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Abstract The development of new technologies for acquiring measuresand images
in order to investigate cardiovascular diseases raises newchallenges in scientific
computing. These data can be in fact merged with the numerical simulations for
improving the accuracy and reliability of the computational tools. Assimilation of
measured data and numerical models is well established in meteorology, whilst it is
relatively new in computational hemodynamics. Different approaches are possible
for the mathematical setting of this problem. Among them, wefollow here a vari-
ational formulation, based on the minimization of the mismatch between data and
numerical results by acting on a suitable set of control variables. Several modeling
and methodological problems related to this strategy are open, such as the analysis
of the impact of the noise affecting the data, and the design of effective numerical
solvers. In this chapter we present three examples where a mathematically sound
(variational) assimilation of data can significantly improve the reliability of the nu-
merical models.Accuracyandreliability of computational models are increasingly
important features in view of the progressive adoption of numerical tools in the
design of new therapies and, more in general, in the decisionmaking process of
medical doctors.
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1 Introduction

In the last 20 years mathematical and numerical models have been progressively
used as a tool for supporting medical research in the cardiovascular science.In sil-
ico experiments can provide remarkable insights into a physio-pathological process
completing more traditionalin vitro and in vivo investigations. Numerical models
have been playing the role of “individual based” simulators, able to furnish a dy-
namical representation of the biology of a specific patient as a support to the prog-
nostic activity. At the same time, the need for quantitativeresponses for diagnostic
purposes has strongly stimulated the design of new methods and instruments for
measurements and imaging. On the one hand, we can simulate in3D large portions
of the cardiovascular system of a real patient properly including simplified models
for the peripheral sites (see e.g. [73, 72, 33, 23, 65]). On the other hand, thanks to
new instruments, images and measures nowadays provide doctors and bioengineers
with a huge amount of data. These data offer obviously new possible benchmarks
for the numerical simulations (see e.g. [37]). However, beyond the validation, it is
possible to merge simulations and measures by means of more sophisticated nu-
merical techniques. This procedure is calledData Assimilation(DA) (see e.g. [7]).
With this name we mean the ensemble of methods for merging observed (generally
sparse and noisy) information into a numerical model based on the approximation of
physical and constitutive laws. The merging improves the quality of the information
brought both by numerical results and by measurements:
- numerical simulations are improved by the merging of data that allow to include
effects otherwise difficult to model (at the qualitative or quantitative level), such as
the presence of tissues surrounding an artery or the motion of heart affecting the
aortic dynamics;
- measures are in general affected by noise, so that assimilation of results based on
physical and constitutive laws introduces a sophisticatedfilter, forcing the consis-
tency with basic principles.

In some fields, these techniques are quite mature and tested,in particular in geo-
physics and meteorology (see the excellent review of methods in [7]). There are
basically two classes of methods for performing DA, both with pros and cons.

Variational Methods DA is performed by minimizing a functional, estimating
the discrepancy between numerical results and measures. The optimization prob-
lem is solved by using the mathematical model as a constraint, upon the identifi-
cation of a proper set of control variables. In environmental studies this is often
the initial state of the system of interest. In some cases (Nudgingor Dynamic
Relaxation Methods) the functional to be minimized is properly “altered” so to
include the data to be assimilated directly in the equationsof the model.

Stochastic methods These are based on the extension to nonlinear problems of
theKalman filter, which is a statistical approach for prediction of linear systems
affected by uncertainty [69, 41, 81], relying upon a Bayesian maximum likeli-
hood argument.
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On the contrary, there are relatively few studies devoted toa mathematically
sound assimilation of data in hemodynamics, probably because the availability of
more and more accurate measurements is the result of truly recent advancements.
In particular, we mention [11, 51, 52, 53, 70], essentially based on Kalman filtering
techniques, and [26] for the variational approach.

In this chapter we consider three possible applications of DA based onvaria-
tional methods. In particular we present possible techniques for

1. merging velocity data into the numerical solution of the incompressible Navier-
Stokes equations, so to eventually retrieve non primitive variables like theWall
Shear Stress(WSS);

2. including images into the simulation of blood flow in a moving domain, so to
perform the fluid dynamics simulations including the measured movement of the
vessel;

3. estimating physiological parameters of clinical interest by matching numerical
simulations and available data.

In all these examples we face a common structure that can be depicted as a clas-
sical feedback loop illustrated in the scheme below.

FORWARD

PROBLEM

POST

PROCESSING

Results

Measures (noisy)

CONTROL

Variable
Control

Input
v

f (v)

J ≡ dist( f (v),Data)

v = FW(Input,CV)
Data

CV

(+ Regularization)

At an abstract level, all these applications actually lead to solve a problem in the
form: Find the Control Variable CV (belonging to a suitable functional space) such
that it minimizes the distance

J ≡ dist( f (v,Data)) (+ Regularization), (1)

whereData is the set of (noisy) measures,v the solution of the Forward Problem
FW, which depends on someInput variables andCV. Finally, f (·) represents a post
processing step for computing the quantity to be compared with the data. “Regular-
ization” stands for some possible Tikhonov-like regularizing term with the role of
making the mathematical and numerical problem more tractable (see e.g. [19, 34]).
Control problems with constraints represented by partial differential equations have
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been studied since a long time ([44, 46, 47, 30, 31, 45, 87, 34]). In computational
hemodynamics, these problems have been considered, for example, for the prescrip-
tion of defective boundary conditions [21, 24, 25].

There are several issues when solving these kind of problems. Particularly rele-
vant for our applications are

1. Theexistenceof an admissible CV that attains the minimal distance between data
and results. This can depend on the location (in space and time) of the available
data and can be forced by a proper regularization term;

2. Thenoisethat invariably affects the data to be assimilated; this hasa major im-
pact on the reliability of the entire data assimilation process.

In the examples presented below we will partially address these issues, pointing
out available results and open problems for each application. We will split each ex-
ample in three sections after the presentation of the specific problem and its medical
motivations, namely (i) the formalization of the problem inmathematical and nu-
merical terms - with a specific link to the feedback loop above- (ii) the discussion of
some preliminary numerical results and (iii) of the associated prospective research.
Far from being a conclusive review of methods and applications, the present work
pinpoints several open challenging problems in the adoption of variational meth-
ods for DA in computational hemodynamics. These are anticipated to become an
important tool for pursuing more reliability of numerical simulations in the general
perspective ofdata driven simulations[12] andinverse cardiovascular mathematics.
Accuracy and reliability of scientific computing are in factan increasingly critical
issue for the progressive inclusion of numerical simulations in the validation proto-
col of medical devices/drugs as well as in the decision making of medical doctors
[20].

