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Abstract. A class of ill-posed inverse problems that arises in astronomical imaging is considered.
An iterative steepest descent method for regular least squares problems which constrains the solution
to be nonnegative is presented. A careful consideration of the noise statistics that arise from the use
of a CCD camera for data generation motivates the extension of this algorithm for use on weighted
least squares problems. Preconditioning strategies are examined for both algorithms, and it is shown
that in order to preserve noise statistics, preconditioners must be highly structured. Examples from
astronomical imaging are used to illustrate behavior of the methods.

Key words. astronomical imaging, image restoration, least squares, nonnegativity constraint,
preconditioning, weighted least squares

AMS Subject Classifications: 65F20, 65F30

1. Introduction. The basic linear system

Ax = b (1.1)

is ubiquitous in science and engineering applications; given the matrix A and vector b,
the goal is to compute the vector x. For moderately sized problems, direct methods
based on matrix factorizations can be used [7], while for large problems it is more
common to use iterative methods [8, 16].

An interesting and difficult variation of (1.1) arises from discretization of ill-posed
inverse problems, where b is not known exactly, and the matrix A is ill-conditioned.
That is, consider the problem

Ax + η = b (1.2)

where b and A are known, and the goal is to compute an approximation of x. The
vector η represents errors or noise in the measured data, and is generally not known.
If η is small, it is tempting to simply ignore it, and use standard approaches to
solve (1.1). However, if A is ill-conditioned, the resulting inverse solution is likely to
be a very poor approximation of the true vector, x. In order to compute a decent
approximation of x, some form of regularization must be employed [4, 11, 20]. In
addition, if the effects of the noise are significant, a priori information regarding noise
statistics should be incorporated, if possible, into the regularization method that is
chosen.

In this paper, we consider a class of ill-posed inverse problems of the form (1.2)
that arise when reconstructing an image of an astronomical object taken by a ground
based telescope. In this case, light from an object, x, in outer-space travels through
a medium with refractive index fluctuations (the earth’s atmosphere), which has a
blurring effect on the data. In addition, as the light passes through the telescope,
diffractive blurring occurs. These blurring effects are assumed to be characterized by
a (known) ill-conditioned blurring matrix A. That is, if x is the discretized object of
interest, Ax is what is seen after the light from x has traveled through the refractive
index fluctuations and through the telescope. In order to collect the blurred image
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data, a charge-coupled-device (CCD) camera is used. A CCD camera is essentially
an array of sensors that creates a pixelated image by counting the number of photons
that hit each sensor. Noise enters the data during this process, and thus the discrete
mathematical model representing the image formation process is given by (1.2).

Other a priori information can be included in the formulation of the image recon-
struction problem; namely, in our application of interest, the object being viewed, x,
has nonnegative intensity. This information can be formulated in the reconstruction
algorithm by, say, solving a nonnegatively constrained least squares problem. In addi-
tion, incorporating a-priori statistical information can produce more accurate object
reconstructions.

In this paper we consider a constrained least squares image reconstruction al-
gorithm proposed by Kaufman [13], which can be interpreted as a modified residual

norm steepest descent (MRNSD) method [15]. An advantage of the MRNSD formula-
tion is that preconditioning can often be used to improve the rate of convergence [15].
We show how to extend MRNSD to solve constrained weighted least squares prob-
lems. In addition, we consider preconditioning strategies for MRNSD and weighted
MRNSD (WMRNSD). In particular, with a priori statistical information in hand, we
show that not all preconditioners preserve noise statistics. For regular least-squares
problems a class of well-known preconditioners, namely circulant preconditioners, do
preserve noise statistics, while for the weighted least-squares problems the class of
such preconditioners is very restrictive.

