
Fast Training of Implicit Networks with
Applications in Inverse Problems

Linghai Liu 1, Allen Tong 2, Lisa Zhao 3

Mentor: Samy Wu Fung 4

Emory University REU/RET Computational Mathematics for Data Science

June 30, 2022

1Brown University

2University of California, Los Angeles

3University of California, Berkeley

4Department of Applied Mathematics and Statistics, Colorado School of Mines

1 / 19

Acknowledgements

• We sincerely thank the guidance of our mentor, Dr. Samy Wu
Fung, and other mentors at Emory University for the
opportunity.

• Our work is supported by the US National Science Foundation
awards DMS-2051019 and DMS-1751636.

2 / 19

What are Inverse Problems?

Inverse problems consist of recovering a signal x∗ (e.g. an image, a
parameter of a PDE, etc.) from indirect, noisy measurements d .
This measurement process is usually modeled as an operator A,
satisfying the following:

d = Ax∗ + ε,

Our task deals with image deblurring, i.e.,

• d ∈ Rn×n: blurred image with noise

• x∗ ∈ Rn×n: original image

• ε ∈ Rn×n: random noise (unknown) in Rn×n

3 / 19

What are Inverse Problems?

Inverse problems consist of recovering a signal x∗ (e.g. an image, a
parameter of a PDE, etc.) from indirect, noisy measurements d .
This measurement process is usually modeled as an operator A,
satisfying the following:

d = Ax∗ + ε,

Our task deals with image deblurring, i.e.,

• d ∈ Rn×n: blurred image with noise

• x∗ ∈ Rn×n: original image

• ε ∈ Rn×n: random noise (unknown) in Rn×n

3 / 19

From a Classical Approach

Direct Inverse:

d = Ax∗ + ε =⇒ x∗ = A−1d −A−1ε

Original Image Blurred Noisy Image Apply Inverse

4 / 19

From a Classical Approach

Direct Inverse:

d = Ax∗ + ε =⇒ x∗ = A−1d −A−1ε

Original Image Blurred Noisy Image Apply Inverse

4 / 19

Classical Approach Cont.
Optimization: Formulate an optimization problem as follows:

x∗ = argmin
x∈Rn×n

1

2
||Ax − d ||2L2 + λR(x)

where R(x) is chosen based on prior knowledge of your data,
λ > 0 is a tunable parameter.

E.g. R(x) = 0 =⇒ x∗ = A−1d when A invertible
E.g. Use gradient descent where R(x) = λ

2 ||x ||
2
L2 :

Original Image Blurred Noisy Image Apply Gradient Descent

5 / 19

Classical Approach Cont.
Optimization: Formulate an optimization problem as follows:

x∗ = argmin
x∈Rn×n

1

2
||Ax − d ||2L2 + λR(x)

where R(x) is chosen based on prior knowledge of your data,
λ > 0 is a tunable parameter.
E.g. R(x) = 0 =⇒ x∗ = A−1d when A invertible

E.g. Use gradient descent where R(x) = λ
2 ||x ||

2
L2 :

Original Image Blurred Noisy Image Apply Gradient Descent

5 / 19

Classical Approach Cont.
Optimization: Formulate an optimization problem as follows:

x∗ = argmin
x∈Rn×n

1

2
||Ax − d ||2L2 + λR(x)

where R(x) is chosen based on prior knowledge of your data,
λ > 0 is a tunable parameter.
E.g. R(x) = 0 =⇒ x∗ = A−1d when A invertible
E.g. Use gradient descent where R(x) = λ

2 ||x ||
2
L2 :

Original Image Blurred Noisy Image Apply Gradient Descent

5 / 19

Implicit Deep Learning

• Use dataset {(di , x∗i)}mi=1 and physics (namely A)

• Mimic gradient descent 5, but replace λ∇xR with a trainable
network SΘ: ∀i and 0 ≤ k ≤ K − 1,

xk+1
i = xki − η

(
∇x ||Axki − di ||2L2 + SΘ(x

k
i)
)

︸ ︷︷ ︸
:=TΘ(x

k
i)

where:
• η > 0 is step size
• TΘ(·) is a layer of our neural network NΘ(·)
• K is the number of layers

• Problems: memory, choice of K

5Davis Gilton, Gregory Ongie, and Rebecca Willett.“Deep equilibrium architectures for inverse problems in imaging.” IEEE
Transactions on Computational Imaging 7 (2021): 1123-1133.

