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Abstract

Image registration techniques are used routinely in a variety of

today’s medical imaging diagnosis. Since the problem is ill-posed,

one may like to add additional information about distortions. This

applies, for example, to the registration of contrast-enhanced images,

where variations of substructures are not related to patient motion but

to contrast uptake. Here, one may only be interested in registrations

which do not alter the volume of any substructure.

In this paper we discuss image registration techniques with a focus

on volume preserving constraints. These constraints can reduce the

non-uniqueness of the registration problem significantly. Our imple-

mentation is based on a constrained optimization formulation. Upon

discretization, we obtain a large, discrete, highly nonlinear optimiza-

tion problem and the necessary conditions for the solution form a dis-

cretized nonlinear partial differential equation. To solve the problem

we use a variant of the Sequential Quadratic Programming method.

Moreover, we present results on synthetic as well as on real-life data.

1 Introduction

Image registration is one of the fundamental tasks in today’s image processing
and in particular in medical imaging; see, e.g., [13] and references therein.
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The objective of image registration is to make images which are taken at
different times, from different perspectives, and/or from different devices to
be more alike. Loosely, the goal of image registration is to find a “reasonable ”
deformation such that the “distance ” between a reference image R and a
deformed version of a template image T becomes small.

An application of particular clinical interest is the registration of pairs of
images acquired before and after contrast administration; see, e.g., [30] and
references therein. A typical example is depicted in Fig. 1. In this appli-
cation, magnetic resonance images of a female breast are taken at different
times (images from Bruce Daniel, Lucas Center for Magnetic Resonance Spec-
troscopy and Imaging, Stanford University). The first image shows an MRI
section taken during the so-called wash-in phase of a radiopaque marker and
the second image shows the analogous section during the so-called wash-out
phase. A comparison of these two images indicates a suspicious region in the
upper part of the images. This region can be detected easily if the images
have been registered: tissue located at a certain position in the wash-in image
is related to the tissue at the same position in the wash-out phase. Gener-
ally, however, a quantitative analysis is a delicate matter since observable
differences are not only related to contrast uptake but also due to motion of
the patient, like, for example, breathing or heart beat.

Figure 1: MRI’s of a female breast, left: during the wash-in phase,
middle: during the wash-out phase, and right: difference image.

As pointed out by Rohlfing et al. [30], there is a substantial difficulty
with the registration of pre and post-contrast images. Bright regions seem
to enlarge during the so-called wash-in phase. This enhancement is due to
contrast uptake but not to movement of the patient. Fig. 2 illustrates an ideal
situation. Without external information, it is impossible to answer whether
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Figure 2: Synthetic images simulating contrast uptake, left: wash-in,
right: wash-out.

the white area has been enlarged or the grey area turned to white.
The idea is to restrict the set of feasible transformations a priori in a

reasonable way. For this situation, we constrain the transformations to be
volume preserving (VP). In contrast to [30], we use a variational setting.
Therefore, we are not restricted to parametric and in particular B-spline
based deformations. Also, we do not introduce an additional penalty term
but use a constrained approach.

The VP approach is also connected to the so-called mass preserving (MP)
registration which is related to the Monge-Kantorovich transport problem;
see [19, 36]. From a mathematical point of view, the MP approach contains
the VP approach (setting the density to 1). However, in the MP approach the
images enter directly into the constraints, whereas in the VP they do not. In
contrast to the MP approach, the VP approach aims to correct geometrical
distortions but do not alter gray values. Another major difference between
the above work and ours is the numerical treatment. For the MP approach, a
Helmholtz decomposition is exploited, and, after eliminating the constraints,
the necessary conditions for the optimization problem are solved using a
steepest descent method. Here, we discretize the transformation and the
constraints directly and use a Sequential Quadratic Programm to solve the
discrete optimality conditions.

In this paper, we present a flexible constrained image registration ap-
proach. It has three main ingredients: a distance measure, a regularizer, and
the constraints.
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Our mathematical framework is general enough to handle a variety of
distance measures, including the most popular ones, like those based on the
sum of squared differences (SSD), mutual information (MI), or correlation,
as long as a Gâteaux derivative exists; see, e.g., [29, 22, 20]. For presentation
purposes, we explicitly discuss the approach only for the SSD measure.

Even with this additional constraints, however, image registration is an ill-
posed problem, cf., e.g., [21, 26]. If one considers for example the registration
of an image of a disc to a copy of this image, any rotation of the image gives
a solution with respect to any reasonable distance measure. Note that a
pure rotation is a rigid transformation and rigid transformations are volume
preserving. For this reason, also the constrained image registration problem
has to be regularized. The framework presented here is based on a general
regularizer, too. Any regularizing term with a Gâteaux derivative can be
used. This includes well-known choices, like, for example, the elastic [4, 6,
15, 9], the diffusion [23, 10], and the biharmonic [1, 12] regularizer. For
ease of presentation, we emphasize on the most popular of these, the elastic
registration.

Also our approach to the constraints is very general. However, since the
implementation of the volume preserving constraints is not straightforward,
we restrict ourselves to these constraints. It is very important to note that
volume preservation constraints are pointwise differential constraints which
after discretization apply to any pixel/voxel.

Finally, we suggest the use of a staggered grid discretization. This is a
well-known, established, and often used technique in many fields, like for
example fluid dynamics or electromagnetics. However, we are not aware of
any image registration algorithm based on this discretization.