2 Variational Assimilation of Velocity Data for the
Incompressible Navier-Stokes Equations

Bicuspid aortic valve (BAV) is the most common congenital heart defect, occurring
in about 1% of the population [38]. At a mean age of 17.8 years 52% of males with
normally functioning BAV already have aortic dilatation [80] which may eventually
lead to aortic regurgitation or dissection or aortic aneurysms. Medical doctors are
interested in developing a better understanding of the hemodynamics contributing
to aortic dilatation not only in patients with BAV but also inother forms of congen-
ital heart disease in which aortic dilatation is common [68]. Such an understanding
may allow early risk stratification, possibly leading to guidelines for earlier inter-
vention in high-risk groups, with an anticipated resultantreduction in morbidity and
mortality for these patients. Some studies suggest that BAVmorphology results in
abnormal flow patterns in the ascending aorta, anticipatingthat valves with signif-
icant asymmetry would result in highly disturbed flow patterns. Consequently, the
flow patterns, as detected by MRI flow-velocity encoding methodologies (see Fig.
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1), have predictive value in determining which BAV morphology variants would be
at greater risk of developing aortic dilatation. In order tovalidate this hypothesis,

Γout

Γin

Γwall

b

Measure siteΩ

Fig. 1 Left: Blood velocity measured with Magnetic Resonance in the ascending aorta of a patient
(courtesy of M. Brummer, Emory Children’s Healthcare of Atlanta). Right: example of a possible
region of interestΩ with velocity measures inside the domain.

clinical studies have been performed [35, 15] evaluating the WSS in BAV patients
from MRI measurements. WSS is computed by a finite differenceapproximation
based upon the velocity data and the blood viscosity measure. However, these esti-
mates are clearly affected by both the discretization errorand the noise of the data.
Numerical simulations of blood flow can be carried out in the region of interest to
improve this computation (see e.g. [78]). In this context, measures inside the domain
of interest are not strictly needed for solving the incompressible fluid problem, that
requires only initial and boundary conditions. However, they can be merged with
the numerical results for obtaining a better estimate of theWSS. This leads to the
following problem: How is it possible to incorporate velocity (noisy) data available
in a domain of interest into the computation of the incompressible Navier-Stokes
equations? A similar problem in the context of the fluid mechanics of the heart has
been studied in [37] (and successively analyzed in [17]). Inthis work, available ve-
locity data belong to a plane cutting the domain. As it has been observed in [37, 14],
in principle, if the data belong to surfaces that split the region of interest into regular
subdomains (as a plane), an immediate approach for the assimilation would be to
solve the equations in each subdomain. In fact, the available data can be prescribed
as standard boundary conditions. This naif approach, however, does not consider the
presence of the noise. As a matter of fact, no filtering is introduced in this way and
the noise is spread into each subdomain, resulting in significant inaccuracies (see
[14]). For this reason, we resort here to a variational approach.
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2.1 Mathematical formulation and numerical approximation

Let us denote byΩ a domain inRd (d = 2, 3; in real applicationsd = 3, however
here we limit numerical results to the 2D case). We assume that the domain of in-
terestΩ (see Fig. 1, right) features an inflow boundaryΓin, an outflow boundary
Γout and the physical wall of the vesselΓwall . Γin andΓout can possibly consist of
more parts (like in a vascular bifurcation). Variables of interest are the velocityu
and the pressureP = ρ f p which are assumed to obey the incompressible Navier-
Stokes equations inΩ . Here we have denoted byρ f the fluid density. At this stage,
we consider the steady problem. We assume to have velocity measures (Data) um

available atNs sites1 xi ∈ Ω . Following the general description given in the Intro-
duction, we assume that the CV is represented by the inflow normal stressh. This is
an arbitrary choice, an extensive comparison with other choices is still to be done.
Post-processingf (·) in this case is given by the Dirac delta distributions, such that
f (u) is the vector of the values of the computed velocity at the measurement sites.
Then, the distancedist( f (u),um) is defined as∑Ns

i=1(u(xi)−um(xi))
2. The control

problem reads: Find

min
h

J (u, h) = dist( f (u), um)+Regularization(h)

s.t.























−∇ · (ν ∇u)+ (u ·∇)u+ ∇p= s in Ω ,
∇ ·u = 0 in Ω ,
u = 0 on Γwall ,
−ν ∇u ·n+ pn = h on Γin,
−ν ∇u ·n+ pn = g on Γout,

(2)

wheren denotes the outward unit vector normal to the boundary. A Newtonian rhe-
ology is supposed to hold, since it is a common assumption in large and medium
vessels [23] andν is the kinematic viscosity. Since we are considering fixed geome-
tries, we assume homogeneous Dirichlet boundary conditions onΓwall . When solv-
ing problems in the form (2) there are in general two possibilities. In the first one, we
first write the necessary conditions associated with the continuous constrained opti-
mization problem, the so calledKarush Kuhn Tucker(KKT) system [57, 34]. These
are obtained by augmenting the original functional with the(variational formula-
tion of) the constraint given by FW (in this case the steady Navier-Stokes problem),
weighted by unknown multipliers and then by setting to zero the derivatives of the
augmented functional with respect to the multipliers (so toobtain thestate problem),
to the variables (adjoint problem) and to CV (optimality conditions). Successively,
the resulting problem is discretized (Optimize then Discretize- OD - approach). In
the second approach, we first discretize the different components of the problem (the
functional to be minimized and the constraints) and then perform the optimization

1 Notice that we use the word “sites” for the location of measurements, as opposed to the word
“nodes” for points where velocities are computed. We do not assume at this level particular posi-
tions for the sites, even though in the applications it is reasonable to assume that they are located
on planes transverse to the blood stream.
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of the discrete system (Discretize then Optimize- DO - approach). In [14] we com-
pared the two strategies, and found that the DO is more efficient for the problem at
hand. For this reason we proceed with the latter approach.

2.1.1 The discrete DA Oseen problem

Let us consider preliminarily the linear Oseen problem. Thenonlinear convection
term (u ·∇)u is replaced with(β ·∇)u, whereβ is a known advection field. The
discretized optimization problem reads

min
H

J (V, H) =
1
2
‖DV−Um‖2

2 +
a
2
‖LH‖2

2

s.t. SV = RT
inM inH + F.

whereV =

[

U
P

]

, S=

[

C+Aβ BT

B O

]

(3)
Here,U andP are the discretization of velocity and pressure. In particular, we resort
to an inf-sup compatible finite element (FE) discretization(see e.g. [66], Chapters 7,
9). H is the discretization of the control variableh. In formulating the minimization
problem, we need to introduce some special matrices. Q is thediscrete operator
corresponding tof in (2), i.e. the matrix such that[QU]i is the numerical solution
evaluated at the sitexi and corresponded by the data[Um]i . Matrix D is defined as
D = [Q O]. Rin is arestriction matrixwhich selects the degrees of freedom (DOF)
of the velocityU onΓin; M in is the mass matrix restricted to inlet boundary nodes; C,
Aβ and B are the discretization of the diffusion, advection anddivergence operators
respectively. Fora > 0, a

2‖LH‖2
2 is a Tikhonov regularization term (see e.g. [36]).

Matrix L is such that LTL is positive definite. The Lagrange functional associated
with the problem (3) is

L (V,H,Λ ) =
1
2
‖DV−Um‖2

2 +
a
2
‖LH‖2

2 +ΛT(SV−RT
inM inH−F), (4)

whereΛ ∈ R
Nu+Np is the discrete Lagrange multiplier. The associated KKT system

reads














DT(DV−Um)+STΛ = 0

aLTLH−MT
inRinΛ = 0

SV−RT
inM inH−F = 0.

(5)

In [13] we proved the following proposition.

Proposition 1. Sufficient conditions for the well-posedness of the discrete optimiza-
tion problem are:

1. a> 0;
2. for a= 0, Null(D)∩Range(S−1RT

inM in) = {0} (⋆).

This result basically states that, in absence of regularization, well-posedness is guar-
anteed if enough measurement sites are placed at the inflow boundary. This proposi-
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tion stems from the analysis of the system obtained after theelimination ofV andΛ
from the system (5) (the so-calledreduced Hessian). In Fig. 2 we report the singular
values of the reduced Hessian when the sufficient condition(⋆) is fulfilled (left) and
violated (right). In the latter case, it is evident that in general a violation of such
condition may lead to adiscrete ill-posed problem[36].