6 / 19

Implicit Deep Learning

• Use dataset {(di , x∗i)}mi=1 and physics (namely A)
• Mimic gradient descent 5, but replace λ∇xR with a trainable
network SΘ: ∀i and 0 ≤ k ≤ K − 1,

xk+1
i = xki − η

(
∇x ||Axki − di ||2L2 + SΘ(x

k
i)
)

︸ ︷︷ ︸
:=TΘ(x

k
i)

where:
• η > 0 is step size
• TΘ(·) is a layer of our neural network NΘ(·)
• K is the number of layers

• Problems: memory, choice of K

5Davis Gilton, Gregory Ongie, and Rebecca Willett.“Deep equilibrium architectures for inverse problems in imaging.” IEEE
Transactions on Computational Imaging 7 (2021): 1123-1133.

6 / 19

Implicit Deep Learning

• Use dataset {(di , x∗i)}mi=1 and physics (namely A)
• Mimic gradient descent 5, but replace λ∇xR with a trainable
network SΘ: ∀i and 0 ≤ k ≤ K − 1,

xk+1
i = xki − η

(
∇x ||Axki − di ||2L2 + SΘ(x

k
i)
)

︸ ︷︷ ︸
:=TΘ(x

k
i)

where:
• η > 0 is step size
• TΘ(·) is a layer of our neural network NΘ(·)
• K is the number of layers

• Problems: memory, choice of K

5Davis Gilton, Gregory Ongie, and Rebecca Willett.“Deep equilibrium architectures for inverse problems in imaging.” IEEE
Transactions on Computational Imaging 7 (2021): 1123-1133.

6 / 19

Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i)

• Output: given the image di , NΘ(di) := x∗i
• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2
Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗

7 / 19

Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i)

• Output: given the image di , NΘ(di) := x∗i

• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2
Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗

7 / 19

Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i)

• Output: given the image di , NΘ(di) := x∗i
• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2
Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗

7 / 19

Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i)

• Output: given the image di , NΘ(di) := x∗i
• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2

Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗

7 / 19

Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i)

• Output: given the image di , NΘ(di) := x∗i
• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2
Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗

7 / 19

Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19

Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19

Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.

Potential problem: solving (1) is highly nontrivial

8 / 19

Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19

Jacobian-Free Backpropagation (JFB)

• Goal: alleviate memory requirement and avoid high
computational cost.

• Key idea: replace the Jacobian
(
I − dTΘ(x

∗)
dx∗

)
with I

• Implicit Networks calculate the true gradient:

∇Θℓ =
dℓ
dx∗

(
I − dTΘ(x

∗)
dx∗

)−1
∂TΘ(x

∗)
∂Θ

• JFB approximates the gradient: pΘ = dℓ
dx∗

∂TΘ(x
∗)

∂Θ which is a
descent direction for ℓ if the following conditions hold (next
slide) 6:

6S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)
Jfb: Jacobian-free back-propagation for implicit networks.

9 / 19

Jacobian-Free Backpropagation (JFB)

• Goal: alleviate memory requirement and avoid high
computational cost.

• Key idea: replace the Jacobian
(
I − dTΘ(x

∗)
dx∗

)
with I

• Implicit Networks calculate the true gradient:

∇Θℓ =
dℓ
dx∗

(
I − dTΘ(x

∗)
dx∗

)−1
∂TΘ(x

∗)
∂Θ

• JFB approximates the gradient: pΘ = dℓ
dx∗

∂TΘ(x
∗)

∂Θ which is a
descent direction for ℓ if the following conditions hold (next
slide) 6:

6S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)
Jfb: Jacobian-free back-propagation for implicit networks.