The paper is organized as follows. In Section 2 we present the continuous
mathematical setup of the constrained registration problem and derive the
continuous Euler-Lagrange equations. Although we do not use these equa-
tions in our numerical implementation, they give insight into the problem’s
structure and serve as a reference for the discrete analogs. In Section 3 we
discuss the discretization of the problem. For readers from image process-
ing, which might not be so familiar with staggered grids, we give a brief and
formal introduction. Staggered grid discretization is well known to be stable
when working with tightly coupled system of partial differential equations.

Our constraints are discretized using a finite volume discretization of
each displaced pixel/voxel and we show that the resulting formula mimics
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the continuous one. In Section 4 we discuss a numerical scheme for the
optimization of the discretized image registration problem. In Section 5 we
present numerical results and finally, in Section 6 we summarize the paper
and discuss future work.

2 Mathematical setup

With d ∈ N we denote the spatial dimension of the given images R, T : R
d →

R which are assumed to be sufficiently smooth. Thus, T (x) gives a gray
value at a spatial position x. We assume that the supports of the images are
contained in a bounded domain Ω :=]0, L[d, i.e. R(x) = T (x) = 0 for x /∈ Ω.

Our goal is to find a “reasonable ” deformation u such that the “distance ”
between the reference image R and the deformed template image T (x+u(x))
becomes small. Note that u = (u1, . . . , ud)T : R

d → R
d. It is well-known that

this problem is ill-posed and therefore needs to be regularized. In general it is
common to use a Tikhonov-style regularization. A mathematical formulation
of the regularized and constrained problem reads

D[R, T ; u] + αS[u] = min (1a)

subject to C[u](x) = 0 for all x ∈ Ω, (1b)

where D is some distance measure, S is some regularization term, and C are
some constraints. Here, α > 0 is a regularization parameter and compromises
between similarity and regularity.

The three building blocks are discussed below. The constraints can be
used to supply additional information about the registration problem. For
example, in some applications it is of importance that particular points, like,
e.g., anatomical landmarks, are in a precise one-to-one correspondence. With
the setting C[u] = `T +u(`T )−`R, one can guaranty the correspondence of the
landmarks `R and `T ; see, e.g., [5, 11]. In this paper we focus on applications
demanding for volume preserving (VP) transformations. However, one may
set C[u] ≡ 0 to recover the unconstrained problem.

For the following analysis and numerics any choices and combinations of
the building blocks D, S,and C are feasible as long as they do have a Gâteaux
derivative. For the purpose of this presentation, we restrict the discussion to
the following choices.
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Distance measures The distance measure used in this note is the so-called
sum of squared differences (or L2 norm)

D[R, T ; u] =
1

2

∫

Rd

(

T (x + u(x))−R(x)
)2

dx (2)

with Gâteaux derivative (cf., e.g., [26])

du;vD[R, T ; u] =

∫

Rd

〈f(x, u(x)), v(x)〉
Rd dx, (3)

f(x, u(x)) := (T (x + u(x)−R(x)) · ∇T (x + u(x)), x ∈ R
d. (4)

Other distance measures like, e.g., those based on mutual information [7, 34],
might be used as well.

Remark 1 Note that due to the chain rule any differentiable distance func-
tional based on R and T (x + u(x)) has a factor ∇T (x + u(x)). Thus, since
we assume R and T to be zero for x /∈ Ω also f is zero for x /∈ Ω. There-
fore, the integration in Eqs. (2) and (3) reduces to an integration over the
domain Ω, only.

Regularizer In this work we consider the well-known elastic regularizer [4,
6, 9]. However, our formulation is flexible enough that we could use many
other regularizers, like, e.g., the fluid [6, 3], diffusion [10], or curvature regu-
larizers [12] or any combinations of these. Each of the above regularizers is
based on a differential operator B. Particularly,

S[u] =

∫

Ω

〈B[u],B[u]〉
Rd dx, (5)

and therefore its Gâteaux derivative is

du;vS[u] =

∫

Ω

〈A[u](x), v(x)〉
Rd dx, A = B∗B, (6)

where, for ease of presentation, we assume natural boundary conditions on
u. For the elastic regularizer with Lamé constants λ and µ, we have

B[u] =

(√
µ 0

0
√

2µ + λ

)

(∇× u
∇ · u

)

, A[u] = −µ∆u− (µ + λ)∇∇ · u (7)

with ∇· the divergence, ∇× the curl, and ∆ the Laplacian.
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Constraints We require the transformation ϕ(x) := x+u(x) to be volume
preserving (see also [30]). The transformation ϕ is volume preserving if and
only if for any domain V ,

∫

ϕ(V )

dx =

∫

V

dx, where ϕ(V ) = {ϕ(x) : x ∈ V }. (8)

This constraint implies that not only the overall volume but also and most
importantly the volume of each arbitrarily small subdomain is conserved.
For a smooth transformation ϕ, we use the transformation rule to derive the
point wise constraints

1 = det(∇ϕ) = det(Id +∇u) (9)

or C[u] := det(Id +∇u)− 1 = 0. (10)

Here, Id ∈ R
d,d denotes the d-by-d identity matrix and δj,k its (j, k)th entry.

The Gâteaux derivative of the volume preserving contraints is given by
the following lemma.