Fig. 2 Singular values of the reduced Hessian for a non regularizedcase (a = 0): on the left, the
condition (⋆) is fulfilled, on the right it is violated.

On the contrary, no constraints need to be fulfilled when the Tikhonov regulari-
zation is active (a > 0). However, in practice, the selection ofa requires to find the
proper trade-off between the requirement to solve a well conditioned problem (large
a) and to keep the perturbation of the original problem as small as possible (smalla).
A possible approach (see [8, 36]) is to select the parameter according to the discrep-
ancy principle (DP), i.e. to selecta in such a way that the perturbation of the regu-
larization term affects the solution with the same order of the discrepancy induced
by the noise. The proper choice of the parameter following this approach may be
however computationally expensive. There is another possible way for forcing the
well-posedness exploiting the result of Proposition 1. Actually, let us assume that
some data are available at the inflow, not necessarily fulfilling the well-posedness
sufficient condition(⋆). If we extend the given data to the entire set of DOF ofΓin

by interpolation of the available data (e.g. piecewise linear), the resulting problem
satisfies condition(⋆). This results in fact in an additional term to the functionalJ
that plays the role of a regularizing term (see [13]). A more extensive analysis of
this approach, and the interplay between the interpolationand the noise affecting
the original data is currently under investigation.

2.1.2 The nonlinear Navier Stokes problem

When we consider the nonlinear advection term(u ·∇)u the problem becomes much
more difficult since now we have a nonlinear constraint [57].A possible approach is
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to combine the DA procedure for the linear case with classical fixed point lineariza-
tion schemes (i.e. Picard and Newton). Thus, the DA assimilation problem is solved
iteratively. We report the simple case of the Picard method.Given a guess for the
velocity at stepk, sayUk, we solve

min
Hk+1

1
2
‖DVk+1(Hk+1)−Um‖2

2 +
a
2
‖LHk+1‖2

2

s.t. SkVk+1 = RT
inM inHk+1 + F

where S=

[

C+AUk BT

B O

]

(6)

up to the fulfillment of a convergence criterion. When using the Newton method,
the convergence strongly depends on the initial guess, so a common procedure is to
perform a few Picard iterations (6) and use the resulting velocity as an initial guess
for the Newton method. In our approach the loop for solving the nonlinear system
is merged with the one for the optimization problem, thus reducing the computa-
tional cost. Numerical experience (next subsection) showsthat convergence is not
prevented by this further approximation. Other approachescan be however pursued,
for an introduction to optimization with nonlinear constraints see [57].

2.2 Numerical results

We first present some simulations on an analytic test case, toinvestigate basic con-
vergence properties of the DA procedure without and with thepresence of the noise,
in comparison with the FE convergence of the forward problem. Then we address
a comparison between a classical Tikhonov regularization and the data interpola-
tion method. Results have been obtained with the C++ finite element librarylifev
[16].

2.2.1 A consistency test

Let Ω be the domainΩ = [−0.5, 1.5]× [0, 2] with a flow described by the analyt-

ical solutionu1(x,y) = 1−eλ xcos(2πy), u2(x,y) =
λ
2π

eλ xsin(2πy), p(x,y) =

1
2

e2λ x +C, with λ = 1
2(ν−1−

√
ν−2 +16π2), andC is a constant chosen to give a

zero mean pressure. Solution of the DA problem has been obtained by using inf-sup
compatible FEs (P1bubble-P1). Regularization is obtained with L corresponding to
the discrete gradient operator anda selected according to the DP. The nonlinear term
has been solved by combining Picard and Newton methods.

As expected, in the noise-free case the assimilated velocity recovers the solution
of the forward problem. In particular Fig. 3 shows that expected quadratic conver-
gence rate for theL2 norm of the velocity error when the mesh size∆x tends to 0.
In case of noisy data (Gaussian white noise), the error dynamics changes. In par-
ticular, the error decreases as more data are available (seeFig. 4, left). We observe
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that the convergence rate with respect to the number of sitesNs is of the order of
1/
√

Ns. Moreover, when the number of sites and the mesh are fixed and we repeat
the DA with different noise realizations, we observe a progressive convergence of
the sample mean of the assimilated solution to the noise freesolution, with a rate
proportional to 1/

√
Nr , beingNr the number or realizations. (see Fig. 4, right). Note

that these results are consistent with the central limit theorem. More details can be
found in [13].

Fig. 3 Test of consistency for the DA procedure of velocity data: noise-free data. The accuracy of
the computation is the same as for the solution of the FW problem.

Fig. 4 Test of consistency for the DA procedure of velocity data: accuracy of the DA improves
when the number of sitesNs (left) or of the noise realizationNr (right) increases.
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2.2.2 Regularization & Interpolation

We compare the results obtained with the regularized problem (parametera tuned
again with the DP) and the interpolation of inflow data when these do not fulfill con-
dition (⋆) of Proposition 1. In Table 1 (left) in correspondence of different choices
of locations and numberNin of sites onΓin, we report the relative error and the
number of iterations (it) for solving the reduced Hessian. The case where neither
Tikhonov regularization or interpolation are performed isreported as a reference
test. The addition of interpolated data on the DOF onΓin has the effect of forcing
the well posedness of the problem, as can be inferred from thesingular values of
the reduced Hessian in the case reported in Figure 2. Also, results reported in Ta-
ble 1 show that, in terms of accuracy, the interpolation procedure is comparable
with Tikhonov regularization. This fact, combined with thecomputational saving
associated with the generation of the interpolating function, as opposed to applying
the DP, makes interpolation an efficient regularization technique, competitive with
common available methods.

Nin interpolation a EU it
14 no 0 0.068 14
14 no 0.0210.061 15
14 yes 0 0.059 18
14 yes 0.0210.056 16
8 no 0 0.199 11
8 no 0.0380.137 18
8 yes 0 0.139 17
8 yes 0.0380.129 17

SNR EWSS,DA EWSS,FW

100 0.2536 0.2667
20 0.2591 0.3030
10 0.2738 0.3861
5 0.3149 0.6114

Table 1 Left: Comparison of the results of a regularized DA vs a non-regularized interpolated DA.
Right: Relative errors of the WSS computed with the DA procedure and a forwardNavier-Stokes
noisy simulation in a 2D carotid bifurcation for different values of the SNR.

