the deformé8 triangle.
Therefore, we add to the minimization gf the constraint of positive deformed
area

Gi(¢)=¢(A)>0. (11)

The minimization problem has been solved by means of the G8PBrocedure
(Limited memory BFGS - see [57]), that requires only the catafions of gradients
and features (at least) a linear convergence even for n@otnproblems.

3.2 Numerical Results

In the following application a 4D computed tomography (Ca}aset of a human
aorta was employed as image source. The dataset was acquibspedale Mag-
giore in Milan (Italy) using a Siemens SOMATOM Definition BlaDual-Source
CT scanner, which was able to capture 10 time frames peramaoyicle. The 4D
image refers to a 72-year-old man with a diagnosed abdomimealrysm and covers
the entire length of the ascending, thoracic and abdomor#éhaFrom this dataset
the portion of the aorta including the aortic arch and theabic aorta was con-
sidered for a simulation in a moving domain. The aorta was Segmented with
VMTK at all the 10 time frames available, and the trackinggadure was applied
to extract the 10 displacement fields describing the vesakimotion over the car-
diac cycle. Figure 6 represents some of the reconstructéates at different time
frames: they are simply superimposed prior to the registigtrocedure in order to
highlight the misalignment due to their movement. Figurefidts the results of the
registration procedure (performed with att hocMatlab code) for two consecutive
surfaces. In the rightmost panel frame 1 has been mappeanef2.

Quantification of the errors of the registration procesgjmrted in [64]. A more
detailed analysis of the error as a function of the numbeodésns and trianglesit
used in each couple of frames is however missing and will bgecbout elsewhere.
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Fig. 6 Synopsis of the last 4 frames superimposed before trackiadben performed

£

rame 01 and 02
efore registration

Frame 01 and 02 after
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Fig. 7 Detail of two frames of the aorta before and after the regfisn

Numerical tests have been run with f eV to evaluate the difference between
the velocity and wall shear stress (WSS) fields computed th#gtdDIB approach
and those computed on a rigid domain simulation. The chdieexa is motivated
by the fact that here the vessel deformation is relevantilgnas a consequence of
the motion of the heart) and is supposed to affect signifigainé¢ blood motion. To
discretize the ALE Navier-Stokes system, we have choseatediider time advanc-
ing scheme and a finite element approximation for the spaoerdtencel* for the
pressure anfbubble for the fluid velocity).

Both the velocity and the WSS fields exhibited a considerdbference with
respect to the rigid domain case, as shown in Figure 8. liicpdat, the relative.2
norm of the difference between the 4DIB fields and the rigichdm fields has an
average over the cardiac cycle of 84.52% for the velocity&hd8% for the WSS.

We also performed aim-silico consistency test of the 4DIB approach with re-
spect to a FSI simulation, assumed to be the reference bemktsolution. In par-
ticular we have first run a FSI simulation, obtaining the fluédocity and pressure
fields and the displacement of the vessel wall. Then, we haed this displace-
ment as if it was retrieved from images to feed a 4DIB simalatiwith the same
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Fig. 8 Left panel: difference (in cm/s) between the fluid velocipmputed in the rigid domain
simulation and the one computed in the 4DIB simulation Yjef¢locity (in cm/s) computed with
the 4DIB approach (right); both at peak systole. Right padiéference (in dyne/cf) between the
WSS computed in the rigid domain simulation and the one cdetpin the 4DIB simulation (left);
WSS (in dyne/crf) computed with the 4DIB approach (right); both at peak desto

inflow/outflow boundary conditions and fluid properties agi@FSI case. The com-
parison of the results obtained with the two approacheditasgrsa good agreement,
being below 1% of relative difference, on both velocity an&8V Notice that the

computational time required by the 4DIB simulation is sfgaintly smaller than

the one required by the FSI simulation (see [64]).

These tests show that (i) when a relevant motion affects #ssel like in the
aortic case, the 4DIB approach is a viable way for a mores#alilescription of
the blood flow than a rigid simulation provided that avaitatihta can be properly
assimilated; (ii) the results of the 4DIB method are coesistvith the results of a
traditional FSI simulation when the displacement field & $tructure is the same.