Lemma 1 Let v be a suitable perturbation of u. The Gâteaux derivative of
C (cf. Eq. (10)) is given by

du,vC[u](x) = det(Id +∇u(x))
〈

(Id +∇u(x))−>,∇v(x)
〉

Rd,d . (11)

Proof: A computation gives

du,v det(Id +∇u)

= lim
ε→0

(det(Id +∇u + ε∇v)− det(Id +∇u))

= det(Id +∇u)) lim
ε→0

(

det(Id + ε∇v(Id +∇u)−1)− 1
)

= det(Id +∇u) · trace
[

∇v(Id +∇u)−1
]

=
〈

det(Id +∇u)(Id +∇u)−>,∇v
〉

Rd,d .
�

Remark 2 Applying Cramer’s rule, it can be verified that the Gâteaux deriva-
tive of C is a polynomial in ∂ju

k, j, k = 1, . . . , d.
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Example 1 For d = 2 we have

C[u] = ∇ · u + ∂1u1∂2u2 − ∂2u1∂1u2,

det(I2 +∇u)(I2 +∇u)−> =
(
1 + ∂2u2 −∂1u2

−∂2u1 1 + ∂1u1

)
.

We now investigate necessary conditions for a solution of the image regis-
tration problem (1). For computational purposes, we have to discretize either
the optimization problem (1) or the resulting necessary conditions. In the
following section we choose to discretize the optimization problem directly
and therefore, the continuous conditions are not used directly in our numer-
ical scheme. However, the discrete conditions have to mimic the continuous
analogs and therefore we find it useful to study the latter.

Introducing the Lagrange multiplier p : R
d → R, the Lagrangian of (1) is

given by

L[u, p] = D[R, T ; u] + αS[u] +

∫

Ω

C[u](x) · p(x) dx (12)

and the continuous Euler-Lagrange equations for (1) read

0 = du;vL[u, p]

= du;vD[R, T ; u] + αdu;vS[u] +

∫

Ω

du;vC[u](x) · p(x) dx, (13a)

0 = dp;qL[u, p] =

∫

Ω

C[u](x) · q(x) dx, (13b)

for any appropriate perturbations v and q. Thus, for any x ∈ Ω, we have

0 = f(x, u(x)) + αA[u](x)

−∇ · [det(Id +∇u(x))(Id +∇u(x))−> · p(x)] (14a)

0 = det(Id +∇u(x))− 1, (14b)

where we imposed zero Dirichlet boundary conditions for the Lagrange mul-
tiplier p.

The system (14) presents a highly coupled system of nonlinear partial
differential equations (PDE). The quantity f in (14a), which depends non-
linearly on u and the images, can be viewed as forces pushing the template
towards similarity. The differential operator A in (14b) is a linear, elliptic
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operator. The last term in (14a) is related to the derivative of the constraints
which also show up in (14b). For a simpler case, when the f and A in (14a)
are replaced with the identity operator, existence and uniqueness of a solu-
tion can be shown [8, p. 324]. However, for the registration problem, it is not
easy to show either existence or uniqueness of a solution of the PDE (14).
For the purpose of this paper, we therefore assume existence of a solution
and remark that proving its existence is a subject of further research.

3 Discretization

There are two approaches for the discretization of the PDE constrained op-
timization problem (1). In the first so-called optimize-discretize approach
one forms the Lagrangian (12), then differentiates to obtain the continuous
Euler-Lagrange equations (13), which are finally discretized and solved.

The second approach, that we use here, is the so-called discretize-optimize
approach. Here, one directly discretizes the problem (1) and then solves a
constrained optimization problem in a finite (but typically high) dimensional
space. Note that we still use the fact that the discrete Euler-Lagrange equa-
tions are a discretization of some differential operators. The advantage of
this approach is that we are able to use standard optimization methods for
the solution of the problem.

Choosing a stable discretization method for an optimization problem with
a differential constraint is a delicate matter. It is well known that such a
discretization should fulfill the LBB conditions [2]. It is also well known
that some seemingly good discretization methods do not fulfill this condition
(see, e.g., [17] for an elaborate discussion for the Stokes system). Further
complications arise in our case where we have differential operators such
as the divergence and the curl. We would like to choose a conservative
compact discretization scheme and this could be achieved by either mixed
finite elements or by staggered grids. Staggered grids are very common for
the stable discretization of fluid flow problems (see, e.g., [14]) where first
order differential constraints are discretized and in electromagnetics (see,
e.g., [35, 18]) where operators such as curl and divergence are discretized. In
the context of fluid flows and electromagnetics it is well known that compact
discretizations are crucial in order to obtain a stable linear system of equation
and to avoid spurious modes; [24, 25, 17]. It is therefore most natural to
choose such a discretization for our problem as well. Further investigation is
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needed to show that the LBB conditions are fulfilled and this will be done in
a subsequent paper.

Though staggered grids seem to be natural for the discretization of the
registration problem on a regular grid, we are not aware of any registration
scheme where this discretization is used. We therefore give a brief but formal
description; see Section 3.1. For a more elaborate discussion, see, e.g., [18].

It is important to note that using staggered grids only short differences
are used for the approximation of the derivatives ∂ju

k and therefore we do
not introduce spurious modes by discretization; see, e.g., [35].

