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COLOUR CRITICAL HYPERGRAPHS WITH MANY EDGES

V. RÖDL AND M. SIGGERS

Abstract. We show that for all k ≥ 3, r > l ≥ 2 there exists constant c =
c(k, r, l) such that for large enough n there exists a k-colour-critical r-uniform
hypergraph on less than n vertices, having more than cnl edges, and having
no l-set of vertices occuring in more than one edge.

1. Introduction

A hypergraph H consists of a set V = V (H) of vertices and a set E = E(H) of
subsets of V , called edges.
H is k-colourable if V can be partitioned into k mutually disjoint colour classes
such that no edge e ∈ E has all vertices in a single class. A mapping φ : V → [k]
that induces this partition is called a (proper) k-colouring of H , or of V (H).
H is k-chromatic if k is the minimum t for which H is t-colourable.
H is k-critical if it is k-chromatic but H−e is (k−1)-colourable for any edge e ∈ H .
Note that we do not allow a k-critical graph to have isolated vertices.
H is r-uniform if every edge is an r-subset (subset of size r) of V , and is an (r,l)-
system if it is r-uniform and no l-subset of V occurs in more than one edge of E.
(A 2-uniform hypergraph is called a graph.)

Recall that the set of 3-critical 2-uniform graphs is the set of odd cycles; however,
characterising other sets of critical graphs is a much harder task. The problem of
determining if a graph is k-critical is Dp-complete [CM87]. Dirac, in [D52] showed
for k ≥ 6, and Toft, in [T70], showed for k ≥ 4, that there is a constant c = c(k)
such that for every n large enough, there is a k-critical graph on n vertices with
≥ cn2 edges. In fact, Toft showed that c(4) = 1

16 . In [T73], Toft showed (attributing
the result to Erdős for k = 3) that the maximum number of edges of a k-critical
r-uniform hypergraph is of order less than nr for k = 3 and is of order nr for k > 3.
Lovász [L76] improved the upper bound for the maximum number of edges of a
3-critical r-uniform hypergraph to

(
n

r−1

)
.

The number of edges in k-chromatic (r, l)-systems has been studied elsewhere.
In [E75], Erdős and Lovász find bounds for the minimum number of edges that a
k-chromatic (r, 2)-system can have. In [K01], some of these results are improved
and extended to (r, l)-systems.

The paper [A80] gives a lower bound for the number of non-isomorphic k-critical
(r, 2)-systems.

In this paper, we extend Toft’s results above about the maximum number of
edges of k-critical r-uniform hypergraphs [T73], to (r, l)-systems. We also improve
the lower bound from [A80] about the number of non-isomorphic k-critical (r, 2)-
systems, and extend this result to (r, l)-systems.
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2. Results

The main result of this paper is the following theorem:

Theorem 2.1. For all k ≥ 3 and r > l ≥ 2, there exists constants c = c(k, r, l)
and N = N(k, r, l) such that, for all n ≥ N , there exists a k-critical (r, l)-system
on n vertices, with at least cnl edges.

Notice that up to a constant factor, this is the best possible, since an (r, l)-system

on n vertices can have at most
(n

l)
(r

l)
= Θ(nl) edges.

We denote by S(k, r, l) the following statement.

S(k, r, l): There exist constants c = c(k, r, l) and N = N(k, r, l)
such that for all n ≥ N , there exists a k-critical (r, l)-system H
on n vertices with ≥ cnl edges.

Theorem 2.1 can now be restated as follows.

Theorem 2.1’. For all k ≥ 3 and r > l ≥ 2, S(k, r, l) is true.

The following weaker version of statement S(k, r, l) is easier to prove.

W (k, r, l): There exist constants cw = cw(k, r, l) and Nw = Nw(k, r, l)
such that for all n ≥ Nw there exists a k-critical (r, l)-system H
on ν ≤ n vertices with ≥ cwnl edges.

Note that ν > c
1/l
w n in this definition, for if it were smaller, the system couldn’t

have ≥ cwnl edges.
It is clear that S(k, r, l) implies W (k, r, l). The inverse implication, however,

is more complicated. (Note that we do not allow isolated vertices in k-critical
systems.) We prove this inverse implication in Section 4 with the following lemma.

Lemma 2.1. W (k, r, l) ⇒ S(k, r, l) for k ≥ 3, r > l ≥ 2.

In view of Lemma 2.1, Theorem 2.1’ follows by induction from the following
Lemmas:

Lemma 2.2. W (k, r, l) ⇒ W (k, r + 1, l) for k ≥ 3 and r > l ≥ 2

Lemma 2.3. W (4, l, l) ⇒ W (3, l + 1, l) for l ≥ 2

Proof of Theorem 2.1’. The proof is by induction. Since Toft [T73] gives us that
for k > 3 W (k, l, l) is true for all l > 2 while Erdös [T73] gives us that W (k, l, l) is
false for k = 3, we have two different cases.