This paper is outlined as follows. In section 2 we present the statistical model
that characterizes the noise, η, from CCD array data collection, as well as the approx-
imate model used to motivate the weighted least squares formulation of the problem.
In section 3 we describe the MRNSD algorithm, and show how it can be extended to
solve weighted least squares problems. Preconditioning strategies will be discussed in
section 4, and in section 5, we show that in cases of practical interest the weighted
least-squares approach, which more accurately incorporates a priori statistical infor-
mation, results in more accurate object reconstructions.

2. Statistical Models. The following statistical model (see Refs. [17, 18]) ap-
plies to image data from a CCD detector array:

bi = nobj(i) + n0(i) + g(i), i = 1, . . . , N. (2.1)

Here bi is the ith component of the vector b and is the data acquired by a readout
of pixel i of the CCD detector array; nobj(i) is the number of object dependent
photoelectrons; n0(i) is the number of background electrons; and g(i) is the readout
noise. The random variables nobj(i), n0(i), and g(i) are assumed to be independent
of one another and of nobj(j), n0(j), and g(j) for i 6= j. The random variable nobj(i)
has a Poisson distribution with Poisson parameter [Ax]i, where x is the true image,
or object; n0(i) is a Poisson random variable with a fixed positive Poisson parameter
β; and g(i) is a Gaussian random variable with mean 0 and fixed variance σ2.

In the sequel, we will use the following notation to denote (2.1):

bi = Poiss([Ax]i) + Poiss(β) + N(0, σ2), i = 1, . . . , n. (2.2)

As in [17], we consider the case in which the readout noise variance σ2 is large. Then,
according to Feller [5, pp. 190 and 245], the following approximation is accurate:

N(σ2, σ2) ≈ Poiss(σ2). (2.3)



PRECONDITIONING STRATEGIES 3

Our own numerical experiments suggest that this approximation is accurate for σ2 >
40. Using the independence properties of the random variables in (2.1) we obtain the
following approximation of (2.2):

bi + σ2 = Poiss([Ax]i + β + σ2). (2.4)

This motivates computing a minimizer of the corresponding negative log-likelihood
function

`(Ax;b) =
N

∑

i=1

([Ax]i + β + σ2)−
N

∑

i=1

(bi + σ2) log([Ax]i + β + σ2). (2.5)

with respect to x, and subject to the nonnegativity constraint x ≥ 0 (i.e., xi ≥ 0
for all i). A popular algorithm that computes such a minimizer is the expectation-
maximization (EM) algorithm (also known as the Richardson-Lucy method in the
image processing literature) [2]. An advantage of the EM algorithm is that it is very
simple to implement, and each iteration is relatively inexpensive, but it can be very
slow to converge. More sophisticated optimization approaches can be employed (see,
e.g., [1]), resulting in methods that are faster to converge, but are more costly per
iteration.

A different approach is to invoke the approximation used in (2.3) yet again with
σ2 replaced by [Ax]i + β + σ2. We assume here that the elements of A are positive.
Then, since the true image x is nonnegative, [Ax]i will be nonnegative for all i. Thus,
due to our assumption that σ2 is large, one can accurately approximate the Poisson
random variable in (2.4) by a Gaussian random variable to obtain

bi − β = [Ax]i + N(0, [Ax]i + β + σ2). (2.6)

Minimizing the negative log-likelihood function corresponding to (2.6) is equivalent
to minimizing

J(x) =
1

2
||Ax− bβ ||

2
C . (2.7)

Here bβ = b − β, and ||v||2C = vT Cv, where C is the covariance matrix, which is
diagonal with diagonal entries Cii = ([Ax]i +β +σ2)−1. Typically, one does not know
the values of [Ax]i, but they can be approximated in order to obtain an approximation
of C. For example, motivated by (2.6), one could take Cii = (bi + σ2)−1. A more
sophisticated approach for approximating C is given in [6]. For regions of Ax with
an approximately constant intensity profile, the corresponding diagonal elements of C
are approximately constant. In fact, if all of the diagonal elements of C are constant,
minimizing (2.7) is equivalent to minimizing the regular least squares function, which
is given by (2.7) with C = I and bβ = b.