3.1 Staggered grid discretization

We assume that our discrete images have m1 × . . .×md pixels and, for ease
of presentation, that each pixel is square with lengths h. We allow for half
step indices. As usual in image processing, we identify pixels/voxels with cell
centered grid points with are therefore labeled with full integers indices. The
knots of the nodal, cell centered, the d face staggered, and (for dimension
d = 3) the d edge staggered grids are collected in d-dimensional arrays as
follows (see also Fig. 3 for an illustration),

Xn = h(i1 − 1
2
, . . . , id − 1

2
)ij=

1

2
,...,mj+

1

2
,

Xc = h(i1 − 1
2
, . . . , id − 1

2
)ij=1,...,mj

,

X f,j = h(i1 − 1
2
, . . . , id − 1

2
)

ij=
1

2
,...,mj+

1

2
ik=1,...,mk,k 6=j

,

Xe,j = h(i1 − 1
2
, . . . , id − 1

2
)

ij=1,...,mj ,
ik= 1

2
,...,mk+ 1

2
, k 6=j

,

where j = 1, . . . , d. The nodal grid is numbered with half integers, the cell
centered grid with integers, the jth face (edge) staggered grid with integers
(half integers) except for the jth direction for which half integers (integers)
are used.

We denote the discrete analog of the continuous vector field u = (u1, . . . , ud)
by U = (U1, . . . , Ud) where Uk is a grid function approximated on the face-
staggered grid X f,k. Thus, each of the uk’s is approximated at different
locations which are staggered. We approximate the derivatives ∂ju

k by

∂ju
k ≈ Dj,k

M [Uk].
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Figure 3: Staggered grids, nodal �, cell centered •, face staggered grids
(H in x1-, I in x2-, and F in x3-direction), and edge staggered grids (N
in x1-, J in x2-, and
�

in x3-direction). Top left: d = 2, four pixels,
top right: d = 2 pixel (i1, i2) with grids, bottom left: d = 3, voxel
(i1, i2, i3) with face staggered grids and positions of U1, U2, U3, bottom

right: d = 3, edge staggered grids.

Here, the Dk,k
M ’s approximate derivatives in normal direction and the Dj,k

M ’s,
j 6= k, derivatives in tangential directions. Neglecting obvious indices, the
operators are defined by

Dk,k
M [Uk]...,ik,... := 1

h
(Uk

...,i
k+1

2
,... − Uk

...,i
k− 1

2
,...),

Dj,k
M [Uk]...,i

j+1
2

,...,i
k+1

2
,... :=

1
hj

{
0 ij = 0, mj,
Uk

...,ij+1,...,i
k+1

2
,... − Uk

...,ij ,...,i
k+1

2
,... 0 < ij < mj

.

Hence, Dk,k
M [Uk] is located on the cell centered grid but Dj,k

M [Uk] is located on
the nodal grid for d = 2 and on an edge staggered grid for d = 3. Note that
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no boundary conditions are needed to calculate derivatives in the normal
directions and that we have assumed Neumann boundary conditions in the
tangential directions.

Remark 3 To calculate our constraints we will need to approximate sums
of products of the form (∂juk)(∂kuj), see Remark 2. For d = 2 the nor-
mal derivatives are naturally approximated on the nodal grid. However for
d = 3 these derivatives are located on edge-staggered grids and therefore are
not centered at the same places. For this reason we introduce the averaging
operators from the edge-staggered grids to the nodal grid. Ignoring obvious
indices, for ` = 1, 2, 3, we have

P e→n
M,` [V ]i1+ 1

2
,i2+ 1

2
,i3+ 1

2
:=

{
0 i` = 0, m`
1
2
(V...,i`,... + V...,i`+1,...) 0 < i` < m`

.

Thus, for any choice of three numbers with {j, k, `} = {1, 2, 3}, the projec-
tions P e→n

M,` [Dj,k[Uk]] are positioned on the nodal grid.

Finally, we introduce an averaging operator P n→c
M from the nodal grid to

the cell centered grid,

P n→c
M [V ]i1,...,id := 2−d

∑
j1...jd=± 1

2

Vi1+j1,...,id+jd
.

For later convenience, we denote by ~X the vector assembled from the

lexicographically ordered entries of the array X. Let ~U := ( ~U1>, . . . , ~Ud>)>,

Dk,`~U ` := (Dk,`
M [U `])~ and P x→y~V := (P x→y

M [V ])~.

Remark 4 Although the above introduction gives some insight into the ac-
tions of the operators Dj,k and P x→y, in particular for coding reasons it
might be advantageous to have a compact formal description. Let ⊗ denote
the Kronecker product of matrices and Ik an identity matrix of appropriate
size, then

Dj,k = I1 ⊗ · · · ⊗ Ij−1⊗ Dj,k
V ⊗Ij+1 ⊗ · · · ⊗ Id,

P e→n
` = I1 ⊗ · · · ⊗ I`−1⊗ P e→n

V,` ⊗I`+1 ⊗ · · · ⊗ Id,

P f→c
` = I1 ⊗ · · · ⊗ I`−1⊗ P f→c

V,` ⊗I`+1 ⊗ · · · ⊗ Id,
P n→c = P f→c

V,d ⊗ · · · ⊗ P f→c
V,1 ,
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where the matrices Dk,k
V ∈ R

mk,mk+1, Dj,k
V ∈ R

mj+1,mj , P e→n
V,` ∈ R

m`+1,m`,

and P f→c
V,` ∈ R

m`,m`+1 are given by

Dk,k
V := 1

h



−1 1

. . . . . .
−1 1


 , Dj,k

V := 1
h




0 · · · · · · 0
−1 1

. . . . . .
−1 1

0 · · · · · · 0


 ,

P e→n
V,` := 1

2




0 · · · · · · 0
1 1

. . . . . .
1 1

0 · · · · · · 0


 , P f→c

V,` := 1
2




1 1
. . . . . .