2.2.3 Assimilated derived quantities in nontrivial geometries

In view of real hemodynamics applications, we present a demonstrative test case in
non-trivial geometries (representing a 2D simplified modelof the aortic arch and
an arterial bifurcation). Since in these cases we do not havean analytical solution,
we have computed a “reference” solution on an extremely fine mesh grid (using
parabolic inflow conditions and homogeneous Neumann conditions at the outflow)
in both cases. Successively, a noise with several values of Signal-to-Noise Ratio
(SNR) has been added to the solution. This generates a set of noisy data to be as-
similated represented by the black vector field in Figure 5, left. Results of the as-
similation are significantly close to the reference solution. As a matter of fact, we

consider as an index of the accuracy for the solution the ratio E∗
U =

‖U−Ure f ‖2
‖Ure f ‖2

. To
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test the competitiveness of the DA procedure we compare the relative error of the
assimilated velocity with the one of the velocity obtained from a forward simula-
tion where noisy data onΓin are prescribed as a Dirichlet condition; in this case we
obtainE∗

U = 8.1e-2 andE∗
U f orward

= 16.0e-2. This pinpoints the role of DA as a
process for de-noising the available data thanks to mathematical models. The DA
procedure in fact corrects the measurements according to the physical principles un-
derlying the mathematical model. This is evident not only for the primitive variable,
but also checking non-primitive interesting quantities. In Figure 5, right, we report
the vorticity map recovered from an assimilated velocity field on a geometry ap-
proximating an arterial bifurcation. For the same simulation, we check the accuracy
of the WSS. Accuracy results are reported in Table 1, right. The WSS is retrieved
in two ways. In the first case, we perform the DA procedure and use the assimilated
velocity field for extracting the WSS. In the second case, we use again the inflow
noisy data as boundary conditions for a forward computationof the incompressible
Navier-Stokes equations on the same mesh where DA is performed. In particular, in
the table we report the relative errors, i.e. the differenceof the WSS compared with
the noise-free reference solution on the fine mesh. It is evident that the DA leads to
a more accurate estimate of the WSS, the improvement being more evident as the
SNR gets smaller.

Fig. 5 Left: DA assimilation on 2D a curved domain. Black arrows arethe data to be assimilated.
The red arrows (colores refer to the pressure) are the results after the DA procedure. The results of
DA are closer to the reference solution, highlighting the role of DA as a filtering procedure for the
noise of the data. Right: vorticity in a 2D bifurcation computed by the DA procedure

2.3 Perspectives

Assimilation of (velocity) data into the simulation of an incompressible fluid is a
problem whose interest goes beyond the specific medical applications, and different
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methods are viable. In [37] Least Squares Finite Elements are used because of their
versatility in managing different boundary conditions. In[26], merging of velocity
data is carried out by using a “virtual” forcing term as CV. Here, we resorted to a
control approach that in preliminary test cases provides promising results. Sufficient
conditions for the well posedness of the linearized Oseen problem are given. Many
challenges are however open by these preliminary results. Beyond (and before) an
extensive use of DA in clinical practice, there are at least two main concerns that
deserve an accurate consideration.

1. Analysis of the impact of the noise.An extensive analysis of this aspect is in
order to identify the reliability of the results. Modeling the impact of uncertainty
on the solution of partial differential equations is an up-to-date topic (see e.g.
[55, 59] and the recent work [18], comparing Galerkin vs collocation methods).
Different approaches can be pursued and different sources of noise should be
considered, depending on the measurement devices (see e.g.[6] and Chapter
3 of [42]). A sensitivity analysisof quantities of interest such as the WSS on
the noise affecting the data would clarify the robustness ofthe procedure to the
perturbations. More advanced approaches are based on the moment method, the
Bayesan approach, the polynomial chaos (see e.g. [79]). Extensive investigations
on this aspects, with different approaches, will be carriedout as a follow up of
the present results.

2. Unsteady problems.When solving unsteady problems, following again a DO ap-
proach, we first discretize in time and at each instants solvethe optimization
problem. In this case, the extension of the method devised for the steady case
is pretty immediate. However, possible computational concerns arise from the
nesting of the time and the optimization loops. Selection ofappropriate effective
preconditioners is in order. Another issue refers to the initial conditions that in
general are not known. In meteorological applications, these are included in the
set of CV and used for driving the assimilation procedure. Incardiovascular ap-
plications an alternative approach consists of forcing periodicity of the solution.
This approach will be investigated elsewhere.

3 Image Assimilation in a Moving Domain Simulation

Rigid-wall models for blood motion in arteries are often accurate enough for a quan-
titative analysis of hemodynamics (see e.g. [71]). However, there are situations in
which the magnitude of the mechanical forces involved and the deformation experi-
enced from the vessels cannot be neglected and their effectsshould be appropriately
considered while modeling the coupled system.

The standard strategy to simulate the blood flow in a compliant vessel is to write
the models for both the blood (the incompressible Navier-Stokes equations) and
the wall (see e.g. [39]) together with appropriate matchingconditions at the inter-
face between the two domains (Fluid-Structure Interaction- FSI). At the numerical
level, the coupled model is then solved either with a monolithic approach or by seg-
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regated solvers managing iteratively the sequence of fluid and solid problems (see
e.g. [28]). This strategy allows the accurate computation of both fluid and solid me-
chanics and is challenging from both the modeling and the numerical point of view.
In fact, the constitutive laws for modeling the arterial wall still deserve extensive
investigations especially in the presence of vascular pathologies (see e.g. [82]), not
to mention the difficulty to obtainin vivomeasurements that can accurately estimate
the model parameters for an individual patient (see Sect. 4). Moreover, vessels are
subject to external loads due to the presence of the surrounding tissues, which are
in general unknown or not easy to model. We mention for example the effects of
cardiac motion on the aortic arch. From the numerical point of view, the strongly
heterogeneous nature of the problem raises issues concerning numerical stability
and efficiency of FSI algorithms (see e.g. [10, 27]).

Here we consider an alternative approach based on a DA procedure, that exploits
the technological development experienced in the last decade by medical imaging
techniques. The advent of high resolution imaging devices allows the fast acquisi-
tion of 4D (space + time) images. From those images it is possible to reconstruct
anatomical structures not just in one specific instant, but in multiple ones over the
cardiac cycle. Following this approach, the vessel motion,instead of being com-
puted, is retrieved from images and plugged into the Navier-Stokes solver. The main
advantage of this approach is the direct inclusion into the simulations of patient-
specific data, i.e. the motion of the vessel (depending on itsmechanical characteris-
tics and those of the surrounding organs). This is done through the use of medical
images at a limited additional computational cost with respect to the case in which
the geometry is assumed to be fixed. We will denote this approach 4D Image Based
(4DIB). A similar technique has been proposed in [71, 76] where the authors apply
this image-based motion approach to intra-cranial aneurysms and coronary arteries
respectively, even if implementing different strategies for some steps of the proce-
dure.

3.1 Mathematical and numerical formulation

The workflow of the 4DIB approach consists in the following steps (for more details,
we refer to [64]). We assume to have an image set that represents the vessel of
interest at several time frames{tk} within a heart beat.

1) Segmentation -Depending on the nature of the source images, their dimension-
ality and the complexity of the geometry to be reconstructed, segmentation can be
performed on single 2D planes or directly on 3D datasets. Different segmentation
methodologies and different ways to represent the final models are available. For an
introduction, see [2, 6]. In the applications presented here, a level set technique was
used for the 3D segmentation of vessels, specifically the segmentation tool available
within the Vascular Modeling Toolkit (VMTK) software package [1]. At the end of
this step, a triangulated surface is available for each timeframe.
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2) Motion tracking - This consists in solving aregistration problem(see e.g. [22]),
i.e. finding the alignment of the geometries of two consecutive time frames, so to
have a displacement field that maps the points on the surface of the lumen at a given
time frame to the surface in the subsequent one. This is another example of inverse
problems that can be cast in the form of the feedback loop in the Introduction. For
this reason, we detail this step in the next subsection.