For k > 3, W (k, r, l) follows immediately from W (k, l, l) by Lemma 2.2.
For k = 3, we apply Lemma 2.3 to W (4, l, l) to get W (3, l+1, l), and then apply

Lemma 2.2 to get W (3, r, l).
�

Section 3 gives some preliminary results, Section 4 gives the proof of Lemma 2.1,
Section 5 gives the proofs of Lemmas 2.2 and 2.3, and Section 6 gives a result that
follows from Theorem 2.1.

3. Preliminary Results

The following will be useful in proving the lemmas.
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Construction 3.1. For all k ≥ 2 and r ≥ 3, we have the following hypergraphs:

(i) k-chromatic (r, 2)-system S(k, r), with designated vertices x and y, that is
edge critical with respect to the property of being k-colourable iff x and y
are the same colour;

(ii) k-chromatic (r, 2)-system NS(k, r, s), for 2 ≤ s < r, with designated ver-
tices W = {w1, . . . ws}, that is edge critical with respect to the property of
being k-colourable iff the vertices of W are not all the same colour; and

(iii) k-chromatic (r, 2)-system D(k, r), with designated vertices U = {u1, . . . , uk},
that is edge critical with respect to the property of being k-colourable iff all
vertices of U are distinct colours.

Proof.
(i) Let S′ be obtained from a (k + 1)-critical (r, 2)-system by removing edge

e containing vertices x and y. Then S ′ is k-colourable with χ(x) = χ(y)
under any k-colouring χ of S ′. Remove edges from S ′ until it is critical
with respect to this property. This new critical system, is the S(k, r) we
desire.

Note that because S ′ was an (r, 2)-system and we removed the edge
containing x and y, these vertices do not occur together in any edge of S.

(ii) Construct (r, 2)-system NS = NS(k, r, s) as follows.
• For i = 1, . . . , r − s, let Si be copies of S(k, r), and xi and yi be the

designated vertices in Si.
• For i = 2, . . . , r − s, identify vertices xi and yi−1.
• Add edge e = {x1, x2, . . . , xr−s, yr−s(= w1), w2, . . . , ws}, where w2, . . . ws

are new vertices.
Now under any k-colouring of NS, vertices x1, x2, . . . , xr−s, and yr−s = w1

must all be the same colour, so because of edge e, W = {w1, . . . , ws} must
not be monochromatic. It is easy to see that NS is critical with respect
to this property.

Note that we use the fact that x and y do not occur together in any
edge of S(k, r) to get that NS is an (r, 2)-system

(iii) Construct (r, 2)-system D = D(k, r) as follows.
• Let U = {u1, . . . , uk} be a set of vertices.
• For each pair of vertices ui, uj ∈ U , take a copy of NS(k, r, 2); identify

ui with one of its designated vertices, and uj with the other.
Under any k-colouring of D, the vertices of U all have different colours. It
is easy to see that D is critical with respect to this property.

�

4. Proof of Lemma 2.1

We prove Lemma 2.1 with a construction (4.1) that allows us to add any number
of vertices greater than some constant, while maintaining k-criticality.

The following theorem follows from [GL74, Thm 2], which says that the only
k-colourings of (Kn)k are the projections onto a single component, and is proved
explicitly in a stronger form in [M79, Thm 1].

Theorem 4.1. Let k ≥ 3 and p > 0 be integers, and A = {A1, . . .Ap} be different
partitions of the finite set A into at most k classes. Then there exists a k-chromatic
graph G such that A ⊂ V (G) and the set of possible colourings of G, when resticted
to A, is the set A.
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Figure 1. k = 2, r odd

We use this theorem in the proof of the following lemma, which is in turn used
in Construction 4.1.

Lemma 4.1. Let k ≥ 2, r ≥ 3 be integers. Then there exists a k-chromatic (r, 2)-
system F with X = {x1, . . . , xr} ⊂ V (F ) and Y = {y1, . . . , yr} ⊂ V (F ) that is
critical with respect to the property that F can be k-coloured iff X and Y are not
both monochromatic.

Proof. For k = 2 the proof is by a direct construction, for k ≥ 3 it is by a construc-
tion based on Theorem 4.1.

Assuming k = 2, F is the system seen in Figures 1 (r odd), and 2 (r even).
In these figures, the triangles are copies of the system NS(k, r, 3) except when
r = 3, in which case they are just edges. There are two special edges E1 and E2,
and otherwise, the solid ovals are copies of S(k, r) and the rectangles are copies
of NS(k, r, 2). The dotted ovals are to apply a label to the sets of vertices shown
inside them, either explicity or implied by ellipses.

We need to show that F can not be 2-coloured with both X and Y monochro-
matic, and that any other 2-colouring of X and Y extends to a 2-colouring of F .
We show the former for r odd, the latter for r even, and leave the other two cases
to the diligent reader.