9 / 19

Jacobian-Free Backpropagation (JFB)

• Goal: alleviate memory requirement and avoid high
computational cost.

• Key idea: replace the Jacobian
(
I − dTΘ(x

∗)
dx∗

)
with I

• Implicit Networks calculate the true gradient:

∇Θℓ =
dℓ
dx∗

(
I − dTΘ(x

∗)
dx∗

)−1
∂TΘ(x

∗)
∂Θ

• JFB approximates the gradient: pΘ = dℓ
dx∗

∂TΘ(x
∗)

∂Θ which is a
descent direction for ℓ if the following conditions hold (next
slide) 6:

6S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)
Jfb: Jacobian-free back-propagation for implicit networks.

9 / 19

Jacobian-Free Backpropagation (JFB)

• Goal: alleviate memory requirement and avoid high
computational cost.

• Key idea: replace the Jacobian
(
I − dTΘ(x

∗)
dx∗

)
with I

• Implicit Networks calculate the true gradient:

∇Θℓ =
dℓ
dx∗

(
I − dTΘ(x

∗)
dx∗

)−1
∂TΘ(x

∗)
∂Θ

• JFB approximates the gradient: pΘ = dℓ
dx∗

∂TΘ(x
∗)

∂Θ which is a
descent direction for ℓ if the following conditions hold (next
slide) 6:

6S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)
Jfb: Jacobian-free back-propagation for implicit networks.

9 / 19

JFB Conditions

If:

i. TΘ is contraction mapping with Lipschitz constant γ

ii. TΘ is continuously differentiable w.r.t. Θ

iii. M := ∂TΘ
∂Θ has full column rank

iv. M is well-conditioned, i.e., κ(MTM) < 1
γ

Then

pΘ =
dℓ

dx∗
∂TΘ

∂Θ

is a descent direction for loss function ℓ.

10 / 19

Numerical Experiments

• Dataset: CelebA 7 (annotated celebrity faces)

7Liu, Ziwei, et al. ”Deep learning face attributes in the wild.” Proceedings of the IEEE international conference on computer vision.
2015.

11 / 19

Numerical Experiments

• Generate blurred noisy images:
original image blurred noisy image

PSNR = 21.57, SSIM=0.80

• Train with JFB

• Preliminary results:
Loss v.s. number of SGD iterations Reconstructed image

PSNR = 25.69, SSIM=0.86

12 / 19

Numerical Experiments

• Generate blurred noisy images:
original image blurred noisy image

PSNR = 21.57, SSIM=0.80

• Train with JFB

• Preliminary results:
Loss v.s. number of SGD iterations Reconstructed image

PSNR = 25.69, SSIM=0.86

12 / 19

Numerical Experiments

• Generate blurred noisy images:
original image blurred noisy image

PSNR = 21.57, SSIM=0.80

• Train with JFB

• Preliminary results:
Loss v.s. number of SGD iterations Reconstructed image

PSNR = 25.69, SSIM=0.86

12 / 19

Future Work

• Train models using different learned optimization algorithms,
e.g. Proximal Gradient Descent and Alternating Directions
Method of Multipliers (ADMM)

• Experiment with fastMRI data 8

• Compare training speeds and accuracy with Jacobian-based
algorithms

Thank you!

8Zbontar, Jure, et al. ”fastMRI: An open dataset and benchmarks for accelerated MRI.” arXiv preprint arXiv:1811.08839 (2018).

13 / 19

Future Work

• Train models using different learned optimization algorithms,
e.g. Proximal Gradient Descent and Alternating Directions
Method of Multipliers (ADMM)

• Experiment with fastMRI data 8

• Compare training speeds and accuracy with Jacobian-based
algorithms

Thank you!