3) Simulation -From the sequence of maps describing the motion of the surface
points from one time frame to the subsequent one, the velocity of the boundary of
the moving domain is estimated at the image acquisition times. Then, this is inter-
polated to define the velocity of the boundary at each time instant in the simulation.
To ensure the continuity of the time derivative of the pointsvelocity, a cubic spline
time interpolation is chosen. The displacement and the gridvelocityw of the whole
domain, computed at each time step of the simulation, are obtained by the harmonic
extension of the boundary fields. Once the domain motion is available, the incom-
pressible Navier-Stokes equations for a Newtonian fluid in amoving domain can be
written in theArbitrary Lagrangian Eulerian(ALE) formulation (see, e.g., [40])

∂u
∂ t

−ν∆u+(u−w) ·∇u+ ∇p= s, in Ω(t)

∇ ·u = 0 in Ω(t),

u = w on Γw(t),

+Boundary Conditions on Γin(t) and Γout(t).

(7)

On the wall the fluid velocity is prescribed equal to the vessel velocity (Dirichlet
condition), while inflow and outflow boundary data can be retrieved by measures or
designed to reproduce a physiological or pathological behavior.

3.1.1 Assimilation of segmented vascular surfaces

Registration is a procedure for aligning images taken from different devices, from
different viewpoints or at different time instants. Many different methodologies ex-
ist depending on the source of images, their dimensionalityand the type of move-
ment to be recovered, particularly whether we have small or large deformations.
In particular, a wide number of different approaches have been detailed for surface
registration (see e.g. [49, 86, 9, 3]).

Here we resort to an algorithm relying upon a minimization procedure [22]. The
registration is performed over 3D surfaces representing the vessel at the different
time frames. More precisely, given M+1 time frames corresponding to M+1 trian-
gulated surfaces, the tracking process consists in M registration steps between each
couple of consecutive time steps. Within each stage the points of one surface, the
source surfaceS , are mapped to the subsequent one, called thetarget surfaceT . A
displacement field for the whole surface mesh is computed so that at the end of this
tracking procedure, M displacement fields are available describing the vessel wall
motion at the instants of the image acquisitions.
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The map between two consecutive frames is computed by minimizing a func-
tional in the form (1). In particular, let us denote withϕ(·) the (unknown) map
from S to T . Referring to the feedback loop in the Introduction, the forward prob-
lem FW is the actual application ofϕ to the source surfaceS (Input), so that2

v = f (v) = ϕ(S ). TheData are represented by the target surfaceT . The control
variable set CV is given by the mathematical representationof the mapϕ(·). This
can be parametrically described by assuming, e.g., that it belongs to a functional fi-
nite dimensional space spanned by a basis function setψi so thatϕ = ∑aiψi , being
ai real coefficients. In this caseai are the CV. However, since the map is supposed to
be strongly space-dependent, in [64] we resorted to anon-parametric mapimplicitly
defined with a collocation approach by the position of the nodes on the source im-
age. This means that the coordinates of the vertexes computed by the minimization
process implicitly define the map point-wise. The map is thenextended to the entire
source surface by a piecewise linear interpolation of the values of the vertexes.

Finally, to complete the picture, we need to specify the definition of the distance
betweenϕ(S ) and the dataT and the regularizing term. Different choices are
available, strictly problem dependent. Let us introduce the distance of the image of
a point onS to the surfaceT as

δ (ϕ(x),T ) = inf{‖ϕ(x)− y‖ : y ∈ T }, x ∈S . (8)

The distance betweenS andT can be then defined as

dist(ϕ(S ),T )≡
(

1
|S |

∫

S
(δ (ϕ(x),T ))2 dS (x)

)1/2

(9)

where|S | :=
∫

S dS is a normalization factor. In practice the integral needs tobe
numerically approximated. For triangulated surfaces likeS andT a reasonable
and viable approximation is

dist(ϕ(S ),T ) =

√

1
nS

∑
j

min
i

(d ji )2 (10)

where
d ji = dist(ϕ(x j), tri i)

is the distance from vertexj of S to triangle i in T , nS (nT ) is the number of
vertexes (triangles) ofS (T ). By using a tree search algorithm, it is possible the
reduce the computational complexity toO(nSlog(nT)) (see [4]).

This non-parametric registration by itself is in general ill-posed and multiple
solutions are expected. Some of them are clearly unphysicaland need to be filtered
out. For this reason a regularizing term is introduced, forcing the solutions to be
“physically acceptable” by adding some regularizing properties (see e.g. [63, 77]).
In particular, we resort to a regularizing term stemming from a simplified physical

2 the post-processing in this case is trivially the identity application.



Data Assimilation in Hemodynamics 17

model of the vascular wall as an elastic thin membrane [54] accounting for traction
and bending internal forces. The membrane energy provides the regularizing term.
In this way, displacementsϕ(·) that would cause a large increase to the membrane
energy are heavily penalized (see [64]).

Additional constraints are required for preventing “flips”of triangles. Let

Ai = area(tri(x,y,z))

be the area of theith triangle before deformation and x,y,z its corresponding vertexes.
Correspondingly, let

ϕ(Ai) = area(tri(ϕ(x),ϕ(y),ϕ(z)))

be the area of the deformedith triangle.
Therefore, we add to the minimization ofJ the constraint of positive deformed

area

Ci(ϕ) = ϕ(Ai) > 0. (11)

The minimization problem has been solved by means of the L-BFGS procedure
(Limited memory BFGS - see [57]), that requires only the computations of gradients
and features (at least) a linear convergence even for non-smooth problems.

3.2 Numerical Results

In the following application a 4D computed tomography (CT) dataset of a human
aorta was employed as image source. The dataset was acquiredat Ospedale Mag-
giore in Milan (Italy) using a Siemens SOMATOM Definition Flash Dual-Source
CT scanner, which was able to capture 10 time frames per cardiac cycle. The 4D
image refers to a 72-year-old man with a diagnosed abdominalaneurysm and covers
the entire length of the ascending, thoracic and abdominal aorta. From this dataset
the portion of the aorta including the aortic arch and the thoracic aorta was con-
sidered for a simulation in a moving domain. The aorta was then segmented with
VMTK at all the 10 time frames available, and the tracking procedure was applied
to extract the 10 displacement fields describing the vessel wall motion over the car-
diac cycle. Figure 6 represents some of the reconstructed surfaces at different time
frames: they are simply superimposed prior to the registration procedure in order to
highlight the misalignment due to their movement. Figure 7 depicts the results of the
registration procedure (performed with anad hocMatlab code) for two consecutive
surfaces. In the rightmost panel frame 1 has been mapped to frame 2.

Quantification of the errors of the registration process is reported in [64]. A more
detailed analysis of the error as a function of the number of nodesnSand trianglesnT

used in each couple of frames is however missing and will be carried out elsewhere.
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Fig. 6 Synopsis of the last 4 frames superimposed before tracking has been performed

Fig. 7 Detail of two frames of the aorta before and after the registration

Numerical tests have been run withLifeV to evaluate the difference between
the velocity and wall shear stress (WSS) fields computed withthe 4DIB approach
and those computed on a rigid domain simulation. The choice of aorta is motivated
by the fact that here the vessel deformation is relevant (mostly as a consequence of
the motion of the heart) and is supposed to affect significantly the blood motion. To
discretize the ALE Navier-Stokes system, we have chosen a first-order time advanc-
ing scheme and a finite element approximation for the space dependence (P1 for the
pressure andP1bubble for the fluid velocity).

Both the velocity and the WSS fields exhibited a considerabledifference with
respect to the rigid domain case, as shown in Figure 8. In particular, the relativeL2

norm of the difference between the 4DIB fields and the rigid domain fields has an
average over the cardiac cycle of 84.52% for the velocity and83.18% for the WSS.