COLOUR CRITICAL HYPERGRAPHS WITH MANY EDGES 5

� �

� �

� � � � � �
	 � � � � � � 
 �

� �

�


 �

� �


 �

� � �

	 � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

	 � � � � � � 
 �

	 � � � � � � 
 �

Figure 2. k = 2, r even

• F can not be 2-coloured with both X and Y monochromatic (r odd):
Assume X is coloured red. Then X1 must be blue, and X2 must in turn

be red. This forces U1 to be red, and U2 to be blue. Similarily, if Y is
coloured red (blue), then D1 and D2 must both be blue (red). Either way,
one of E1 and E2 is then monochromatic.

• Any other 2-colouring of X and Y extends to a 2-colouring of F (r even):
We show that any 2-colouring of X other than the monochromatic one

extends to a 2-colouring of F . The proof for Y is nearly symmetric, so is
omitted. Assume X is coloured with vertices xa and xb different colours.
Let NSa and NSb be the copies of NS(k, r, 3) containing xa and xb, and
let va and vb be the vertices of X1 in NSa and NSb respectively. If
NSa = NSb, then va = vb can be coloured arbitrarily. If NSa 6= NSb,
then va and vb can be coloured different colours. Either way, X1 can be
coloured such that it has both colours. This forces both U1 and U2 to be
coloured such that they have both colours. This allows a proper colouring
of F even if Y is coloured monochromatically.

This finishes the proof for the case k = 2. For k ≥ 3, let A = X ∪Y and A be all
partitions of A into at most k classes, in which not both of X and Y occur entirely
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within their own respective classes. Then Theorem 4.1 gives us k-chromatic graph
G with A ⊂ V (G) whose set of k-colourings restricted to A are exactly those by
which not both of X and Y are monochromatic.

We now make G into an (r, 2)-system. For each edge e = {x, y} ∈ E(G),

• let NSe be a copy of system NS(k, r, 2) from Construction 3.1,
• let we

1 and we
2 be the copies in NSe of w1 and w2 respectively,

• identify x with we
1 and y with we

2, and
• remove edge e.

Call the resulting (r, 2)-system F . We observe the following properties of F .

• F can be properly k-coloured: Let χ be a k-colouring of G, for any e =
{x, y} in E(G), χ(we

1) = χ(x) 6= χ(y) = χ(we
2) so by the properties of

NS(k, r, 2), χ can be properly extended to a (k)-colouring of NSe.
• F is not (k− 1)-chromatic: F contains copies of NS(k, r, 2), which cannot

be (k − 1)-coloured.
• Any k-colouring of G extends to a k-colouring of F : We showed this in

showing that F can be properly k-coloured.
• Any k-colouring of F induces a k-colouring of G: Let χ be a k-colouring

of F , for any e = {x, y} in E(G), χ(x) = χ(we
1) 6= χ(we

2) = χ(y) by the
properties of NS(k, r, 2), so χ is a k-colouring of G.

We have shown that F is a k-chromatic (r, l)-system with A = X ∪ Y ⊂ V (J)
whose k-colourings restricted to A are exactly the colourings of G restricted to A.
This proves the lemma.

�

Theorem 4.2. [A78, Thm 1] For k, r ≥ 3, there exists an integer M(k, r) such
that for m ≥ M(k, r) there exists a k-critical (r, 2)-system K on exactly m vertices.

The proof of Lemma 2.1 will use Theorem 4.2, and will depend on the following
construction.

Construction 4.1. Let k ≥ 3, r > l ≥ 2. Given the following systems:

• H ′: a k-critical (r, l)-system on n′ vertices,
• K: a k-critical (r, 2)-system on m vertices,
• F : the (k − 1)-chromatic (r, 2)-system from Lemma 4.1 whose (k − 1)-

colourings restricted to A = X ∪ Y ⊂ V (F ) are exactly those that are
monochromatic on at most one of X = {x1, . . . , xr} and Y = {y1, . . . , yr}.
(We may assume that F is critical with respect to this property.)

There exists a k-critical (r, l)-system H on n = n′ + f + m − 2r vertices with
more than |E(H ′)| edges, where f = |V (F )|.

Proof. Construct H as follows.

• Remove some edge eX = {x̂1, . . . x̂r} from H ′.
• Remove some edge eY = {ŷ1, . . . , ŷr} from K.
• For i = 1 . . . r, identify x̂i with xi and ŷi with yi.

Note that since all edges of the components H ′, F, and K of H were were size r,
all the edges of H have size r. Since the only l-set of vertices that may have gained
an edge in the construction were entirely within X = eX or Y = eY , and edges eX

and eY were removed, H is an (r, l)-system. System H clearly has n = n′+f+m−2r
vertices and more than |E(H ′)| edges. We now show that it is k-critical by showing
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first that it cannot be k−1-coloured, and then showing that it can be k−1-coloured
with the removal of any edge.

• Assume H has (k− 1)-colouring χ. By the k-criticality of H ′, the vertices
of eX = X are monochromatic. Then by the properties of F , the vertices of
Y = eY are not monochromatic. However, since K was k-critical, K − eY

can be (k−1)-coloured only if the vertices of eY are monochromatic. This
is a contradiction.