3.2.1 A practical workaround for reduced data sets

The 4DIB approach presented here is based on the avayjabildD image data
sets as it is made possible by recent devices. One of thetiomis of the approach
is that as for now only a few instruments are actually ablerampce this kind of
data set. This aspect will be naturally overcome in the Riwith a larger diffusion
of those devices. However, a natural question arises noitpisssible to pursue
a similar approach even for reduced data sets? The follokagnple presents a
possible workaround currently used in the analysis of theioss between WSS
and atherogenesis, in collaboration with the group of DRWaylor at the Emory
School of Medicine (Atlanta, GA, USA). In this case a mousgawas acquired
with magnetic resonance imaging (MRI). The whole 3D geoyetithe aorta and
its main branches was reconstructed at a single time stdfg thle motion in time
of the aorta was retrieved only at a number of locations aitsngenterline. At these



20 D’Elia et al.

points, in fact, the cross sections of the aorta were acgjutiréime by means of
cine MRI sequences (Figure 9). The lumen in the correspgiziinslices was seg-
mented and its area computed for each acquisition instdng.tifne evolution in
time of each cross section area was then reconstructed ibg fittese data with a
cubic spline interpolation. The displacement of the whaeawas suitably inter-
polated from the data available at each slice. More pregisaber the assumption
that the longitudinal and circumferential motion of thesalds negligible, and that
each aortic section is circular, the time pattern of the aresided data on the wall
displacement in correspondence of each slice. The displkageover the entire ves-
sel at each instant was eventually retrieved by a cubicejpliterpolation along the
axial coordinate.

Since no information was available on the motion of the bnamgvessels, their
presence was included in the simulation with the definitiqeroper stress boundary
conditions for the fluid equations.
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Fig. 9 Left: an example of a vascular structure of interest, theoabdal aorta in a mouse. In

correspondence to the highlighted cross-sections, measmts of the arterial wall movement
are available in the form of MRI cine sequences. Center: émhehighlighted cross-section, the
values of the area in time are plotted. The cross sectioral lzeis been computed from MRI cine
sequences, after segmentation of the images at each dicouisne. Right: The time pattern of

the cross-section area has been reconstructed by fittingathes obtained from the images.

Again, we compared the results obtained from a simulatiobledd flow in a
mouse aorta under the assumption that the vessel geoméxgdswith the results
of a simulation in moving domain with the “reduced” 4DIB appch.

The results of the rigid wall simulation (Figure 10, left)osted that areas of
disturbed flow characterize the branching points of the ipnakabdominal aorta.
High values of theoscillatory shear indeXOSI - see e.g. [43]) were computed in
very localized regions at the ostia of the main aortic brascifhe hemodynamic
environment was characterized overall by relatively lowatoad. The results of
the moving domain simulation (Figure 10, right) providedrsight into the effects
of the vessel dilatation in the region of interest. As a measti the dilatation, the
difference between the maximum and minimum radius (ovecdrdiac cycle) of
each section was computed, and normalized by the minimuiasatihe average
value of this indicator on the eight slices was 35%, beingimar in the proximal
abdominal aorta (even more than 40%). When taking into addbe movement of
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Fig. 10 Oscillatory Shear Index (OSlI, [43] ) on the arterial wall bétproximal abdominal aorta.
Left: Results of the rigid wall simulation. Right: Resultstbe moving wall simulation.

the vessel, the computed WSS showed a similar spatial patteioverall a smaller
magnitude compared to the rigid wall case. The ostia of thm martic branches
were not included in the moving domain simulation due to #wk lof information

on their movement. However, the computed WSS was significamdre oscillating

with respect to the rigid wall simulation in the entire pnodl abdominal aorta,
and in particular in the region surrounding the branchinmiso This was indeed
experimentally found to be a typical site for atherosclerdsvelopment.

Despite being only in a preliminary stage, these resultgesigthat neglecting
the movement of the arterial wall may have a significant inhpacthe estimation
of clinically relevant features, such as the presence diiasxry flow. Validation of
these results is ongoing.