We also performed anin-silico consistency test of the 4DIB approach with re-
spect to a FSI simulation, assumed to be the reference benchmark solution. In par-
ticular we have first run a FSI simulation, obtaining the fluidvelocity and pressure
fields and the displacement of the vessel wall. Then, we have used this displace-
ment as if it was retrieved from images to feed a 4DIB simulation, with the same
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Fig. 8 Left panel: difference (in cm/s) between the fluid velocity computed in the rigid domain
simulation and the one computed in the 4DIB simulation (left); velocity (in cm/s) computed with
the 4DIB approach (right); both at peak systole. Right panel: difference (in dyne/cm2) between the
WSS computed in the rigid domain simulation and the one computed in the 4DIB simulation (left);
WSS (in dyne/cm2) computed with the 4DIB approach (right); both at peak systole.

inflow/outflow boundary conditions and fluid properties as inthe FSI case. The com-
parison of the results obtained with the two approaches has shown a good agreement,
being below 1% of relative difference, on both velocity and WSS. Notice that the
computational time required by the 4DIB simulation is significantly smaller than
the one required by the FSI simulation (see [64]).

These tests show that (i) when a relevant motion affects the vessel like in the
aortic case, the 4DIB approach is a viable way for a more realistic description of
the blood flow than a rigid simulation provided that available data can be properly
assimilated; (ii) the results of the 4DIB method are consistent with the results of a
traditional FSI simulation when the displacement field of the structure is the same.

3.2.1 A practical workaround for reduced data sets

The 4DIB approach presented here is based on the availability of 4D image data
sets as it is made possible by recent devices. One of the limitations of the approach
is that as for now only a few instruments are actually able to produce this kind of
data set. This aspect will be naturally overcome in the future with a larger diffusion
of those devices. However, a natural question arises now: isit possible to pursue
a similar approach even for reduced data sets? The followingexample presents a
possible workaround currently used in the analysis of the relations between WSS
and atherogenesis, in collaboration with the group of Dr. W.R. Taylor at the Emory
School of Medicine (Atlanta, GA, USA). In this case a mouse aorta was acquired
with magnetic resonance imaging (MRI). The whole 3D geometry of the aorta and
its main branches was reconstructed at a single time step, while the motion in time
of the aorta was retrieved only at a number of locations alongits centerline. At these
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points, in fact, the cross sections of the aorta were acquired in time by means of
cine MRI sequences (Figure 9). The lumen in the corresponding 2D slices was seg-
mented and its area computed for each acquisition instant. The time evolution in
time of each cross section area was then reconstructed by fitting these data with a
cubic spline interpolation. The displacement of the whole aorta was suitably inter-
polated from the data available at each slice. More precisely, under the assumption
that the longitudinal and circumferential motion of the vessel is negligible, and that
each aortic section is circular, the time pattern of the areaprovided data on the wall
displacement in correspondence of each slice. The displacement over the entire ves-
sel at each instant was eventually retrieved by a cubic spline interpolation along the
axial coordinate.

Since no information was available on the motion of the branching vessels, their
presence was included in the simulation with the definition of proper stress boundary
conditions for the fluid equations.

Fig. 9 Left: an example of a vascular structure of interest, the abdominal aorta in a mouse. In
correspondence to the highlighted cross-sections, measurements of the arterial wall movement
are available in the form of MRI cine sequences. Center: for each highlighted cross-section, the
values of the area in time are plotted. The cross sectional area has been computed from MRI cine
sequences, after segmentation of the images at each acquisition time. Right: The time pattern of
the cross-section area has been reconstructed by fitting thevalues obtained from the images.

Again, we compared the results obtained from a simulation ofblood flow in a
mouse aorta under the assumption that the vessel geometry isfixed, with the results
of a simulation in moving domain with the “reduced” 4DIB approach.

The results of the rigid wall simulation (Figure 10, left) showed that areas of
disturbed flow characterize the branching points of the proximal abdominal aorta.
High values of theoscillatory shear index(OSI - see e.g. [43]) were computed in
very localized regions at the ostia of the main aortic branches. The hemodynamic
environment was characterized overall by relatively low shear load. The results of
the moving domain simulation (Figure 10, right) provided aninsight into the effects
of the vessel dilatation in the region of interest. As a measure of the dilatation, the
difference between the maximum and minimum radius (over thecardiac cycle) of
each section was computed, and normalized by the minimum radius. The average
value of this indicator on the eight slices was 35%, being maximum in the proximal
abdominal aorta (even more than 40%). When taking into account the movement of
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Fig. 10 Oscillatory Shear Index (OSI, [43] ) on the arterial wall of the proximal abdominal aorta.
Left: Results of the rigid wall simulation. Right: Results of the moving wall simulation.

the vessel, the computed WSS showed a similar spatial pattern but overall a smaller
magnitude compared to the rigid wall case. The ostia of the main aortic branches
were not included in the moving domain simulation due to the lack of information
on their movement. However, the computed WSS was significantly more oscillating
with respect to the rigid wall simulation in the entire proximal abdominal aorta,
and in particular in the region surrounding the branching points. This was indeed
experimentally found to be a typical site for atherosclerosis development.

Despite being only in a preliminary stage, these results suggest that neglecting
the movement of the arterial wall may have a significant impact on the estimation
of clinically relevant features, such as the presence of oscillatory flow. Validation of
these results is ongoing.

3.3 Perspectives

The 4DIB approach has some important drawbacks and limitations. It requires a
large data set of images, which is not always available, evenif some problem-
specific workarounds can be devised to overcome this problem, as presented in
Section 3.2.1. Moreover, this approach does not provide information on solid me-
chanics of the walls and it is therefore suitable when the focus of the study is on the
flow features alone. However, this DA methodology splits thepipeline into a phase
dedicated to the “offline” retrieval of the motion from images and a phase for the
computation of the dynamics of the fluid alone, which has important computational
advantages with respect to full FSI simulations. Furthermore, this approach could
guarantee a reasonable reliability to patient-specific simulations of blood flow when
the vascular motion is determined by external components that could not readily be
included in a wall model, or more in general, when individualmechanical parame-
ters for a single patient are not available.
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Many open problems deserve to be addressed. As we have mentioned, a complete
analysis of the accuracy of the registration process and howthe registration errors
affect the computation of fluid dynamics still needs to be carried out. In this context,
it is particularly relevant the correlation of the numerical procedure with the noise
affecting the image acquisition and segmentation. Using the terminology in [74]
this DA procedure can be considered as aframe-to-frame pseudo-observational ap-
proach. More mathematically advanced methods advocated in [74] which entail an
integrated variational assimilation of data and images similar to the ones introduced
in Sect. 2 could be considered as a future development.

4 Variational Parameter Estimation

Since mathematical and numerical models are earning more relevance in medical
applications and are used as patient-specific tools, a precise estimation of individual
physical parameters featured by the equations is needed. Moreover, by themselves,
some parameters can play the role of landmarks of pathologies. This is for instance
the case of the stiffness of soft tissues in detecting breastcancer. Significant changes
of the stiffness of the tissue can identify the presence of tumors. On the other hand,
a small value of the compliance of the tissue could be an indicator of atherosclerosis
or hypertension, while an increase of the stiffness of the left ventricle wall is a clear
marker ofdiastolic dysfunction, which can lead to an increase of the end diastolic
left ventricle pressure and, possibly, to heart failure (see e.g. [29, 75]). This has mo-
tivated sophisticated image-based diagnostic approaches, such as theelastography
(see e.g. [50, 5, 58, 32]).