1 1


 .

3.2 Discretization of the building blocks D, S, and C
For the particular building blocks we derive discrete analogs. Let ~Xc =
( ~Xc

1
>, . . . , ~Xc

d
>)>, ~R = R( ~Xc), and

~T (~U) = T ( ~Xc
1 + P f→c

1
~U1, . . . , ~Xc

d + P f→c
d

~Ud)~.

Note that ~T (~U) is the discrete analog of the image T (x+u(x)) as a function
of u. Since T is assumed to be a smooth function, T (x) can be evaluated for
any x. In our implementation we use a B-spline interpolation scheme. The
assumption on T to be differentiable is for ease of presentation only. In the
continuous formulation (3), derivatives appear only in a weak formulation.
Thus, all we need is the existence of a distributional derivative of T .

We denote the Jacobian of ~T by

J(~U) :=
∂ ~T

∂~U
(~U) =

(
diag((P f→c

1 )>∂1T ), . . . , diag((P f→c
d )>∂dT )

)
, (15)

where the partial derivatives ∂jT have to be evaluated at (~Y1, . . . , ~Yd), ~Yj =
~Xc

j + Qj
~Uj.

Discretizing D The discretization of D[R, T ; u] (2) is straightforward,

D(~U) := 1
2
‖~T (~U)− ~R‖2

2

and its derivative, which is also known and interpreted as a force field ~F (see,
e.g. [26]), is

~F (~U) := D~U(~U) = J(~U)>(~T (~U)− ~R). (16)
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Discretizing S Following (7), all we need are discretizations ∇h× and
∇h· of ∇× and ∇· , respectively. Since the discretization for ∇× and ∇·
is composed from first order derivatives, for d = 2, 3, we obtain

(
∇h

2×
∇h

2 ·

)
:=

(
D2,1 −D1,2

D1,1 D2,2

)
and

(
∇h

3×
∇h

3 ·

)
:=




0 −D3,1 D2,3

D3,1 0 −D1,3

−D2,1 D1,2 0
D1,1 D2,2 D3,3


 .

With A = B>B, B = diag(
√

µ,
√

2µ + λ)(∇h× , ∇h· )>, the discretization
of S[u] (5) is given by

S(~U) := 1
2
~U>A~U, S ~U(~U) = A~U.

Here, we imposed zero Neumann boundary conditions in tangential direc-
tions.

Discretizing C In our discretization of the volume preserving constraints
we exploit the weak form of (8) applied to an elementary volume V ⊂ R

d,
which is a pixel for d = 2 and a voxel for d = 3. Therefore, the vertices
belong to the nodal grid. Fig. 4 displays a deformed volume ϕ(V ), where
ϕ(x) = x + u(x).
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Figure 4: Deformed elementary volume and its approximation, left: a
pixel for d = 2, right: a voxel for d = 3.

We approximate the volume of ϕ(V ) by the volume of the set Ṽ spanned
by the linearly interpolated d − 1 dimensional surfaces, where the interpo-
lation points are vertices. For d = 2, the set Ṽ is bounded by four straight
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lines, and for d = 3 it is bounded by twelve triangles. Assuming that the
second derivatives of ϕ are bounded, the interpolation error and hence the
approximation error is of order h2.

For d = 2, we end up with

∫

ϕ(Vi1,i2
)

dV x ≈
∫

Ṽi1,i2

dx =
1

2
det(v+,+

i1,i2
− v−,−

i1,i2
, v−,+

i1,i2
− v+,−

i1,i2
),

where the determinant is computed for the matrix spanned by the two vec-
tors, the two vectors are the differences between the four vertices

v±,±
i1,i2

= Xn
i1±

1

2
,i2±

1

2

+ (U1
i1±

1

2
,i2±

1

2

, U2
i1±

1

2
,i2±

1

2

)>,

and U j

i1±
1

2
,i2±

1

2

is averaged over the staggered grid. To be precise, we use two

average operators P f→n
j to map the U j’s from the face staggered to the nodal

grid and four projections E±mj
to map to the top left (−,−), bottom left (+,−),

top right (−,+), and bottom right positions (+,+) relative to the cell center.

Using vectorized quantities, we have ~U j,±,± = P±,±
j

~U j, or, precisely,

~U1,+,+ = (E+
2 P f→n

2 )⊗ E+
1 · ~U1, ~U1,+,− = (E−2 P f→n

2 )⊗ E+
1 · ~U1,

~U1,−,+ = (E+
2 P f→n

2 )⊗ E−1 · ~U1, ~U1,−,− = (E−2 P f→n
2 )⊗ E−1 · ~U1,

~U2,+,+ = E+
2 ⊗ (E+

1 P f→n
1 ) · ~U2, ~U2,+,− = E−2 ⊗ (E+

1 P f→n
1 ) · ~U2,

~U2,−,+ = E+
2 ⊗ (E−1 P f→n

1 ) · ~U2, ~U2,−,− = E−2 ⊗ (E−1 P f→n
1 ) · ~U2,

where E−j = Imj+1(1:mj, 1:mj+1), E+
j = Imj+1(2:mj+1, 1:mj+1) ∈ R

mj ,mj+1,
and

P f→n
j =

1

2




2
1 1

. . . . . .
1 1

2


 ∈ R

mj+1,mj .