• Remove edge e from H ′ − eX , then H ′ − {eX , e} has a (k − 1)-colouring
χ under which the vertices of eX = X are not monochromatic. Since X is
not monochromatic, χ can be extended to a (k − 1)-colouring of F under
which Y = eY is monochromatic. This colouring can then be extended to
a (k − 1)-colouring of K − eY .

The argument for removing edge e from K − eY is symmetric.
• Remove edge e from F . Since F was critical with respect to the property

described in Construction 4.1, it can now be (k−1)-coloured with both X
and Y monochromatic. This colouring can then be extended to a (k − 1)-
colouring of both H ′ − eX and K − eY .

We have shown that H can not be (k−1)-coloured, but can be with the removal
of any edge. Thus H is k-critical, and the proof is done.

�

Proof of Lemma 2.1. The direction S(k, r, l) ⇒ W (k, r, l) is trivial.
For the other direction, assume W (k, r, l); i.e. that we have constants cw =

cw(k, r, l) and Nw = Nw(k, r, l) such that for N ′ ≥ Nw there exists a k-critical

(r, l)-system H ′ on n′ ≤ N ′ vertices, with more than cwn′l edges.
We will deliver S(k, r, l) by finding constants c and N such that for all n ≥ N

there exists a k-critical (r, l)-system H on exactly n vertices and having at least cnl

edges.
Let F be the k-chromatic (r, 2)-system from Lemma 4.1, let M(k, r) be the

constant from Theorem 4.2, and set c = cw

2l and N > 2 max(Nw, f + M(k, r)). Let
n ≥ N . Then dn/2e > Nw, so by W (k, r, l) there exists a k-critical (r, l)-system H ′

on n′ ≤ dn/2e vertices with more than cw

2l nl = cnl edges.
Since n − n′ − f + 2r > n/2 − f > M(k, r), Theorem 4.2 gives us a k-critical

(r, 2)-system K on exactly n− n′ − f + 2r vertices.
Applying Construction 4.1 to H ′ and K gives us the required k-critical (r, l)-

system H on n′ + f + (n − n′ − f + 2r) − 2r = n vertices and having at least
|E(H ′)| = cnl edges.

We have shown that for any n ≥ N > 2 max(Nw, f + M(k, r)), there exists a
k-critical (r, l)-system H on n-vertices having at least cnl edges. This completes
the proof. �

5. Proofs of Lemmas 2.2, and 2.3

Lemma 2.2 W (k, r, l) ⇒ W (k, r + 1, l) for k ≥ 3 and 2 ≤ l < r
Lemma 2.3 W (4, l, l) ⇒ W (3, l + 1, l) for l ≥ 2

The proofs of the two lemmas are both generalizations of an old (circa 1980)
construction by the senior author which gives the case W (4, 2, 2) ⇒ W (3, 3, 2).
In a personal communication [S84] M. Stiebitz suggested how to generalize the
construction to give W (k, r, 2) ⇒ W (k, r + 1, 2). He also used a construction to
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show that W (k, r, 2) is true for all r, k ≥ 3. The proofs given here are different
and broader generalizations. They are simpler than Stiebitz’s due to the use of a
more recent result of Pippenger and Spencer which deals with the decompositions
of regular hypergraphs into matchings. (A matching of a hypergraph H is a subset
of its edges such that no vertex occurs in more than one edge of the subset.)

For the proofs of both lemmas we need the aforementioned result of Pippenger
and Spencer:

Theorem 5.1. [PS87]
For every r ≥ 2 and µ > 0, there exist µ′ = µ′(r, µ) > 0 and m0 = m0(r, µ) such
that if H is an r-uniform D-regular hypergraph on m ≥ m0 vertices with maximum
co-degree C ≤ µ′D, then the edges of H can be partitioned into less than D(1 + µ)
matchings. (The co-degree of a pair of vertices is the number of edges in which
they occur together.)

Proposition 5.1. For large enough m, the edges of an (r, l)-system H on m vertices

can be decomposed into t ≤ 2m−l+1
r−l+1 (r, l−1)-systems Mα. I.e. E(H) =

t⋃

α=1

E(Mα).

In the proof of Proposition 5.1, we use the following auxillary construction.
Form hypergraph H ′ from H as follows.

V (H ′) :=

(
V (H)

l − 1

)
(i.e. the set of (l − 1)-subsets of V (H))

E(H ′) := {

(
e

l − 1

)
| e ∈ E(H)}

By this construction, each edge e of H becomes an edge e′ in H ′ whose vertices
are exactly the (l − 1)-subsets of the vertices in e.

We note the following properties of H ′:

• Since every edge e ∈ E(H) has r vertices, every edge e′ ∈ E(H ′) has
(

r
l−1

)

vertices. Thus H ′ is
(

r
l−1

)
-uniform.

• Since no l-subset of V (H) occurs in more than one edge, any (l − 1)-

subset can occur in at most m−(l−1)
r−(l−1) edges. Thus any vertex of H ′ can

occur in at most m−(l−1)
r−(l−1) edges. Consequently, H ′ has maximum degree

D′ ≤ D = m−(l−1)
r−(l−1) .