3.3 Perspectives

The 4DIB approach has some important drawbacks and limiitatilt requires a
large data set of images, which is not always available, évenme problem-

specific workarounds can be devised to overcome this probdesnpresented in
Section 3.2.1. Moreover, this approach does not provideindtion on solid me-

chanics of the walls and it is therefore suitable when thesaif the study is on the
flow features alone. However, this DA methodology splitsgipeline into a phase
dedicated to the “offline” retrieval of the motion from imagend a phase for the
computation of the dynamics of the fluid alone, which has irtgpd computational

advantages with respect to full FSI simulations. Furtheemthis approach could
guarantee a reasonable reliability to patient-specificktions of blood flow when

the vascular motion is determined by external componeatstbuld not readily be

included in a wall model, or more in general, when individegchanical parame-
ters for a single patient are not available.
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Many open problems deserve to be addressed. As we have meshteocomplete
analysis of the accuracy of the registration process andthewegistration errors
affect the computation of fluid dynamics still needs to beiedrout. In this context,
it is particularly relevant the correlation of the numetipeocedure with the noise
affecting the image acquisition and segmentation. Usimgtéiminology in [74]
this DA procedure can be considered dsmme-to-frame pseudo-observational ap-
proach More mathematically advanced methods advocated in [743twéntail an
integrated variational assimilation of data and imagedlairto the ones introduced
in Sect. 2 could be considered as a future development.

4 Variational Parameter Estimation

Since mathematical and numerical models are earning m@earece in medical
applications and are used as patient-specific tools, aggrestimation of individual
physical parameters featured by the equations is needeagdvier, by themselves,
some parameters can play the role of landmarks of pathalogfes is for instance
the case of the stiffness of soft tissues in detecting bosamter. Significant changes
of the stiffness of the tissue can identify the presencembtis. On the other hand,
a small value of the compliance of the tissue could be an &tdiof atherosclerosis
or hypertension, while an increase of the stiffness of thevéntricle wall is a clear
marker ofdiastolic dysfunctionwhich can lead to an increase of the end diastolic
left ventricle pressure and, possibly, to heart failure @g. [29, 75]). This has mo-
tivated sophisticated image-based diagnostic approashel as thelastography
(see e.g. [50, 5, 58, 32)).

Either for a direct diagnostic purpose or for an individbaked evaluation to be
used in numerical simulations, a precise estimation oflgichl parameteris vivo
is still a challenging problem demanding appropriate matal tools. In this sec-
tion we suggest a DA procedure. The starting point is thapdrameters of interest
are complicated functions of measurable quantities. Fetairce, the compliance
of a tissue affects in a non trivial way its displacement,Ittiger being retrievable
from images. In some cases (as in elastography) we can ffresice forces induc-
ing a measured displacement and formulate an inverse pnabl¢éhe form: given
the force and the consequent displacement, find the stifffoesnore precisely the
Young modulus, in the case of a linear elastic material) fitaait best the experi-
mental stress-strain data. In other cases, practicalmegsevent the knowledge of
some of the ingredients of this inverse problem. For ingatite natural periodic
motion of a vessel is the result of the interaction with theool (and the other tis-
sues), in turn forced by the heart action. The forces exemetie vascular wall by
the blood are not explicitly known but can be included in ahmatatical model of
the FSI, as a function of (available) velocity/pressureigalon the boundary of the
region of interest. The basic idea of DA approach is then ®rusmnerical simu-
lations for bridging available data to the ingredients regkfibr solving the inverse
parameter-estimation problem.
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In the case of the vascular stiffness, usable data are thgesnaf the vessel
displacement (as in Sect. 3) and velocity and pressure.(2eon the boundary.
Numerical simulations allow to compute the forces on the aatl eventually to
solve an inverse problem. We present here a first step in itt@stibn. However, it
is worth stressing that this DA approach has potentially aengeneral use than for
the evaluation of the vascular compliance (that can be otiyrachieved in several
ways), for different (and more numerous) sets of parameters