Using these projections and omitting the indices, we have

∫

Ṽ

dV =
1

2
det

(
h + ~U1,++ − ~U1,−− ~U1,−+ − h− ~U1,+−

h + ~U2,++ − ~U2,−− h + ~U2,−+ − ~U2,+−

)
,
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and hence

1

h2

∫

Ṽ

dV − 1 =
1

2h

(
~U1,++ − ~U1,−− + ~U1,+− − ~U1,−+

)
(17)

+
1

2h

(
~U2,++ − ~U2,−− + ~U2,−+ − ~U2,+−

)
(18)

+1
2

(
(~U1,++ − ~U1,−−)(~U2,−+ − ~U2,+−)

− (~U1,−+ − ~U1,+−)(~U2,++ − ~U2,−−)
) (19)

and with ci1,i2(~U) = 1
h2

∫
Ṽi1,i2

dV − 1, the discrete constraints are defined by

C(~U) = (ci1,i2(~U))~. (20)

Remark 5 The terms in (17) and (18) are approximations to the derivatives
∂1u

1 and ∂2u
2 on the cell centered grids using the stencils S1,1 and S2,2 for

U1 and U2 on the face staggered grids, respectively. Moreover, (19) is an
approximation to det(∇u). With a := U+,− − U−,−, b := U−,+ − U−,−

c := U+,+ − U−,+, b := U+,+ − U+,− we find

1
2
det(U+,+ − U−,−, U−,+ − U+,−)

= 1
2
det(b + c, b− a) = det((a + c)/2, (b + d)/2),

where (a+c)/2 is an approximation to ∂1u and (b+d)/2 is an approximation
to ∂2u, respectively. The stencils are

S1,1 = 1
4

(
−1 −2 −1
1 2 1

)
, S1,2 = 1

4

(
−1 −1
0 0
1 1

)
,

S2,1 = 1
4

(
−1 0 1
−1 0 1

)
, S2,2 = 1

4

(
−1 1
−2 2
−1 1

)
.

These stencils are related to Sobel operators; cf., e.g. [16]. However, based
on the staggered grids, for the normal derivatives short differences are used.
The stencil in normal directions applied to a vector field is a finite element
approximation of the divergence,

∇h · (U1, U2) ≈ S1,1U1 + S2,2U2.

The long stencils S1,2 and S2,1 approximate the derivatives in the tangential
direction. Therefore, our discretization can be thought of as a finite difference
or a finite element discretization of the continuous quantity VP (9).
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The derivative C ~U is computed directly:

C ~U =

(
P++

1 − P−,−
1 + P+,−

1 − P−,+
1

P++
2 − P−,−

2 + P−,+
2 − P+,−

2

)

+

(
diag((P−,+

2 − P+,−
2 ) · ~U2) · (P+,+

1 − P−,−
1 )

diag((P+,+
1 − P−,−

1 ) · ~U1) · (P−,+
2 − P+,−

2 )

)

+

(
diag((P+,+

2 − P−,−)2 · ~U
2) · (P−,+

1 − P+,−
1 )

diag((P−,+
1 − P+,−

1 ) · ~U1) · (P+,+
2 − P−,−

2 )

)
. (21)

For d = 3, the volume is computed by summing the volume of six pyra-
mids with bases top (v−,±,±), bottom (v+,±,±), left (v±,−,±), right (v±,+,±),
front (v±,±,−), and back (v±,±,+), and tip t := Xc

i1,i2,i3
+ Ui1,i2,i3 . The eight

vertices are

v±,±,±
i1,i2,i3

= Xn
i1±

1

2
,i2±

1

2
,i3±

1

2

+ (U1
i1±

1

2
,i2±

1

2
,i3±

1

2

, . . . , U3
i1±

1

2
,i2±

1

2
,i3±

1

2

)>,

and U j

i1±
1

2
,i2±

1

2
,i3±

1

2

is averaged over the staggered grid in an analogous way

as described for d = 2.
Each pyramid is a conglomeration of two tetrahedra. The volume T (a, b, c, t)

of a tetrahedron with vertices a, b, c, and t is

T (a, b, c, t) = 1
6
det(b− a, c− a, t− a),

where the vertices have to be numbered such that the determinant is non-
negative. Therefore,

6(T (v−,+, v−,−, v+,−, t) + T (v−,+, v+,−, v+,+, t))

= det(v−,− − v−,+, v+,− − v−,+, t− v−,+)

+ det(v+,− − v−,+, v+,+ − v−,+, t− v−,+)

= det(v+,+ − v−,−, v−,+ − v+,−, t− v−,+)

and thus

6Ṽ = det(v−,+,+ − v−,−,−, v−,−,+ − v−,+,−, t− v−,−,+)

+ det(v+,+,+ − v+,−,−, v+,−,+ − v+,+,−, t− v+,−,+)

+ det(v+,−,+ − v−,−,−, v−,−,+ − v+,−,−, t− v−,−,+)

+ det(v+,+,+ − v−,+,−, v−,+,+ − v+,+,−, t− v−,+,+)