3. Iterative Algorithms. In this section we begin by presenting a simple iter-
ative algorithm for minimizing the regular least squares function

J(x) =
1

2
||Ax− b||2 (3.1)

subject to a nonnegativity constraint x ≥ 0. (Note that (3.1) corresponds to (2.7)
with bβ = b and C = I.) The algorithm we derive is equivalent to the EMLS
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algorithm proposed by Kaufman [13]. However, we provide an alternative derivation
that shows the approach is very closely related to the steepest descent method. Our
derivation also shows how to modify the algorithm for use on (2.7).

We begin by transforming the constrained minimization problem into an uncon-
strained problem using the parameterization

x = ez

(i.e., xi = ezi) in (2.7) with C = I, which yields

J̃(z) =
1

2
||Aez − b||2.

Then, differentiating using the chain rule, we obtain

∇J̃(z) = ez � [AT (Aez − b)]

= x � [AT (Ax− b)]

= x � ∇J(x),

where “ � ” denotes Hadamard (component-wise) multiplication. Thus for x ≥ 0 to
be a local nonnegatively constrained minimizer of J , it is necessary for

x � ∇J(x) = 0. (3.2)

It is interesting to note that (3.2) is a Karush-Kuhn-Tucker (KKT) condition for the
nonnegatively constrained minimization problem of interest (see [20] for details).

Equation (3.2) is equivalent to

x = x− τx � ∇J(x),

which yields the corresponding fixed point iteration

xk+1 = xk + τkvk where vk = −xk � ∇J(xk) (3.3)

Notice the similarity with the steepest descent algorithm, in which vk in (3.3) is
replaced by −∇J(xk), and where a line search is used to minimize the residual norm,
||b−Axk||, at each iteration.

Thus, we refer to the basic iteration (3.3) as modified residual norm steepest

descent (MRNSD). However, in MRNSD, τk is given by

τk = min{τuc, τbd},

where τuc corresponds to the unconstrained minimizer of J in the direction vk, i.e.,

τuc = −
〈vk,∇J(xk)〉

〈vk, AT Avk〉
,

and τbd is the minimum τ > 0 such that xk + τvk ≥ 0, i.e.,

τbd = min {−[xk]i/[vk]i | [vk]i < 0} .

We can now express MRNSD in algorithmic form.
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MRNSD: To minimize J(x) = 1
2
||Ax− b||2 subject to x ≥ 0.

k = 0;
x0 = nonnegative initial guess;
begin iterations

vk = −xk � ∇J(xk);
τk = min{τuc, τbd};
xk+1 = xk + τkvk;

end iterations

In order to extend MRNSD to weighted least squares problems of the form (2.7),
we note that J in (2.7) is also given by

J(x) =
1

2
||Âx− b̂||2, (3.4)

where Â = C1/2A and b̂ = C1/2bβ . The weighted MRNSD (WMRNSD) algorithm is
then given by applying MRNSD to minimizing (3.4) subject to x ≥ 0.

4. Preconditioning. One of the disadvantages of using an iterative method
such as MRNSD or WMRNSD is that they are often very slow to converge. As a
result, preconditioning strategies for improving convergence properties are important.
In general, for most applications, an effective preconditioner is a matrix M that ap-
proximates the inverse of A; that is, it satisfies MA ≈ I. A better approximation
leads to faster convergence to the inverse solution. This, however, is not a desir-
able property for noisy ill-posed problems because the inverse solution is corrupted
with noise. Instead, an effective preconditioner should provide fast convergence to
a regularized solution [10, 9, 14]. In addition, it should be relatively inexpensive to
construct M , and relatively inexpensive to perform matrix-vector multiplies with M .
In this section, we discuss preconditioning strategies for the MRNSD and WMRNSD
algorithms.

