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What are Inverse Problems?

Inverse problems consist of recovering a signal x∗ (e.g. an image, a
parameter of a PDE, etc.) from indirect, noisy measurements d .
This measurement process is usually modeled as an operator A,
satisfying the following:

d = Ax∗ + ε,

Our task deals with image deblurring, i.e.,

• d ∈ Rn×n: blurred image with noise

• x∗ ∈ Rn×n: original image

• ε ∈ Rn×n: random noise (unknown) in Rn×n

3 / 19



What are Inverse Problems?

Inverse problems consist of recovering a signal x∗ (e.g. an image, a
parameter of a PDE, etc.) from indirect, noisy measurements d .
This measurement process is usually modeled as an operator A,
satisfying the following:

d = Ax∗ + ε,

Our task deals with image deblurring, i.e.,

• d ∈ Rn×n: blurred image with noise

• x∗ ∈ Rn×n: original image

• ε ∈ Rn×n: random noise (unknown) in Rn×n

3 / 19



From a Classical Approach

Direct Inverse:

d = Ax∗ + ε =⇒ x∗ = A−1d −A−1ε

Original Image Blurred Noisy Image Apply Inverse
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Classical Approach Cont.
Optimization: Formulate an optimization problem as follows:

x∗ = argmin
x∈Rn×n

1

2
||Ax − d ||2L2 + λR(x)

where R(x) is chosen based on prior knowledge of your data,
λ > 0 is a tunable parameter.

E.g. R(x) = 0 =⇒ x∗ = A−1d when A invertible
E.g. Use gradient descent where R(x) = λ

2 ||x ||
2
L2 :

Original Image Blurred Noisy Image Apply Gradient Descent
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Implicit Deep Learning

• Use dataset {(di , x∗i )}mi=1 and physics (namely A)

• Mimic gradient descent 5, but replace λ∇xR with a trainable
network SΘ: ∀i and 0 ≤ k ≤ K − 1,

xk+1
i = xki − η

(
∇x ||Axki − di ||2L2 + SΘ(x

k
i )
)

︸ ︷︷ ︸
:=TΘ(x

k
i )

where:
• η > 0 is step size
• TΘ(·) is a layer of our neural network NΘ(·)
• K is the number of layers

• Problems: memory, choice of K

5Davis Gilton, Gregory Ongie, and Rebecca Willett.“Deep equilibrium architectures for inverse problems in imaging.” IEEE
Transactions on Computational Imaging 7 (2021): 1123-1133.
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Implicit Deep Learning

• Implicit Deep Learning: Send K →∞ until a fixed point of
TΘ(·) is found, i.e. x∗i = TΘ(x

∗
i )

• Output: given the image di , NΘ(di ) := x∗i
• Question: why convergence?

• - Convergent if TΘ(·) is a contraction mapping with Lipschitz
constant γ ∈ [0, 1), i.e,
∀y1, y2 ∈ Rn2 , ||TΘ(y1)− TΘ(y2)||L2 ≤ γ||y1 − y2||L2
Then, by Banach fixed-point theorem, there exists y∗ ∈ Rn2

s.t. TΘ(y
∗) = y∗
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Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19



Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19



Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.

Potential problem: solving (1) is highly nontrivial

8 / 19



Implicit Backpropagation
Suppose we find a fixed point x∗ for the previous update, i.e.,

x∗ = TΘ(x
∗)

With implicit differentiation,

dx∗

dΘ
=

dTΘ(x
∗)

dx∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

=⇒
(
I − dTΘ(x

∗)

dx∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
(1)

So the update rule of trainable parameters becomes:

Θ← Θ− α
dℓ

dx∗

(
I − dTΘ(x

∗)

dx∗

)−1 ∂TΘ(x
∗)

∂Θ
,

where α > 0 is the learning rate.
Potential problem: solving (1) is highly nontrivial

8 / 19



Jacobian-Free Backpropagation (JFB)

• Goal: alleviate memory requirement and avoid high
computational cost.