4.1 Mathematical and numerical formulation

We formulate the problem of estimating the compliance ohedrly elastic mem-
brane filled by an incompressible fluid as follows. I@tbe the volume of interest
of the fluid, where we assume the incompressible Navierest@quations (7) to
hold. The membrang, is a portion ofdQ, i.e. a 2D surface for a 3D fluid, which
is assumed to obey the equation for an elastic membrane

o
ot2

wheren is the membrane displacement assumed to be normg) [, is the density

of the solid sy is the stress exerted by the fluid and by surrounding tissheddtter

will be neglected in the following), anfl is a function of the mean and Gaussian
curvatures of the membrane and accounts for the transyaesabrane effects (see
[56]). Young modulu€ is the parameter we want to estimate. The fluid subproblem
(7) and the membrane one (12) are coupled at the FS intarfaog the continuity

of the normal stress and of the velocity

Pw—=s +EOBN =5y, (12)

—v (Ou+0u") -n+p=sy, ‘;—'zn:u only. (13)

The grid velocityw is the computed as the harmonic extensioggfn in Q.

Now, we assume that the displacement of the vessel can beireddsy a set of
time resolved images and the sequence of stepmentatior registration as we
have done in the previous section. After an appropriateccgpiine interpolation
(see Sect. 3), we have the time dependent displacementfitdx) defined oy,
that represents tHRata. Displacementj™ is assimilated with the numerical model
as indicated by the feedback loop in the Introduction. The pblem is given
by the system of equations (7,12,13), the unknown be&irg[v, p,n]. The post
processing function selects the displacementfite) = n. The CV is represented
by the Young moduluk. The functional # reads

.
7= // (n —n™)?dxdt + Regularization
0 f
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whereT is the heart beat duration. Again, the regularizing termaagks the math-
ematical and numerical properties of the problem. A posditnim is

T

0 Iy

whereaq is the usual parameter weighting the effect of the regufegiterm on the
minimization process anfle; is a reference value of the Young modulus available
for instance from the literature. If we assumeriori that the CV is positive, we
can also consider the term

E 2
a max (log(—
x€lw,t>0 Eret ’

In both cases the regularizing term penalizes the distaetveden the control vari-
ableE and the reference value for the Young moduHis .

The solution of this minimization problem is not trivial inamy respects. Here-
after we present a first possible approach, under some §jingliassumptions.
Even though in the more general case, the Young modulus cambgon of time
and space, in the sequel we assume

1. E constant in time in the interva, T], significant changes of the compliance in
an artery being expected over a longer time scale;

2. E piecewise constant in space, as we distinguish basicadlgttyeand pathologi-
cal tissues featuring different values of compliance, aathe being reasonably
constant in each subregion.

Computational and algorithmic aspects of the numericaltani of the mini-
mization problem are challenging. Here we resort to the flmrkTime Discretize,
then Optimize, then Space DiscretiZénis means that we first discretize in time
the problem by collocating the minimization process atctekb time instants.
Then we perform the minimization, by computing the KKT systfor the space-
continuous problem. Finally, we discretize the KKT systémthis way, the vari-
ational procedure for the minimization does not involveoadj backward-in-time
problems (see [34]) and the differentiation of the Lagrangunctional does not
require to perform differentiation of the domaih(shape derivatives), since at each
instant the domai is frozen. The anticipated drawback of this approach isttteat
effect of noise over the time interval is not damped by a leggare minimization,
being the problem collocated pointwiset&t Post-processing for the estimates of
E obtained at each step is required for filtering out the eAnrextensive analysis
of different solution methods for this problem is howeveirmportant follow up in
this context.

After time discretization, at each instafithe problem reads (hereafter we omit
to specify the time indek for the sake of readability): Find the piecewise constant
functionE defined oy, that minimizes the functional
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2
_ m\ 2 E
p _/(n -nM dx+axmela_1vi<<log (—Eref)>

yiu+ (u—w)0-u—vO- (Ou+0Ou") +Op=0; inQ,
O-u=0 inQ,
(Yo+BEO)U-Nn—p+v(Ou+Ou)n=gy, nxuxn=0 only,
+Boundary Conditions rml'in(ﬂ])d Tout-

The functionsy; , g2 andy depend on the time discretization. In the previous sys-
tem, the FSI problem has been simplified by eliminating tlspldicement, leading
to a fluid problem with Robin boundary conditions, as propldsg56].

The explicit computation of the KKT system for this problendats generaliza-
tion to the case of a 3D thick elastic structure are report¢@d]. We have analyzed
different choices for the space of the admissible €Y. (n particular, for the piece-
wise constant and piecewise linear cases, we can proveltbeiftg Proposition.