4.1. The MRNSD Algorithm. For MRNSD, preconditioning was discussed in
[15], but we will reconsider the approach that is advocated in light of the knowledge
that in many cases the cost function that is chosen relates directly to the underly-
ing statistical noise model. Consequently, if one wants to use preconditioning, it is
important to consider what effect, if any, it has on the noise statistics. In order to il-
lustrate, consider the linear system (1.2) and suppose that η is a stationary, Gaussian
random vector, i.e., that ηi ∼ N(0, σ2) for all i. In this case, the maximum likelihood
estimator can be gotten by minimizing the regular least squares function (3.1). The
preconditioning strategy advocated in [15] for minimizing (3.1) is to replace (1.2) by
a preconditioned system

MAx + Mη = Mb , (4.1)

where M is a preconditioning matrix. MRNSD is then used to minimize

Jprec(x) =
1

2
||MAx−Mb||2, (4.2)
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which corresponds to the assumption that Mη is also a stationary, Gaussian random
vector. This will not always be the case. In particular, since

[Mη]i =
n∑

j=1

mijηj

∼
n∑

j=1

mijN(0, σ2)

= N(0, σ2

n∑

j=1

m2
ij),

we see that Mη will be stationary only if

n∑

j=1

m2
ij =

n∑

j=1

m2
kj (4.3)

for i, k = 1, . . . , n; that is, if the row sums of the matrix

M � M , where [M � M ]ij = m2
ij (4.4)

are equal to the same constant.
Condition (4.3) seems rather restrictive at first, but it is satisfied by a class of

matrices that can be highly effective when used as preconditioners for astronomical
imaging. In this application, A is often a block Toeplitz matrix with Toeplitz blocks
(BTTB), which can be approximated well by block circulant matrices with circulant
blocks (BCCB) [3, 14, 20]. Circulant matrices have the property that each row (and
column) is a circular shift of its previous row (column), and BCCB matrices are the
natural extension to two dimensional problems. It is evident that such matrices sat-
isfy the condition given by (4.3). We remark that there exist efficient approaches
for constructing BCCB preconditioners; see [3], and in the context of image deblur-
ring, see [10, 9, 14, 20]. Section 5 provides numerical experiments that illustrate the
effectiveness of BCCB preconditioners for MRNSD.

4.2. The WMRNSD Algorithm. We now turn our attention to the problem
of incorporating preconditioning into the WMRNSD algorithm. This is motivated by
our desire to improve the efficiency of WMRNSD for use in approximately minimizing
(2.7).

An approach analogous to that discussed in Section 4.1 is to replace (1.2) by (4.1),
where M is a preconditioner for A, then solve a least-squares problem of the form
(3.4) with Â = C1/2MA and b̂ = C1/2Mb, where C is the covariance matrix of Mη.
This approach has shown itself to be ineffective in numerical experiments, which is
not surprising due to the fact that even if MA is well-conditioned, unless C ≈ I, the
same may not be true for C1/2MA.

Another approach, which circumvents the difficulties discussed in the previous
paragraph, is to replace the linear system (1.2) first by

Âx + N(0, I) = b̂, (4.5)

where Â = C1/2A, b̂ = C1/2b and C is the covariance matrix associated with η, and
then obtain a preconditioned linear system of the form

M b̂ = MÂx + M N(0, I) , (4.6)
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As was discussed above, if M is BCCB the noise statistics remain stationary Gaussian.
The difficulty with this approach is the computation of the BCCB preconditioner M .
As was mentioned above, if A is BTTB, one can compute M rapidly. However, in the
case of nonstationary, independent Gaussian noise statistics, e.g., statistical model
(2.6), C is a diagonal matrix with a non-constant diagonal, and hence, even if A is a
BTTB matrix, Â won’t be, in which case it is unlikely to be well approximated by a
BCCB matrix. One could also choose as a preconditioner M̂ = MC−1/2, where M is
the BCCB approximation for the BTTB matrix A, but then noise statistics are not
preserved unless η is stationary, i.e. that C = c · I, where c is a constant, which is
not the case.