+ det(v+,+,− − v−,−,−, v−,+,− − v+,−,−, t− v−,+,−)

+ det(v+,+,+ − v−,−,+, v−,+,+ − v+,−,+, t− v−,+,+).
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With ci1,i2,i3 := 1
h3 Ṽi1,i2,i3−1, the discrete constraints are defined analogously

to (20). The projections ~U j,±,±,± = P±,±,±
j

~U j are similar to the ones used
for d = 2, therefore we give just one example,

~U1,+,+,+ = (E+
3 P f→n

3 )⊗ (E+
2 P f→n

2 )⊗ E+
1 · ~U

1

Since the complete formula for the three-dimensional case is lengthy but
its derivation is along the same line as the one for two dimensions, we omit
the details. However, it is important to note that for d = 2, the resulting
nonlinear equations are in general quadratic, but for d = 3 they are cubic.

4 Solving the discrete optimization problem

We are now ready to phrase the discrete analog of the image registration
problem (1),

J(~U) := D(~U) + αS(~U) = min (22a)

subject to C(~U) = 0. (22b)

In order to solve this problem numerically we use the framework of Sequential
Quadratic Programming (SQP); see [27] for a detailed discussion. Let ~P be a
cell-centered vector of Lagrange multipliers. The Lagrangian of the problem
is

L(~U, ~P ) = D(~U) + α
2
~U>A~U + C(~U)> ~P .

Differentiating with respect to ~U and ~P , we obtain the following discrete
version of the Euler-Lagrange equations (13)

0 = L~U(~U, ~P ) = ~F (~U) + αA~U + C ~U(~U)> ~P , (23a)

0 = L~P (~U, ~P ) = C(~U). (23b)

We can now solve the nonlinear system (23) numerically by using a Newton-
type method. Approximating the (1,1) block of the Hessian by

H := αA + J>J, (24)

where J is defined in (15), we obtain the following linear system of equations
to be solved at each iteration:

H C>

~U
C ~U 0

)
s~U

s~P

)
=

L~U(~U, ~P )

L~P (~U, ~P )

)
. (25)
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The system (25) is a so-called Karush-Kuhn-Tucker (KKT) system; it is
symmetric but indefinite. Solving KKT systems is a well known challenge.
Similar systems arise for example in fluid dynamics (cf., e.g., [17, 33]) and
the solution for this case has been addressed by many authors; see, e.g.,
[33, 31, 32]. Nevertheless, the robust and effective solution of such systems
is still an open research topic. Here we have used minres [28] with a block
diagonal preconditioning as proposed in [31]. This preconditioner can be
written as

M =

(
H 0
0 Ŝ

)
,

where Ŝ is an approximation to the Schur complement

S := C ~U H−1 C>

~U
.

Here, we use the approximation suggested in [31],

Ŝ−1 = (C ~U C>

~U
)−1 C ~U H C>

~U
(C ~U C>

~U
)−1. (26)

Note that (C ~U C>

~U
)−1 C ~U is the pseudo-inverse of C ~U . The application

of the preconditioner only involves a multiplication of H−1 and Ŝ−1 with
a vector. However, an efficient numerical scheme is not straightforward and
will be addressed in a forthcoming paper. Here, we use a multigrid approach.

After the KKT system has been solved, we update ~U by setting

~U ← ~U + γs~U .

As it is common in SQP algorithms [27], the parameter γ is chosen such that
the L1 merit function

meritKKT(~U) := D(~U) + αS(~U) + θ‖C(~U)‖1 (27)

decreases, where θ := ‖~P‖∞ + θmin with a fixed parameter θmin, ‖x‖1 =∑
j |xj|, and ~P is the least squares multiplier computed by solving

(C ~UC>

~U
)~P = C ~U(D~U + αS ~U). (28)

In order to avoid to be too far from feasibility we project the intermediate
~U to the constraints. Here we take advantage of a second merit function

meritC(~U) := ‖C(~U)‖22. (29)
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If meritC(~U) ≥ tolC, we calculate a step ~UP such that ideally

C(~U + ~UP ) ≈ C(~U) + C ~U(~U)~UP = 0.

If C ~U has full rank a solution is given by ~UP = C ~U(~U)> ~W , where ~W is the
solution of the projection system

(C ~U C>

~U
) · ~W = −C(~U). (30)

Note that the very same system has already be addressed in the Schur com-
plement approximation (26) and (28).

The above step is repeated until convergence of the optimization process,
which is measured by the change of ~U . In order to find an appropriate
regularization parameter, we solve (22) for a few values of α, where we start
with a large α and slowly decrease it until our stopping criterion is fulfilled.
For the results presented in Section 5, the stopping criterion is based on a
visual inspection of the images. Our numerical scheme is summarized in
Alg. 1.

5 Numerical examples

5.1 The Blob

To illustrate the potential of the volume preserving registration we present
a synthetic example; see Fig. 5. The reference image (top right) shows an
elliptic global structure which contains a small almost circular object. The
template (top left) shows a rotated version of the global ellipse, where the in-
ner structure is translated and considerably enlarged. Note that this example
mimics the situation for contrast enhanced images: slightly deformed global
structures, where inner structures may change drastically due to contrast
uptake.