Proposition 2. For a > 0the KKT system associated with the minimization problem
has at least one solution.

After the space discretization, the KKT system yields a hivear algebraic min-
imization problem. In particular we can use again the grateliased BFGS method
(see e.g. [57]). For more detalils, see [60].

4.2 Numerical results

We present two test cases on simplified geometries, solvaith &gth the library
LifeV. These test cases have the role of assessing the overalirparfces of the
method on synthetic data, in view of a more extensive aralysing real medical
images. The “synthetically measured” displacement figlgl, is therefore gener-
ated by a preliminary numerical simulations with a presegi¥oung modulus. Suc-
cessively, the data are perturbed in order to mimic noiseifies different SNR.

In the first set of simulations (already reported in [60]), sedve the problem in
a cylinder of radiuRk = 0.5 cmand heigh = 6 cm The computation is performed
in 2D under the assumption of axial symmetry of the problema.ivpose the pres-
sure dropAp = 10*dyne/cn? for the first 5msbetween the inlet and the outlet of
the vessel. We sgi; = 1g/cn?, py = 1.1g/cn?, u = 0.035Poise h = 0.02cmand
At =0.001s.

Figure 11 shows the geometry and the pressure along a ldivgadusection of
the cylinder, for different time instants.

The optimization problem has been solved by using the BFG&i#hm over 10
time steps, corresponding to the firsth8of the simulation. We run the optimiza-
tion problem for 10 realizations of the noise. In Table 2, epart the average over
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Fig. 11 2D axisymmetric case, Forward simulation. Geometry at tirme4 ms t = 6 msand
t =8 ms Colored with blood pressure.

the 10 realizations of the estimated valueg&dnd the relative error. Different ini-
tial guesse&p and different SNR are considered. These results show th&triye
values of the SNR, the estimate obtained by the method isaieciMoreover, the
BFGS applied to the membrane case is pretty robust with céspé¢he noise, both
in terms of accuracy and convergence.

Other 2D cases on non-trivial geometries (like a bifuragtivave been reported
in [60].

lEo\SNRﬂ| 10 5 3 2.5

10" dyne/cn? [1.302+0.027 1314+ 0.054 1330+ 0.085 1357+ 0.103
0.2% 11% 23% 44%
10°dyne/cn? [1.303+ 0.027 1315+ 0.056 1330+ 0.087 1348+ 0.115
0.2% 11% 23% 37%

Table 2 Standard deviation of the ten estimates (to be multiplied @y top) and mean percent-
age error (bottom) for different values of the initial gu&gsfor the Young modulus and of the
percentag®. ExactE is 1.3- 10fdyne/cn?.

We now consider the three dimensional geometry shown inrEifj2, represent-
ing a simplified aorta. This geometry consists of a cylinderaalius 15cm and
height 1@mand half a torus with curvature radiusm The pressure field and the
geometry displacement are shown in Figure 12. As before,stimate the com-
pliance using the displacement of the forward simulatiomysbed by an artificial
noise. In Table 3 we report the results. In the 3D case, thdéadstseems to be

JEg\SNR—| 20 10 5
10"dyne/cn? [1.32+0.05 135+ 0.12 124+ 0.7
1.5% 38% 95%

Table 3 Mean and standard deviation of five estimates (to be mudtiptiy 16, top) and mean
relative error for different values of the Young modulus ah@NR. ExacE is 1.3-10° dyne/cn?.
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pressure
0. 600. 1200. 1800. 2400.
| .

Fig. 12 3D simplified aorta, Forward simulation. Geometry at time 0 ms t = 16 msandt =
22 ms Colored with blood pressure.

more sensitive to the noise. However even with a noise witRSh\ the parameter
estimation is accurate enough for most of clinical appidce.

4.3 Perspectives

As the preliminary results indicate, the assimilation ofadand numerical mod-
els is a worthwhile approach for estimating patient-spegiéirameters to be used
either for detecting possible anomalies or performingvittlial-based numerical
simulations. Here, numerical differential models play tbke of a bridge between
the measurable data and the unknown parameters. There ayecnitical issues at
the computational level to be addressed. Even if practipplieations in general
demand for less accuracy than the one usually consideregiadde from the nu-
merical viewpoint, the impact of the noise is supposed tg plaelevant role on
the reliability of the entire approach. Moreover, the frenoy of sampling of im-
ages, currently driven by technological limits, has prdpaomajor impact on the
accuracy of the results.