Either for a direct diagnostic purpose or for an individual-based evaluation to be
used in numerical simulations, a precise estimation of biological parametersin vivo
is still a challenging problem demanding appropriate mathematical tools. In this sec-
tion we suggest a DA procedure. The starting point is that theparameters of interest
are complicated functions of measurable quantities. For instance, the compliance
of a tissue affects in a non trivial way its displacement, thelatter being retrievable
from images. In some cases (as in elastography) we can prescribe the forces induc-
ing a measured displacement and formulate an inverse problem in the form: given
the force and the consequent displacement, find the stiffness (or more precisely the
Young modulus, in the case of a linear elastic material) thatfits at best the experi-
mental stress-strain data. In other cases, practical reasons prevent the knowledge of
some of the ingredients of this inverse problem. For instance, the natural periodic
motion of a vessel is the result of the interaction with the blood (and the other tis-
sues), in turn forced by the heart action. The forces exertedon the vascular wall by
the blood are not explicitly known but can be included in a mathematical model of
the FSI, as a function of (available) velocity/pressure values on the boundary of the
region of interest. The basic idea of DA approach is then to use numerical simu-
lations for bridging available data to the ingredients needed for solving the inverse
parameter-estimation problem.
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In the case of the vascular stiffness, usable data are the images of the vessel
displacement (as in Sect. 3) and velocity and pressure (Sect. 2) on the boundary.
Numerical simulations allow to compute the forces on the wall and eventually to
solve an inverse problem. We present here a first step in this direction. However, it
is worth stressing that this DA approach has potentially a more general use than for
the evaluation of the vascular compliance (that can be currently achieved in several
ways), for different (and more numerous) sets of parameters.

4.1 Mathematical and numerical formulation

We formulate the problem of estimating the compliance of a linearly elastic mem-
brane filled by an incompressible fluid as follows. LetΩ be the volume of interest
of the fluid, where we assume the incompressible Navier-Stokes equations (7) to
hold. The membraneΓw is a portion of∂Ω , i.e. a 2D surface for a 3D fluid, which
is assumed to obey the equation for an elastic membrane

ρw
∂ 2η
∂ t2 +Eθη = sw, (12)

whereη is the membrane displacement assumed to be normal toΓw, ρw is the density
of the solid,sw is the stress exerted by the fluid and by surrounding tissues (the latter
will be neglected in the following), andθ is a function of the mean and Gaussian
curvatures of the membrane and accounts for the transversalmembrane effects (see
[56]). Young modulusE is the parameter we want to estimate. The fluid subproblem
(7) and the membrane one (12) are coupled at the FS interfaceΓw by the continuity
of the normal stress and of the velocity

−ν
(

∇u+ ∇uT)

·n+ p= sw,
∂η
∂ t

n = u onΓw. (13)

The grid velocityw is the computed as the harmonic extension of
∂η
∂ t

n in Ω .

Now, we assume that the displacement of the vessel can be measured by a set of
time resolved images and the sequence of stepssegmentation+ registration, as we
have done in the previous section. After an appropriate cubic spline interpolation
(see Sect. 3), we have the time dependent displacement fieldηm(t,x) defined onΓw,
that represents theData. Displacementηm is assimilated with the numerical model
as indicated by the feedback loop in the Introduction. The FWproblem is given
by the system of equations (7,12,13), the unknown beingv = [v, p,η ]. The post
processing function selects the displacement, i.e.f (v) = η . The CV is represented
by the Young modulusE. The functionalJ reads

J =

T
∫

0

∫

Γw

(η −ηm)2dxdt+Regularization,
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whereT is the heart beat duration. Again, the regularizing term enhances the math-
ematical and numerical properties of the problem. A possible form is

α
T

∫

0

∫

Γw

(

E−Ere f
)2

dxdt,

whereα is the usual parameter weighting the effect of the regularizing term on the
minimization process andEre f is a reference value of the Young modulus available
for instance from the literature. If we assumea priori that the CV is positive, we
can also consider the term

α max
x∈Γw,t>0

(

log

(

E
Ere f

))2

.

In both cases the regularizing term penalizes the distance between the control vari-
ableE and the reference value for the Young modulusEre f .

The solution of this minimization problem is not trivial in many respects. Here-
after we present a first possible approach, under some simplifying assumptions.
Even though in the more general case, the Young modulus can befunction of time
and space, in the sequel we assume

1. E constant in time in the interval[0,T], significant changes of the compliance in
an artery being expected over a longer time scale;

2. E piecewise constant in space, as we distinguish basically healthy and pathologi-
cal tissues featuring different values of compliance, eachvalue being reasonably
constant in each subregion.

Computational and algorithmic aspects of the numerical solution of the mini-
mization problem are challenging. Here we resort to the workflow Time Discretize,
then Optimize, then Space Discretize. This means that we first discretize in time
the problem by collocating the minimization process at selected time instantstk.
Then we perform the minimization, by computing the KKT system for the space-
continuous problem. Finally, we discretize the KKT system.In this way, the vari-
ational procedure for the minimization does not involve adjoint backward-in-time
problems (see [34]) and the differentiation of the Lagrangian functional does not
require to perform differentiation of the domainΩ (shape derivatives), since at each
instant the domainΩ is frozen. The anticipated drawback of this approach is thatthe
effect of noise over the time interval is not damped by a leastsquare minimization,
being the problem collocated pointwise attk. Post-processing for the estimates of
E obtained at each step is required for filtering out the error.An extensive analysis
of different solution methods for this problem is however animportant follow up in
this context.

After time discretization, at each instanttk the problem reads (hereafter we omit
to specify the time indexk for the sake of readability): Find the piecewise constant
functionE defined onΓw that minimizes the functional
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J =

∫

Γw

(η −ηm)2dx + α max
x∈Γw

(

log

(

E
Ere f

))2

s.t.























γ1u+(u−w)∇ ·u−ν∇ ·
(

∇u+ ∇uT
)

+ ∇p = g1 in Ω ,

∇ ·u = 0 in Ω ,

(γ2 + γ3Eθ )u ·n− p+ ν(∇u+ ∇uT)n = g2, n×u×n = 0 onΓw,

+Boundary Conditions on Γin and Γout.
(14)

The functionsg1 , g2 andγi depend on the time discretization. In the previous sys-
tem, the FSI problem has been simplified by eliminating the displacement, leading
to a fluid problem with Robin boundary conditions, as proposed in [56].

The explicit computation of the KKT system for this problem and its generaliza-
tion to the case of a 3D thick elastic structure are reported in [60]. We have analyzed
different choices for the space of the admissible CV (E). In particular, for the piece-
wise constant and piecewise linear cases, we can prove the following Proposition.

Proposition 2. For α > 0 the KKT system associated with the minimization problem
has at least one solution.

After the space discretization, the KKT system yields a non-linear algebraic min-
imization problem. In particular we can use again the gradient-based BFGS method
(see e.g. [57]). For more details, see [60].

4.2 Numerical results

We present two test cases on simplified geometries, solved again with the library
LifeV. These test cases have the role of assessing the overall performances of the
method on synthetic data, in view of a more extensive analysis using real medical
images. The “synthetically measured” displacement fieldη f wd is therefore gener-
ated by a preliminary numerical simulations with a prescribed Young modulus. Suc-
cessively, the data are perturbed in order to mimic noise featuring different SNR.