• Since no l-subset of V (H) occurs in more than one edge, no two (l − 1)-
subsets of V (H) occur together in more than one edge. Thus no two
vertices of H ′ occur together in more than one edge. Consequently, H ′

has a maximum co-degree of 1.
• A matching of H ′ corresponds to a set of edges of H no two of which share

an (l − 1)-subset of V (H). This is exactly an (r, l − 1)-system.

Let δ(G) denote the minimum degree of hypergraph G .

The proof of Proposition 5.1 is based on the following claim.

Claim. H ′ can be embedded in
(

r
l−1

)
-uniform D-regular hypergraph H ′′ with

maximum co-degree 1. (This will allow us to use Theorem 5.1).
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Proof. We prove this by forming a sequence of hypergraphs H ′ = H0, H1, . . . , HD−δ(H′) =
H ′′ , all of maximum degree D and maximum co-degree 1, where for all i, Hi is
embedded in Hi+1, and δ(Hi+1) = δ(Hi) + 1. Given Hi, we form Hi+1 as follows.
Take r copies Hi = H1

i , H2
i , . . . Hr

i of Hi, and for every vertex v in V (Hi) let vj be

the copy of v in Hj
i . For every vertex w of of minimum degree δ+i in Hi we add the

edge {w1, . . . wr}. This increases the degree of every vertex of minimum degree by
1, and leaves the degrees of other vertices unchanged. The only co-degrees affected
are those between copies of a minimum degree vertex, and are raised from 0 to
1. �

Proof of Proposition 5.1. Taking µ < 1 in Theorem 5.1 and m > m0(r, µ) large
enough that 1 < µ′(r, µ)D, we can apply the theorem to H ′′ to get a decomposition
of its edges into t ≤ 2D matchings. These are still matchings when restricted to
H ′. As noted before, this corresponds to a decomposition of H into t (r, l − 1)-
systems. �

Now we are ready to prove Lemma 2.2.

Proof. Assuming W (k, r, l), we have a k-critical (r, l)-system H with m vertices
V (H) = {b1, . . . , bm} and c(k, r, l)ml edges. We construct (r + 1, l)-system J with
n < m(|V (D(k − 1, r + 1))| + |V (S(k − 1, r + 1)|)) vertices (where D(k − 1, r + 1)
and S(k − 1, r + 1) are from Construction 3.1). We then show that any k-critical
subsystem of J has at least |E(H)| = c(k, r, l)ml edges. This will prove W (k, r+1, l)

with c(k, r + 1, l) > c(k,r,l)
(|V (D(k−1,r+1))|+|V (S(k−1,r+1))|)l .

By Proposition 5.1 there exist t ≤ 2m−l+1
r−l+1 (r, l − 1)-systems Mα such that

E(H) =

t⋃

α=1

E(Mα)

We construct system J as follows:

• For α = 1, . . . , t − 1, let Sα be copies of the hypergraph S(k − 1, r + 1)
from Construction 3.1. Let xα and yα be the corresponding designated
vertices.

• For each α = 1, . . . , t−2, identify xα+1 and yα, and relabel them to obtain
wα+1 = xα+1 = yα. Relabel x1 as w1 and yt−1 as wt.(See Figure 3).
Observe that W = {w1, . . . , wt} is then monochomatic under any (k − 1)-

colouring of
t−1⋃

α=1

Sα.

• For i = 1, . . . , k − 1, let H i, be a copy of H. For any b ∈ V (H), and
e ∈ E(H), let bi and ei be their respective copies in H i. For i = 1, . . . , k−1
and α = 1, . . . , t, let M i

α , be the copy of Mα in Hi.
• For α = 1, . . . , t, every e ∈ Mα, and all i = 1, . . . , k − 1, replace edge

ei ∈ M i
α with edge ẽi = ei ∪{wα}. Let M̃ be all edges created in this way.

More precisely, let M̃ =
⋃

i=1,...,k−1

⋃

α=1,...,t

M̃ i
α, where M̃ i

α = {ẽi|ei ∈ M i
α}.

(See Figure 4). Observe that this replacement of r-sets with (r + 1)-
sets yields an (r + 1) uniform hypergraph which, because each H i was
partitioned into (r, l − 1)-systems Mα, is in fact an (r + 1, l)-system.
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Figure 4. Edges of M̃3
1 and M̃3

k−1 (r = 2).

• Let Dj , for j = 1, . . . , m, be a copy of D(k−1, r+1) from Construction 3.1.

Let Uj = {u1
j , . . . , u

k−1
j } be the corresponding designated vertices.

• For all i = 1, . . . , k − 1, and j = 1, . . . , m, identify bi
j with ui

j. (Com-

pare Figures 4 and 5). Observe that for any j = 1 . . .m, the vertices

{b1
j , . . . , b

k−1
j }, are all different colours under any (k − 1)-colouring of J .