From the computational viewpoint, in these preliminarylaggions we resorted
to standard numerical tools like the BFGS method. Extensifathis approach to
real 3D cases rises new issues on the computational effeetss of the methods.
An extensive comparison among different possible optiamgérticular for the
sequence of optimization and discretization steps) arfidrdifit possible algorithms
is required for a massive use of these methods in practice.

A long term follow up of the present research is the extensfahis optimization
procedure to more complex sets of CV, such as the configaratid geometrical
features of the cardiac fibers. In fact, we mention here thatof the open challeng-
ing problems in heart imaging and modeling is the estimatibtme orientation of
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the fibers driving the mechanical contraction and the dteadtpotential propagation
in the cardiac tissue.

5 Conclusion

A mathematically sound adoption of numerical models foestigating the vas-
cular blood dynamics originates from pioneering works ia lidite 80s (among the
others, see e.g. [61, 62, 67]). At that time, numerical satiohs were carried out in
idealized domains, moving from basic geometrical prineiivo realistic shapes of
regions of interest. Simulations were intended to providaaight to physiological
and pathological dynamics for a better understanding ofitbst relevant diseases.
The impact of these simulations was mostly at a qualitativell since data and ge-
ometries were realistic but not patient-specific. Suceessiin the '90s, the advent
of new imaging technologies and corresponding numericéhauks allowed the in-
troduction of “patient-specific” simulations. The geonyaif the single patient at a
given instant was reconstructed from digital subtractiogiegraphies or computed
tomographies and used as the computational domain, ppdsigther with indi-
vidual measures of data for the boundary conditions. Tregtiential” merging of
data and simulations (i.€first the datathenthe simulations fed by the data) led
to a more quantitative relevance of numerical models, clas¢he clinical activ-
ity. Reliability of numerical models have been progredsiugcreased by removing
many of the simplifying assumptions postulated in the finstudations, e.g. rigid
geometries or Newtonian rheology (see e.g. [23]).

The development of more sophisticated mathematical ancerioah models has
been corresponded by the development of more sophisticagedurements and
imaging tools. Nowadays, these instruments provide mota alad more images,
so that it is reasonable to think to a further step, movingifeo“sequential” to an
“integrated” use of data and simulations. The DA approadhilsnmeasures and
images to be used not just for providing initial and boundanyditions, but to drive
the results by a sophisticated integration with the mathigadamodels. The out-
come of this process is an assimilated result where not amtyemical computation
is strictly consistent with the individual data, but the seiaffecting the data has
been filtered out by the mathematical modeling.

The “integrated” paradigm, which is well developed in otkentexts such as
the weather forecasting, opens many challenging problértteeanethodological
and practical level. The quality of the data in terms of tls&ze, location in space
and frequency in time plays obviously a major role in the reathtical properties
(well posedness) of the assimilation problem (see [48])rédwer, the noise that
invariably affects the data has an impact on the reliabdftyhe entire process. A
precise evaluation of this aspect is strictly related tchibe type of data and the
methods used for the assimilation procedure. This leadsdlyze and solve partial
differential equations with stochastic terms (see e.g. $3385, 18]).
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When the assimilation problem is solved with variationaltimoels, the mathe-
matical strcuture almost invariably can be representedfaedback control loop.
The effective numerical solution of inverse problems irstfirm presents many
open concerns to be properly addressed (see [57]).

In this chapter we have presented three basic examplesighhis control-loop
structure, motivated by ongoing collaborations with metdoctors. The first pre-
liminary results enlighten the great potential of DA as a @yimproving both
the reliability of numerical results and the quality of maess. As we have pointed
out, a certified reliability is crucial since bioenginegriand medical communities
are increasingly resorting to scientific computing for tekidecisions (see [20]).
The accomplishment of the new integrated paradigm - reggimew advanced and
increasingly interdisciplinary research - representsxaitiag challenge of cardio-
vascular mathematics for the years to come.
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