Before continuing, we make the observation that in both of the above approaches,
it is the presence of the weighting (covariance) matrix C that inhibits the effectiveness
of preconditioning. On the other hand, when viewed as an application of MRNSD to
(4.5) (see Section 3), WMRNSD itself can be viewed as a special case of the precon-
ditioned MRNSD algorithm (compare (4.1) and (4.5)) in which the preconditioning
matrix M is replaced by the weighting matrix C. This is similar to the idea of using
preconditioning to ensure that the iteration vector lies in the “correct” subspace, as
is discussed in Hansen [11] (for an implementation, see [12]).

A final possibility is to use right preconditioning instead of the left preconditioning

approach that is represented by equation (4.1). In this approach, (1.2) is replaced by

Âx̂ + η = b, (4.7)

where Â = AM1/2 and x̂ = M1/2x. The WMRNSD algorithm is then applied to
minimizing (2.7) with A replaced by Â and x by x̂. To obtain x once iterations
have stopped, we then solve the equation M1/2x = x̂. At first, it seems that this
approach will work, but numerical results show that, in fact, the resulting algorithm
often performs worse that the unpreconditioned version. This is due in part to the
difficulties that arise due to the presence of the weighting matrix C, but it also stems
from the form of the MRNSD algorithm itself. To see this, we consider using right

preconditioning together with the MRNSD algorithm. Our arguments and conclusions
extend in a straightforward manner to the WMRNSD algorithm. First, we note that
once a component of xk is zero in the MRNSD algorithm, the same component is zero
for xj for all j > k. Consequently, after iteration k, the function J is restricted to the
nonzero indices in the iterations that follow. More specifically, if we define

[Dk]jj =

{

1, [xk]j = 0
0, [xk]j > 0

, (4.8)

then the k + 1st iteration of MRNSD can also be obtained by applying one iteration
of MRNSD to

ADkx + η = b (4.9)

with initial guess xk. Thus, we can see that the underlying linear system actually
changes with each iteration, and so, an effective preconditioning strategy will likely
also require a different preconditioner at each iteration. It is not clear how to compute
an appropriate preconditioner for ADk, and more importantly, how the preconditioner
could be efficiently updated at each iteration.

5. Numerical Results. In this section we present numerical results using two
image restoration test problems. The first set of data was developed at the US Air
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Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base,
New Mexico. The image is a computer simulation of a field experiment showing a
satellite as taken from a ground based telescope. The true and blurred images have
256 × 256 pixels, and are shown in Figure 5.1. We remark that the 65, 536× 65, 536
blurring matrix A is not constructed explicitly, but is defined implicitly by a so-called
point spread function (PSF). The data for this test problem, including the true image
and PSF, is contained in the RestoreTools image restoration package [14]. In addition,
this package contains an implementation of MRNSD, as well as functions to efficiently
implement matrix-vector multiplications with A (using the PSF), and for construction
BCCB preconditioners; see [14] for more details.
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Fig. 5.1. Satellite: True Image and Blurred, Noisy Data.