More precisely, J is

V (J) =
k−1⋃

i=1

V (H i) ∪
t−1⋃

α=1

V (Sα) ∪
m⋃

j=1

V (Di)

E(J) = M̃ ∪

t−1⋃

α=1

E(Sα) ∪

m⋃

j=1

E(Di)

.
Observe that J is an (r + 1, l)-system. It has n = (k − 1)m + (t− 1)|V (S)|

+m|V (D)−(k−1)|−(t−2) < m|V (D)|+2m
r |V (S)| < m(|V (D)|+ |V (S)|) vertices.
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Figure 5. Identification of bi
j with ui

j.

To finish the proof of Lemma 2.2, we have to show that there is a k-critical sub-
system of J that has at least |E(H)| edges. We do this with the following two claims.

Claim. J is not (k − 1)-colourable.

Proof. Assume J is properly coloured with (k − 1) colours. Since W is monochro-
matic, we may assume it is colour 1. For i = 1, . . . , k − 1, let C i be the vertices of

Hi of colour 1, and let C̃i = {bj|b
i
j ∈ Ci}.

For any j = 1, . . . , m, the vertices {b1
j , . . . , b

k−1
j } are all different colours, so

exactly one of them occurs in

k−1⋃

i=1

Ci. Thus the sets C̃i, for i = 1, . . . , k − 1 form a

(k − 1)-colouring of V (H). This contradicts the fact that H is k-critical. �

Claim. Let K be any subgraph of J that is not (k − 1) colourable. (In particular,
K may be a k-critical subgraph.) Then for every edge e ∈ E(H), K must contain
at least one of the edges ẽ1, . . . , ẽk−1. Consequently, K has at least |E(H)| edges.

Proof. For some e ∈ E(H), assume Ke ⊂ J has none of the edges ẽ1, . . . , ẽk−1. H

is k-critical, so H − e has proper (k− 1)-colouring
k−1⋃

γ=1

Cγ . For i = 1, . . . , k− 1, and

γ = 1, . . . , k − 1 let Ci
γ be the copy of Cγ in Hi.

For i = 1, . . . , k− 1, let χ(b) = i for all b ∈
k−1⋃

γ=1

Cγ+i−1
γ where the upper index is

taken modulo k − 1. (See Figure 6).
It remains to show that χ extends to a proper (k − 1)-colouring of Ke.

For any i = 1, . . . , k − 1, α = 1, . . . , t, and any edge d̃i = di ∪ {wα} ∈ M̃ i
α, di

already has more than one colour under χ. This is because di ∈ V (H i), and

k−1⋃

γ=1

Ci
γ

is a proper colouring of H i.
Since di already has more than one colour under χ, we may arbitrarily define χ

on wα. Let χ(wα) = 1 for α = 1, . . . , t.
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� � � � � ��

Figure 6. Definition of χ (k=7)

By the properties of S(k − 1, r + 1), χ, which is monochromatic on W , can be

further extended to a proper (k − 1)-colouring of

t−1⋃

α=1

Sα.

Observe that for j = 1, . . . , m, {χ(b1
j), . . . , χ(bk−1

j )} = {1, . . . , k−1}. Thus by the

properties of D(k− 1, r +1), χ can be extended again to a proper (k− 1)-colouring

of
m⋃

j=1

Dj .

Consequently, Ke can be (k−1)-coloured, proving by contradiction that for every
edge e ∈ E(H), a k-critical subsystem of J must contain at least one of the edges
ẽ1, . . . , ẽk−1. �

We have shown that (r + 1, l)-system J , which has n vertices, is a k-critical
subsystem that has at least |E(H)| edges. By the discussion at the beginning of
the proof, this completes the proof of the lemma.

�

The proof of Lemma 2.3 is similar to that of Lemma 2.2, but the differences
require some exposition.

Proof. We begin with essentially the same construction we used in Lemma 2.2.
From 4-critical (l, l)-system H , we build (l + 1, l)-system J exactly as we did in
the proof of Lemma 2.2 only we use copies of NS(2, l + 1, 3) instead of copies of
D(3, l + 1).

Explicitly, start with 4-critical (l, l)-system H with m vertices and cml edges.
By Proposition 5.1, the edges can be decomposed into t < m (l, l − 1)-systems.
Take three copies of H and t− 1 copies of S(2, l + 1). Identify their vertices as in
Lemma 2.2. Take m copies of NS(2, l + 1, 3), and attach them to the copies of H
in the same way the copies of D(k − 1, l + 1) were attached to H in the proof of
Lemma 2.2. Again, call this new system J . (See Figure 7).

Claim. J is not 2-colourable.



COLOUR CRITICAL HYPERGRAPHS WITH MANY EDGES 13

� � �

� � �

� � �

� � � �
	 � �

� 
 � �
	 
 �

� �

� 
 � �
	 
 �

� 
 � �
	 
 �

� � � �
	 � � � �

� �
� �

� � � �

Figure 7

Proof. Assume J is properly coloured with 2 colours. Since W is monochromatic,
we may assume it is colour 1. For i = 1, 2, 3, let C i be the set of vertices of H i of

colour 1, and let C̃i = {bj|b
i
j ∈ Ci} ⊂ V (H).