In the first set of simulations (already reported in [60]), wesolve the problem in
a cylinder of radiusR= 0.5 cmand heightH = 6 cm. The computation is performed
in 2D under the assumption of axial symmetry of the problem. We impose the pres-
sure drop∆ p = 104dyne/cm2 for the first 5msbetween the inlet and the outlet of
the vessel. We setρ f = 1g/cm2, ρw = 1.1g/cm2, µ = 0.035Poise, h = 0.02cmand
∆ t = 0.001s.

Figure 11 shows the geometry and the pressure along a longitudinal section of
the cylinder, for different time instants.

The optimization problem has been solved by using the BFGS algorithm over 10
time steps, corresponding to the first 10msof the simulation. We run the optimiza-
tion problem for 10 realizations of the noise. In Table 2, we report the average over
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Fig. 11 2D axisymmetric case, Forward simulation. Geometry at timet = 4 ms, t = 6 ms and
t = 8 ms. Colored with blood pressure.

the 10 realizations of the estimated values ofE and the relative error. Different ini-
tial guessesE0 and different SNR are considered. These results show that for large
values of the SNR, the estimate obtained by the method is accurate. Moreover, the
BFGS applied to the membrane case is pretty robust with respect to the noise, both
in terms of accuracy and convergence.

Other 2D cases on non-trivial geometries (like a bifurcation) have been reported
in [60].

↓ E0 \ SNR→ 10 5 3 2.5

107 dyne/cm2 1.302±0.027 1.314±0.054 1.330±0.085 1.357±0.103
0.2% 1.1% 2.3% 4.4%

105 dyne/cm2 1.303±0.027 1.315±0.056 1.330±0.087 1.348±0.115
0.2% 1.1% 2.3% 3.7%

Table 2 Standard deviation of the ten estimates (to be multiplied by106, top) and mean percent-
age error (bottom) for different values of the initial guessE0 for the Young modulus and of the
percentageP. ExactE is 1.3·106 dyne/cm2.

We now consider the three dimensional geometry shown in Figure 12, represent-
ing a simplified aorta. This geometry consists of a cylinder of radius 1.5cm and
height 10cmand half a torus with curvature radius 4cm. The pressure field and the
geometry displacement are shown in Figure 12. As before, we estimate the com-
pliance using the displacement of the forward simulation perturbed by an artificial
noise. In Table 3 we report the results. In the 3D case, the methods seems to be

↓ E0 \ SNR→ 20 10 5

107 dyne/cm2 1.32±0.05 1.35±0.12 1.24±0.7
1.5% 3.8% 9.5%

Table 3 Mean and standard deviation of five estimates (to be multiplied by 106, top) and mean
relative error for different values of the Young modulus andof SNR. ExactE is 1.3·106 dyne/cm2.
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Fig. 12 3D simplified aorta, Forward simulation. Geometry at timet = 0 ms, t = 16 msandt =
22ms. Colored with blood pressure.

more sensitive to the noise. However even with a noise with SNR=5, the parameter
estimation is accurate enough for most of clinical applications.

4.3 Perspectives

As the preliminary results indicate, the assimilation of data and numerical mod-
els is a worthwhile approach for estimating patient-specific parameters to be used
either for detecting possible anomalies or performing individual-based numerical
simulations. Here, numerical differential models play therole of a bridge between
the measurable data and the unknown parameters. There are many critical issues at
the computational level to be addressed. Even if practical applications in general
demand for less accuracy than the one usually considered acceptable from the nu-
merical viewpoint, the impact of the noise is supposed to play a relevant role on
the reliability of the entire approach. Moreover, the frequency of sampling of im-
ages, currently driven by technological limits, has probably a major impact on the
accuracy of the results.

From the computational viewpoint, in these preliminary applications we resorted
to standard numerical tools like the BFGS method. Extensionof this approach to
real 3D cases rises new issues on the computational effectiveness of the methods.
An extensive comparison among different possible options (in particular for the
sequence of optimization and discretization steps) and different possible algorithms
is required for a massive use of these methods in practice.

A long term follow up of the present research is the extensionof this optimization
procedure to more complex sets of CV, such as the configuration and geometrical
features of the cardiac fibers. In fact, we mention here that one of the open challeng-
ing problems in heart imaging and modeling is the estimationof the orientation of
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the fibers driving the mechanical contraction and the electrical potential propagation
in the cardiac tissue.

5 Conclusion

A mathematically sound adoption of numerical models for investigating the vas-
cular blood dynamics originates from pioneering works in the late 80s (among the
others, see e.g. [61, 62, 67]). At that time, numerical simulations were carried out in
idealized domains, moving from basic geometrical primitives to realistic shapes of
regions of interest. Simulations were intended to provide an insight to physiological
and pathological dynamics for a better understanding of themost relevant diseases.
The impact of these simulations was mostly at a qualitative level, since data and ge-
ometries were realistic but not patient-specific. Successively, in the ’90s, the advent
of new imaging technologies and corresponding numerical methods allowed the in-
troduction of “patient-specific” simulations. The geometry of the single patient at a
given instant was reconstructed from digital subtraction angiographies or computed
tomographies and used as the computational domain, possibly together with indi-
vidual measures of data for the boundary conditions. This “sequential” merging of
data and simulations (i.e.,first the data,then the simulations fed by the data) led
to a more quantitative relevance of numerical models, closer to the clinical activ-
ity. Reliability of numerical models have been progressively increased by removing
many of the simplifying assumptions postulated in the first simulations, e.g. rigid
geometries or Newtonian rheology (see e.g. [23]).

The development of more sophisticated mathematical and numerical models has
been corresponded by the development of more sophisticatedmeasurements and
imaging tools. Nowadays, these instruments provide more data and more images,
so that it is reasonable to think to a further step, moving from a “sequential” to an
“integrated” use of data and simulations. The DA approach entails measures and
images to be used not just for providing initial and boundaryconditions, but to drive
the results by a sophisticated integration with the mathematical models. The out-
come of this process is an assimilated result where not only numerical computation
is strictly consistent with the individual data, but the noise affecting the data has
been filtered out by the mathematical modeling.

The “integrated” paradigm, which is well developed in othercontexts such as
the weather forecasting, opens many challenging problems at the methodological
and practical level. The quality of the data in terms of theirsize, location in space
and frequency in time plays obviously a major role in the mathematical properties
(well posedness) of the assimilation problem (see [48]). Moreover, the noise that
invariably affects the data has an impact on the reliabilityof the entire process. A
precise evaluation of this aspect is strictly related to both the type of data and the
methods used for the assimilation procedure. This leads to analyze and solve partial
differential equations with stochastic terms (see e.g. [83, 84, 85, 18]).



Data Assimilation in Hemodynamics 29

When the assimilation problem is solved with variational methods, the mathe-
matical strcuture almost invariably can be represented as afeedback control loop.
The effective numerical solution of inverse problems in this form presents many
open concerns to be properly addressed (see [57]).

In this chapter we have presented three basic examples sharing this control-loop
structure, motivated by ongoing collaborations with medical doctors. The first pre-
liminary results enlighten the great potential of DA as a wayfor improving both
the reliability of numerical results and the quality of measures. As we have pointed
out, a certified reliability is crucial since bioengineering and medical communities
are increasingly resorting to scientific computing for taking decisions (see [20]).
The accomplishment of the new integrated paradigm - requiring new advanced and
increasingly interdisciplinary research - represents an exciting challenge of cardio-
vascular mathematics for the years to come.
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