As it is apparent from Fig. 5, the unconstrained registration gives very
good results if we are looking at the difference between the reference and
deformed template images alone. However, as expected, the inner structure
has been reduced so as to fit the one in the reference image. This results in
a drastic change of volume, which can be observe from the visualization of a
part of the grid in Fig. 5 (middle right) corresponding to a region of interest
emphasized in the template image (top left). Thus, for contrast enhanced
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Algorithm 1 Volume Preserving Image Registration: ~U ← VPIR(R, T ).

1: Set k ← 0, ~U ← 0, ~P ← 0, n← length(~U).
2: for k = 0, . . . do

3: Compute D, J , D~U
, S, S ~U

, C, and C ~U
, set ~Uold = ~U .

4: Set
(

L~U

L~P

)

←

(

D~U
+ αS ~U

+ C>

~U

~P
C

)

.

{ Computation of the SQP step}
5: Solve the KKT system (25) for s~U

and s~P

6: Solve for the Lagrange-muliplier ~P , cf. (28); set θ ← ‖~P‖∞
7: ~U ← LS(~U, s~U

, meritKKT, L~U
); see Alg. 2.

8: Update C and C ~U
.

{Computation of the projection onto the constraints}
9: while meritC > tolC do

10: solve (C ~U
C>

~U
) ~W = −C, set ~UP ← C>

~U

~W .

11: ~U ← LS(~U, ~UP , meritC, C>

~U
C); see Alg. 2.

12: if ‖~Uold − ~U‖ ≤ tolU then

13: return ~U , done.
14: end if

15: end while

16: end for

Algorithm 2 Armijo’s line search: ~U ← LS(~U, s~U
, merit, ~G)

Set j ← 0, γ ← 1, and η ← 10−5.
while true do

Set ~Ut ← ~U + γs~U
.

if merit(~Ut) < merit(~U) + ηγ ~G>s~U
then

break
{step reduces merit function}

end if

if j > max` then

error
{step not successful after max` line search steps}

end if

Set γ ← γ/2, and j ← j + 1.
end while

Set ~U ← ~Ut.
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images, the registration gives meaningless results, though the difference is
small.

Fig. 5 also shows the results of the volume preserving registration (bot-
tom left). As is apparent from this figure, the global deformation has been
resolved, the inner ellipse has been moved to match the inner ellipse in the
reference image. However, the volume of the inner ellipse has not been al-
tered, which leads to a larger difference as in the unconstrainted case but also
to a more realistic registration; see also the deformed grid (bottom right).

In order to compare these results, we choose α = 103 and stop after con-
vergence, which occurs after at most 25 iterations for both registrations. Note
that h = 1 in our implementation. The values for the difference D and the
constraints C for the un- and VP-constrained registration are summarized
in Table 1.

5.2 MRI scans

In our second example, we discuss results obtained for the images shown in
Fig. 1. Fig. 6 shows the results after two ( 2nd row) and ten iterations (3rd
row) of the unconstrained registration as well as after ten iterations of the VP
constrained registration (4th row). The numerical results are summarized in
Table 1. After ten iteration both schemes have converged.

Table 1: Numerical results for the un- and VP-contrained registrations; k is
the number of iteration performed.

α k D(~U (k))/D(0) ‖C(~U (k)‖∞
blob unconstrained 103 25 0.21 0.87

VP constrained 103 25 0.73 ≤ 10−6

MRI unconstrained 105 2 0.81 1.36
unconstrained 105 10 0.78 1.36
VP constrained 105 10 0.87 ≤ 10−6

Although the numbers (cf. Table 1) indicate a larger reduction of the
difference by the unconstrained registrations, the ranking is not so clear if
one looks at the difference images, cf. Fig. 6. Here, the difference after ten
steps un- and VP constrained registration looks pretty much the same. After
two steps of the unconstrained registration the bright spot in the top part
of the image has not been resolved satisfiably. The explanation is that small
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spots which are related to noise in the MRI images and hardly visible in the
images are registered in the unconstrained registration. This leads to a large
reduction though it is hardly visible. To remove this small spots, the volume
has to be changed locally. However, the registration of these small spots does
not contribute to a meaningful solution for this problem.

6 Summary

In this paper we have presented numerical methods for the solution of vol-
ume preserving image registration problems. We have developed a stable
discretization to the optimization problem and used a variant of Sequential
Quadratic Programming to solve the problem. This results in a highly effec-
tive algorithm for the solution of the problem. We have tested our algorithm
on real medical data as well as on synthetic data.

Our formulation opens up a few avenues of research such as effective
solvers for the KKT systems and inexact SQP methods. These issues will be
addressed in a subsequent paper.

Acknowledgements: Jan Modersitzki was supported by the US Na-
tional Institutes of Health under Grant NIHR01 HL 068904. We are indebted
to Michele Benzi for suggestions and discussions.
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Figure 5: Synthetic example, left column: deformed template, right

column: reference and detail of the deformed grid; top row: template
and reference, no registration, middle row: deformed template and
details with grid after unconstrained registration, bottom row: de-
formed template and details with grid after VP constrained registration.
For both schemes, we choose α = 103 and stopped after 25 iterations.
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Figure 6: Registration results for the images of Fig. 1. Left column

deformed template images Tu, middle column difference image |R −
Tu| with region of interest (ROI), right column ROI with nodal grid,
vertices connected by straight lines ; row 1: no registration, row 2:

no constraints two iterations, row 3: no constraints ten iterations, and
row 4: volume preserving constraints ten iterations.
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