• Key idea: replace the Jacobian
(
I − dTΘ(x

∗)
dx∗

)
with I

• Implicit Networks calculate the true gradient:

∇Θℓ =
dℓ
dx∗

(
I − dTΘ(x

∗)
dx∗

)−1
∂TΘ(x

∗)
∂Θ

• JFB approximates the gradient: pΘ = dℓ
dx∗

∂TΘ(x
∗)

∂Θ which is a
descent direction for ℓ if the following conditions hold (next
slide) 6:

6S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin (2021)
Jfb: Jacobian-free back-propagation for implicit networks.
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JFB Conditions

If:

i. TΘ is contraction mapping with Lipschitz constant γ

ii. TΘ is continuously differentiable w.r.t. Θ

iii. M := ∂TΘ
∂Θ has full column rank

iv. M is well-conditioned, i.e., κ(MTM) < 1
γ

Then

pΘ =
dℓ

dx∗
∂TΘ

∂Θ

is a descent direction for loss function ℓ.

10 / 19



Numerical Experiments

• Dataset: CelebA 7 (annotated celebrity faces)

7Liu, Ziwei, et al. ”Deep learning face attributes in the wild.” Proceedings of the IEEE international conference on computer vision.
2015.
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Numerical Experiments

• Generate blurred noisy images:
original image blurred noisy image

PSNR = 21.57, SSIM=0.80

• Train with JFB

• Preliminary results:
Loss v.s. number of SGD iterations Reconstructed image

PSNR = 25.69, SSIM=0.86
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Future Work

• Train models using different learned optimization algorithms,
e.g. Proximal Gradient Descent and Alternating Directions
Method of Multipliers (ADMM)

• Experiment with fastMRI data 8

• Compare training speeds and accuracy with Jacobian-based
algorithms

Thank you!

8Zbontar, Jure, et al. ”fastMRI: An open dataset and benchmarks for accelerated MRI.” arXiv preprint arXiv:1811.08839 (2018).
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Banach Fixed-Point Theorem

We demonstrate it in Rd :
Suppose T : Rd 7→ Rd is a contraction map with Lipschitz
constant γ ∈ [0, 1).
∀x0 ∈ Rd , iterate as follows:

x1 = T (x0)

x2 = T (x1)

...

xi+1 = T (xi )

...

Then we obtain a sequence {xm}m∈N

16 / 19



Banach Fixed-Point Theorem

Observe that

||x2 − x1|| = ||T (x1)− T (x0)|| ≤ γ||x0 − x1||
||x3 − x2|| = ||T (x2)− T (x1)|| ≤ γ||x2 − x1|| ≤ γ2||x0 − x1||

...

||xi+1 − xi || ≤ γ i ||x0 − x1||
...

So lim
m→∞

||xm+1 − xm|| ≤ lim
m→∞

γm||x0 − x1|| = 0

We also know that 0 ≤ lim
m→∞

||xm+1 − xm||.
=⇒ lim

m→∞
||xm+1 − xm|| = 0 by Squeeze Theorem

17 / 19



Banach Fixed-Point Theorem

By Triangular Inequality,

||xm+k − xm|| ≤ ||xm − xm+1||+ ||xm+1 − xm + k ||
≤ ||xm − xm+1||+ (||xm+1 − xm+2||+ ||xm+2 − xm+k ||)
...

≤ ||xm − xm+1||+ ||xm+1 − xm+2||+ · · ·
+ ||xm+k−2 − xm+k−1||+ ||xm+k−1 − xm+k ||

By Squeeze Theorem again, {xm}m∈N is a Cauchy sequence, which
is equivalent to lim

m→∞
xm = x∗ exists.

=⇒ x∗ = T (x∗) is a fixed point.

18 / 19



Proximal Gradient Descent

With a function h(·), we can define a proximal operator

proxh(x) = argmin
u

1

2
||u − x ||2L2 + h(u)

Then the updating rule becomes:

xk+1 = proxh,η

(
xk − η∇x ||Axk − d ||2L2

)
We can replace this proxh with a trainable network RΘ(·):

xk+1 = RΘ

(
xk − η∇x ||Axk − d ||2L2

)
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