8Zbontar, Jure, et al. ”fastMRI: An open dataset and benchmarks for accelerated MRI.” arXiv preprint arXiv:1811.08839 (2018).

13 / 19

References

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2011)

Distributed optimization and statistical learning via the alternating
direction method of multipliers

Foundations and Trends in Machine Learning 3:1–122, 01 2011.

S. Boyd and L. Vandenberghe (2004)

Convex Optimization

Cambridge University Press

Z. Liu, P. Luo, X. Wang, and X. Tang (2015)

Deep learning face attributes in the wild

Proceedings of the IEEE international conference on computer vision
3730–3738, 2015

C. Vogel (2002)

Computational Methods for Inverse Problems

Frontiers in Applied Mathematics. Society for Industrial and Applied
Mathematics

14 / 19

References Cont.
S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)

Jfb: Jacobian-free back-propagation for implicit networks.

arXiv preprint arXiv:2103.12803

D. Gilton, G. Ongie, and R. Willett. (2021)

Deep equilibrium architectures for inverse problems in imaging.

IEEE Transactions on Computational Imaging 7:1123–1133

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R.
Willett (2020)

Deep learning techniques for inverse problems in imaging

IEEE Journal on Selected Areas in Information Theory 1(1):39–56

S. Bai, J. Z. Kolter, and V. Koltun. D (2019)

Deep equilibrium models

Advances in Neural Information Processing Systems 32

J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A.
Defazio, R. Stern, P. Johnson, M. Bruno, et al. (2018)

fastmri: An open dataset and benchmarks for accelerated mri

arXiv preprint arXiv:1811.08839, 2018.
15 / 19

Banach Fixed-Point Theorem

We demonstrate it in Rd :
Suppose T : Rd 7→ Rd is a contraction map with Lipschitz
constant γ ∈ [0, 1).
∀x0 ∈ Rd , iterate as follows:

x1 = T (x0)

x2 = T (x1)

...

xi+1 = T (xi)

...

Then we obtain a sequence {xm}m∈N

16 / 19

Banach Fixed-Point Theorem

Observe that

||x2 − x1|| = ||T (x1)− T (x0)|| ≤ γ||x0 − x1||
||x3 − x2|| = ||T (x2)− T (x1)|| ≤ γ||x2 − x1|| ≤ γ2||x0 − x1||

...

||xi+1 − xi || ≤ γ i ||x0 − x1||
...

So lim
m→∞

||xm+1 − xm|| ≤ lim
m→∞

γm||x0 − x1|| = 0

We also know that 0 ≤ lim
m→∞

||xm+1 − xm||.
=⇒ lim

m→∞
||xm+1 − xm|| = 0 by Squeeze Theorem

17 / 19

Banach Fixed-Point Theorem

By Triangular Inequality,

||xm+k − xm|| ≤ ||xm − xm+1||+ ||xm+1 − xm + k ||
≤ ||xm − xm+1||+ (||xm+1 − xm+2||+ ||xm+2 − xm+k ||)
...

≤ ||xm − xm+1||+ ||xm+1 − xm+2||+ · · ·
+ ||xm+k−2 − xm+k−1||+ ||xm+k−1 − xm+k ||

By Squeeze Theorem again, {xm}m∈N is a Cauchy sequence, which
is equivalent to lim

m→∞
xm = x∗ exists.

=⇒ x∗ = T (x∗) is a fixed point.

18 / 19

Proximal Gradient Descent

With a function h(·), we can define a proximal operator

proxh(x) = argmin
u

1

2
||u − x ||2L2 + h(u)

Then the updating rule becomes:

xk+1 = proxh,η

(
xk − η∇x ||Axk − d ||2L2

)
We can replace this proxh with a trainable network RΘ(·):

xk+1 = RΘ

(
xk − η∇x ||Axk − d ||2L2

)

19 / 19

