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Abstract

Abstract.
This project explores adversarial training techniques to develop fairer Deep Neu-
ral Networks (DNNs) to mitigate the inherent bias they are known to exhibit.
DNNs are susceptible to inheriting bias with respect to sensitive attributes such
as race and gender, which can lead to life-altering outcomes (e.g., demographic
bias in facial recognition software used to arrest a suspect). We propose a robust
optimization problem to improve fairness in DNNs, and leveraging second-order
information, we are able to efficiently find a solution.

Adversarial training
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Figure 1: Robust optimization

Our research investigates whether implementing robust op-
timization - so that two nearby points are more likely to
be classified similarly - would improve fairness. Robust op-
timization takes into consideration at a radius r around a
data point (see fig. 1).

Optimization problem:

min
θ

1

∣T ∣
∑

(x,y)∈T

[ max
∥δx∥≤r

L(fθ(x + δx),y)] +R(θ)

Solving the inner optimization problem

Projected Gradient Descent: We use a first-order method with iterates

δ
(k+1)
x = P [δ

(k)
x + α(k) ⋅ ∇xL(fθ(x + δx),y)]

where P is a projection operator such that the constraint, ∥δx∥ ≤ r, is satisfied.
Trust Region Subproblem: We use a second-order Taylor approximation of our loss
function and solve

δx(λ) = −(∇
2
xL(fθ(x),y) + λI)

−1∇xL(fθ(x),y)

where λ ≥ 0 is chosen such that the constraint is satisfied.

Error in trust region subproblem solution

For binary classification, we use a logistic regression loss function with a sigmoid
activation function σ(z) = 1

1+e−z , so we have the following inner optimization problem:

max
∥δx∥≤r

[−y ln(σ(w⊺(x + δx) + b)) − (1 − y) ln(1 − σ(w
⊺(x + δx) + b))]

When we use a second-order approximation (RHS) instead of the true loss function
(LHS), we end up solving two slightly different problems with differing terms

σ(w⊺(x + δx) + b) ≠ σ(w
⊺x + b) + σ′(w⊺x + b)w⊺δx

Taylor expanding the LHS, we can obtain the following:

σ(w⊺(x + δx) + b) ≈ σ(w
⊺x + b) + σ′(w⊺x + b)w⊺δx+

1

2
δ⊺xwσ′′(w⊺x+b)w⊺δx+. . .

The error of solving the trust region subproblem comes from truncating the higher-
order terms in the Taylor expansion. The error from truncating the quadratic term
depends on the magnitude ∣σ′′(z)∣ ≤ 0.1 and the δx for which we solved.

Fairness metrics

Let Ŷ be the classifier’s prediction, Y be the true class, and s be a binary sensitive attribute.
How do we measure the fairness of a binary classifier with respect to s?

Independence: P(Ŷ = 1∣s = 0) = P(Ŷ = 1∣s = 1)
Separation: P(Ŷ = 1∣Y = 1, s = 0) = P(Ŷ = 1∣Y = 1, s = 1)
Sufficiency: P(Y = 1∣Ŷ = 1, s = 0) = P(Y = 1∣Ŷ = 1, s = 1)

Hiring (synthetic data)

Figure 2: Unfair setup of data

• Y : should be hired or not hired

• Ŷ : predicted to be hired or not hired

• s: sensitive attribute A or B

• unfairness: Bs shifted up and right ↗

As shifted down and left ↙

All red individuals in the blue region who would be hired
in error are Bs, while all blue individuals in the red region
who would be incorrectly not hired are As.

Hiring results

Non-robust classifier

Diff: Y=0 |S1-S0| Y=1 |S1-S0|
Ind. 0.152 0.152
Sep. 0.248 0.179
Suff. 0.213 0.190

Training Accuracy: 79.5%
Test Accuracy: 78.0%

Robust classifier (r=0.18)

Diff: Y=0 |S1-S0| Y=1 |S1-S0|
Ind. 0.025 0.025
Sep. 0.019 0.127
Suff. 0.142 0.038

Training Accuracy: 73.5%
Test Accuracy: 73.0%
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Traing Fairness Diffrences vs. Radius, 2D Example

Ind Robust
Ind Non-Robust
Sep Robust
Sep Non-Robust
Suf Robust
Suf Non-Robust

Which method is faster?

Avg. Epoch Time PGD
Trust

Dataset: Min Max

Synthetic 1.377 3.130
LSAT 2.852 9.639
Adult 8.497 31.407

Unlike in PGD, where we may have to do many
gradient computations, with the second-order
method, we at worst solve a system of linear equa-
tions and use a bisection method. The trust re-
gion method has proven to be the more efficient
method.

Which method is fairer?
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Conclusions

• Utilizing the trust region subproblem method significantly improves effi-
ciency: computing second-order information using hessQuik outperforms first-
order PGD across all perturbation radii on three different data sets.

• Robustness can improve fairness, but potentially at the cost of accuracy.
Fairness improves as the perturbation radius increases but accuracy decreases
in both training and testing data as the radius increases.

• If using robust training with a certain radius improves fairness, it appears to
improve fairness by larger margins compared to random perturbation; solving
the optimization problem well is worthwhile.
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