For any j = 1, . . . , m, the vertices {b1
j , b

2
j , b

3
j} are not all the same colour by the

properties of NSj , so at least one of them occurs in

3⋃

i=1

Ci. Thus the union of

the sets C̃i for i = 1, 2, 3 contain all of V (H). Observe that for i = 1, 2, 3, C̃i is
independent. This contradicts the fact that H is 4-critical. �

Claim. Let K be any subgraph of J that is not 2 colourable. (In particular, K
may be a 3-critical subgraph.) Then for every edge e ∈ E(H), K must contain at
least one of the edges ẽ1, ẽ2, ẽ3. Consequently, K has at least |E(H)| edges.

Proof. For some e ∈ E(H), assume Ke ⊂ J has none of the edges ẽ1, ẽ2, ẽ3. Since

H is 4-critical, H − e has proper 3-colouring

3⋃

γ=1

Cγ . For i = 1, 2, 3, and γ = 1, 2, 3

let Ci
γ be the copy of Cγ in Hi.

Let χ(v) = 1 for all v ∈ C1
1 ∪ C2

2 ∪ C3
3 ∪W , and let χ(v) = 2 for all other v in

V (H1 ∪H2 ∪H3).
It remains to show that χ extends to a proper 2-colouring of Ke.

For any i = 1, 2, 3, α = 1, . . . , t, and any edge d̃i = di∪{wα} ∈ M̃ i
α, vertex wα is

coloured 1 by χ and edge d̃i contains l more vertices from H i. These l vertices are
all in edge di of H i, so at least one of them is not from Ci

i . This one is coloured 2
by χ.

By the properties of S(2, l+1), χ, which is monochromatic on W , can be further

extended to a proper 2-colouring of

t−1⋃

α=1

Sα.

Observe that for j = 1, 2, 3, {χ(b1
j), χ(b2

j ), χ(b3
j)} = {1, 2}. Thus by the properties

of NS(2, l + 1, 3), χ can be extended again to a proper 2-colouring of

m⋃

j=1

NSj.
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Consequently, Ke can be 2-coloured, proving by contradiction that for every
edge e ∈ E(H), a k-critical subsystem of J must contain at least one of the edges
ẽ1, ẽ2, ẽ3. �

We have shown that (l + 1, l)-system J , has a k-critical subsystem which has
n < m(|V (NS(2, l+1, 3))|+|V (S(2, l+1))|) vertices and at least |E(H)| edges. This

completes the proof of the lemma with c(3, l + 1, l) > c(4,l,l)
|V (NS(2,l+1,3))|+|V (S(2,l+1))| .

�

6. Consequential Results

Let T (k, r, l, n) be the number of non-isomorphic k-critical (r, l)-systems on n
vertices. It was shown in [A80] that for all r, k ≥ 3, there exists constant d =
d(r, k, 2) > 1 such that T (k, r, 2, n) > dn for large enough n. We can now improve
this result, and extend it to all 2 ≤ l < r.

Theorem 6.1. For all k ≥ 3 and 2 ≤ l < r , there exists d = d(k, r, l) and

n0 = n0(k, r, l) such that for n > n0, T (k, r, l, n) > dnl

Proof. For k, r, l fixed and n > n0, we will

(i) Choose appropriate n∗ < n.
(ii) Use Theorem 2.1 to get a k-critical (r, l)-system H∗ on n∗ vertices with

≥ c(n∗)l edges.

(iii) For some a = a(k, r, l) > 1 and s = s(k, r, l) > 1, construct more than an∗l

distinct k-critical (r, l)-systems H ′ each on between n∗ and s · n∗ vertices.

(iv) Apply Construction 4.1 to each of the H ′ to get more than a(n∗)l

distinct
k-critical (r, l)-systems H each on exactly n vertices.

(v) Show that for some d = d(k, r, l) > 1 at least dnl

of these systems are
non-isomorphic.

This will prove the theorem.

(i) Let N = N(k, r, l), f , M(k, r), and S = S(k − 1, r) be from Theorem 2.1,
Construction 4.1, Theorem 4.2, and Construction 3.1 respectively. Let

n0 > 2 max{N |V (S)|, f + M(k, r) + |V (S)|} (1)

and let n > n0. Choose n∗ to be the maximum integer such that

n > n∗|V (S)|+ f + M(k, r) ≥ N |V (S)|+ f + M(k, r). (2)

(ii) By choice of n∗, we have that

n∗ ≥ N. (3)

So by Theorem 2.1 we have a k-critical (r, l)-system H∗ on n∗ vertices with ≥ c(n∗)l

edges.
Later, we will also use that

n

n∗
< 2|V (S)|. (4)

Indeed by (1),

(n∗ + 1)|V (S)|+ f + M(k, r) > n > 2(f + M(k, r) + |V (S)|),

so
(n∗ − 1)|V (S)| > f + M(k, r),
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consequently,

2n∗|V (S)| ≥ (n∗ + 1)|V (S)|+ f + M(k, r) ≥ n,

which, implies (4).