The second test problem is a simulated star cluster, which has been used by
astronomers to test and compare image deblurring methods for the Hubble Space
Telescope. The data can be obtained from the Space Telescope Science Institute. The
blurring matrix A is defined by a PSF that was supplied by Dr. Brent Ellerbroek,
Adaptive Optics Program Manager at the Gemini Observatory in Hilo, HI.
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Fig. 5.2. Star Field: True Image and Blurred, Noisy Data.
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In our first numerical experiment, we compare the reconstructions obtained by
WMRNSD and MRNSD when the statistical model (2.2) is used for data generation.
We take the sky, background count parameter to be β = 10 and the standard deviation
of the normal random variable to be σ = 5. These values are representative of CCD
cameras used in astronomy. We compare reconstructions for both test problems at two
different noise levels. In particular, we consider the cases in which the signal to noise
ratios (SNR) are approximately 100 and 10, which corresponds to a noise power that
is 1% and 10% respectively of the signal power. We compare the performance of the
MRNSD and WMRNSD algorithms to the reconstruction problems. In particular, we
apply MRNSD to the problem of minimizing the regular least squares function (3.1),
and WMRNSD to the problem of minimizing (2.7). For WMRNSD, the diagonal
weighting matrix C is defined by Cii = (bi + σ2)−1. Note that for moderate to large
values of σ2, say σ2 ≥ 32, it is extremely unlikely for the Gaussian N(σ2, σ2) to take
on negative values. Then since Poisson random variables take on only nonnegative
integer values, the random variable bi + σ2 will nearly always be positive. Thus our
choice of C will nearly always be positive definite. This was the case in each of the
experiments below.

Figure 5.3 shows comparisons for the four separate test problems. First, we
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Fig. 5.3. Relative error ||xk − xtrue||/||xtrue|| versus iteration count for MRNSD and
WMRNSD. The upper plots correspond to the satellite test problem, with 1% and 10% on the
left and right respectively. The lower plots correspond to the star field test problem, with 1%
and 10% on the left and right respectively. The solid line denotes MRNSD. The dashed line
denotes WMRNSD.

note that the weighted least squares approach provides only a small increase in the
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resolution (measured by the relative error) of the reconstructions of the satellite data.
Furthermore, if we take into account that preconditioning can be used to enhance
the performance of MRNSD, WMRNSD seems to be a poor choice of algorithms for
this problem. At first, this may seem disappointing, but in the recent paper [19], the
authors make the observation that in the case of statistical model (2.2), the standard
(i.e., unweighted) least squares approach provides object reconstructions that are
roughly on par with approaches that more accurately model noise statistics provided
the object of interest is reasonably smooth with large regions of high intensity. The
satellite is an object of this type. On the other hand, for star-like objects such
as the star field example, it is noted in [19] that approaches that more accurately
account for CCD noise statistics can provide substantially better reconstructions.
The observations are supported by the convergence graphs in Figure 5.3.

We now show that using BCCB preconditioners with MRNSD can be very effec-
tive. This is clearly shown in Figure 5.4. The figure in the upper right-hand corner
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Fig. 5.4. Relative error ||xk − xtrue||/||xtrue|| versus iteration count for MRNSD and
preconditioned MRNSD (PMRNSD). The upper plots correspond to the satellite test problem,
with 1% and 10% on the left and right respectively. The lower plots correspond to the star
field test problem, with 1% and 10% on the left and right respectively. The solid line denotes
MRNSD. The dashed line denotes PMRNSD.

does indicate, though, that if the linear system is highly ill-conditioned and there is a
large amount of noise in the data, the inversion of noise may happen after just a few
iterations, in which case it is important to have reliable stopping criteria.
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6. Conclusions. In this paper we have shown that the MRNSD algorithm,
which is an iterative method that solves a nonnegativity constrained least squares
problems, can be extended to weighted least squares problems. We denote this al-
gorithm WMRNSD and note that it can be viewed as a preconditioned version of
MRNSD in which the preconditioning matrix is constructed using a priori knowledge
of noise statistics. In addition, we have examined preconditioning strategies for these
approaches, and found that effective preconditioning of the MRNSD algorithm is pos-
sible. However, in order to preserve noise statistics, we advocate the use of circulant,
or BCCB, preconditioners. For the WMRNSD algorithm, on the other hand, effective
and computationally efficient preconditioners are much more difficult to construct.
The difficulties in choosing such preconditioners stem both from the presence of the
weighting (covariance) matrix associated with the weighted least squares problem
of interest, as well as from the way in which the enforcement of the nonnegativity
constraints results in a modified underlying linear system at each iteration.
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