(iii) For any of the 2|E(H∗)| > 2c(n∗)l

possible partitions E1 ∪ E2 of E(H∗), we
construct the following system H ′′. (H ′ will be a critical subsystem of H ′′.)

Construction 6.1. Set V = V (H∗) = {v1, . . . , vn∗}, and let E1 ∪ E2 be any

partition of the edges of H∗. For j = 1, 2 let V j = {vj
1, . . . , v

j
n∗} be vertex disjoint

copies of V and let

E′
j = {{vj

i1
, . . . , vj

ik
}|{vi1 , . . . , vik

} ∈ Ej},

For i = 1, . . . , n∗, let Si be a copy of S(k − 1, r) from Construction 3.1. Let
w1

i and w2
i be the copies of x and y in Si, and identify v1

i and v2
i with w1

i and w2
i

respectively.
Define H ′′ = H ′′(E1 ∪E2) as follows:

V (H ′′) = V 1 ∪ V 2 ∪
⋃

V (Si)

E(H ′′) = E′
1 ∪ E′

2 ∪
⋃

E(Si).

For each partition (E1 ∪E2) of E(H∗) we have constructed an (r, l) system H ′′

such that n′′ = |V (H ′′)| = |V (H∗)|·|V (S)| = n∗|V (S)|. The following claim implies
that H ′′ has a k-critical sub-system H ′ with at least n∗ vertices, and that the H ′

constructed for two different partitions of E(H∗) are distinct.

Claim 6.1. The (r, l)-system H ′′ is not (k−1)-colourable; moreover, any k-critical
subsystem of H ′ of H ′′ = H ′′(E1 ∪ E2) contains all edges of E′

1 ∪ E′
2.

Proof. Assume that H ′′ has a proper (k−1)-colouring χ′′. Then for all i = 1, . . . , n′′,
χ′′(v1

i ) = χ′′(v2
i ). This is because v1

i and v2
i are identified with w1

i and w2
i respec-

tively, and the latter two are the same colour by the properties of Si. The colouring
χ∗ defined by χ∗(vi) = χ′′(v1

i ) = χ′′(v2
i ) is thus a well defined mapping from V (H∗)

to [k− 1]. For all e ∈ E(H∗), since χ′′ properly colours e1 or e2 (whichever exists),
χ∗ properly colours e. Consequently, χ∗ is a proper (k− 1)-colouring of H∗, which
contradicts H∗ being k-critical. Thus we conclude that H ′′ is not (k−1)-colourable.

To see that any k-critical subsystem H ′ of H ′′ contains all edges of E′
1 ∪E′

2, we
show that the removal of any such edge yields a proper (k − 1)-colouring χ′.

Remove edge e′ ∈ E′
1 ∪ E′

2 from H ′. Without loss of generality, assume e′ =
e1 = {v1

1 , . . . , v
1
k} ∈ E′

1 where e = {v1, . . . , vk} ∈ E. By the criticality of H∗, there
exists (k − 1)-colouring χ∗ of H∗ − e. For i = 1 . . . n∗, let χ′(v1

i ) = χ′(v2
i ) = χ(vi);

by the identification of v1
i and v2

i with w1
i and w2

i , we then get χ′(w1
i ) = χ′(w2

i ).
By the properties of Si, χ′ can then be properly extended to a (k− 1)-colouring of
V (Si). This is true for each i = 1 . . . n∗, so χ′ extends to a proper (k− 1)-colouring
of V (H ′).

�

We have thus constructed 2c(n∗)l

distinct k-critical (r, l)-systems H ′ with n∗ ≤
|V (H ′)| ≤ n∗|V (S(k − 1, r))|.
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(iv) For each of these H ′, let m = n−|V (H ′)|−f +2r ≥ n−n∗|V (S)|−f +2r >
M(k, r). Then apply Construction 4.1 to H ′ and the system K on m vertices that
we get from Theorem 4.2. This gives us a k-critical (r, l)-system H on exactly n

vertices. We have thus constructed 2c(n∗)l

= 2
c(n∗)l

nl
nl

> 2
c

2l|V (S)|l
nl

= 2d′′nl

distinct
such H , where d′′ = c

2l|V (S)|l
, and the inequality is by (4).

(v) The isomorphism class of any system on n-vertices has size at most n!, so we

have at least 2d
′′

n
l

n! = 2d′′nl(1+o(1)) > 2d′nl

non-isomorphic k-critical (r, l)-systems

on n vertices for some constant d′. This is dnl

where d = 2d′. �

Notice that in the construction of the more than dnl

different k-critical (r, l)-

systems, all of the systems had more than c′nl := c(n∗

n )lnl edges.

A trivial upper bound for the number of (r, l)-systems with c′nl edges is
((n

r)
c′nl

)
<

(
nr

c′nl

)
≈ (nr−l)nl

= O(dnl log nr−l

). We conjecture that the actual number is in fact

exponential in nl.
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