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Models Meet Data

Figure 1: Example fMRI brain scan.

m Can you tell if this brain is diseased or not?

!Center for Functional MRI - UC San Diego
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Goals & Motivation

m Accurately classify patients as diseased or healthy

m Improve upon existing graph neural network performance by
developing novel architectures

m Contribute to computational neuroscience literature by
improving models that could eventually be used for mental
illness diagnosis
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Datasets

m We are working with 2 datasets, each classifying HIV and BP
(bipolar disorder).

m Each dataset consists of DTI scans, FMRI scans, and
classification labels (diseased (-1)/ non-diseased (1)).

m Both datasets have been cleaned for us and consist of less
than 100 patients.
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Datasets

m The DTI and FMRI brain scans of each patient i are
represented as weighted adjacency matrices W; € RM*M,

m FMRI scans are considered to be more robust than DTI scans,
SO our experiments prioritize working with them.
m Nodes in the brain network represent regions of interest
(ROI), and edge links between nodes indicate the strength of
the connection between ROI's.
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Data Preprocessing

m For our data, we implemented a rounding scheme to remove
edge weights and sparsify the adjacency matrices.

1 ifA>a

0 otherwise

the adjacency matrix A and « € (0,1) is our rounding
threshold.

m We have: A= . where Aj; is the ij-th entry of
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Data Preprocessing

m We further manipulate the data to obtain a list of (graph)
objects that can be used with the Python packages GraKel
and PyG.

m GraKel's functions and classes implement efficient
computations of graph kernels to be used for tasks such as
classification.

m PyG (PyTorch Geometric) builds on PyTorch and streamlines
the implementation of graph neural network (GNN) pipelines.
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Classification Task

m The standard graph classification task considers the problem
of classifying graphs into two or more categories.

m The goal is to learn a model that maps graphs in the set of
graphs G to a set of labels Y.
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Graph Kernels

m Graph kernels? are popular in graph-based learning and have

applications in many fields because their computation boils
down to an inner product.

m Our goal is to compute graph kernels and plug them into a

kernelized learning algorithm to benchmark their performance
on our datasets.

2Yanardag and Vishwapathan, sdhespuGraph.Kesngts”, 2015 9
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Graph Kernels - Graphlet Sampling

m Intuitively, this counts the frequency of size-k subgraphs and
compares that between two graphs.

m This kernel is defined as K¢k (G, G') = (f9,9).
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Graph Kernels - Weisfeiler-Lehman

m Intuitively, this kernel compares the number of shared subtrees
between two graphs.

m The W-L kernel is defined as K. (G, G') = (19,19).
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Graph Neural Networks (GNN's)

m GNN'’s combine node features and graph structures to
perform specific prediction tasks
m A generic framework of GNN:

m computing the representation of each node

m applying a pooling strategy to obtain the graph representation

m Multilayer perceptron (MLP) can be applied to make
predictions
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GAT and GCN

m Graph Attention Network (GAT) is a type of Convolutional
Neural Network that operates on graphs

m Graph Convolutional Network (GCN) is a special case of
GAT's with attention fully determined by graph structure
alone, without node features
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BrainGB

m BrainGB: A Benchmark for Brain Network Analysis with
Graph Neural Networks?

m Measures accuracy, Fl-score, and AUC of different parameters
m Node feature construction
m Message passing mechanisms
m Pooling Strategies

3Cui et al., "BrainGB: A Benchmark for Brain Network Analysis with Graph
Neural Networks”, 2022, choit Sally Smith?  Ethan Young® 14
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BrainGB - Node Feature Construction

m Natural node features are usually not available in brain
network analysis

m Connection profile
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BrainGB - Message Passing Mechanisms

m Message vector

ml = Z mjj = Z M(hi, hj, wi)

JEN; JEN;

hitt = Uy(hj, m})

m Node concat
my; = MLP(h; || h)
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BrainGB - Pooling Strategies

m Pooling strategy
gn = R({hi | vi € Gn})
m Concat pooling

g =1ty hi=hy || ho || ... || hx
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Support Vector Machines (SVM)

m SVM is a supervised learning model that maps training data
to points in Euclidean space, then separates them with a
hyperplane.

m Because of the small number of observations, we averaged
classification accuracy over 20 different train-test splits to get
a handle on how well SVM is performing.
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BrainGB Benchmark

Dataset Accuracy F1 AUC

HIV-GCN 514311773 50.6111587 49.23117.97

BP-GCN 61.74.111.15 65.7217.84 61.06£11.04

HIV-GAT 571411278 59.18491.87 51.43415.00

BP-GAT 55.6319.52 59.031954 55.49,1951
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Results - SVC (W-L)

SVC Benchmark (Weisfeiler-Lehman)
Dataset Threshold = 0.5 Optimal Threshold*
HIV-dti (0.85%) 0.4040.18 0.5640.18
BP-dti (05*) 0.52410.14 0.5240.14
HIV-fmri (0.2*%) 0.584+0.20 0.6540.17
BP-fmri (0.2*) 0.5340.13 0.5740.14
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Results - SVC (GS)

SVC Benchmark (Graphlet Sampling, k=3)
Dataset Threshold = 0.5 | W-L Optimal Threshold*
HIV-dti (085*) 0.5410.6 0.47410.15
BP-dti (05*) 0.4840.17 0.4640.15
HIV-fmri (0.2%) || 0.3040.14 0.3040.14
BP-fmri (0.2*) 0.5040.16 0.5040.16
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Challenges

m Limited data (<100 patients in each dataset)

m Consequently, we need to feed the datasets through our
models more, which increases computation time.

m Ethical considerations unique to the field of neuroscience
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BrainGB - Limitations

m GNN's are usually shallow; deep GNN's are still an active area
of research.

m For brain networks, what kinds of graph structures are
effective beyond the pairwise connections are still unknown.
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Graph Kernel GNN's

m Kernel SVC basically classifies at random; however, we can
still leverage some notion of higher-order information given by
kernels in GNN’s

m Implement and establish benchmarks with different GNN
architectures, such as the one proposed by Morris et al*

m Develop novel GNN architectures that incorporate graph
kernels; this is motivated by work done by Feng et al®

*Morris et al., “Weisfeiler and Leman Go Neural: Higher-order Graph Neural
Networks”, 2019
®Feng et al., "KerGNNs: Interpretable Graph Neural Networks with Graph

Kernels”, 2022 Erica Choi®  Sally Smith>  Ethan Young? 24
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Conclusion

m Our goal is to improve brain disease classification models.

m While we are limited by factors such as accessibility of
datasets, we are working around the issues we are facing.

m Our next step is to work on combining graph kernels with
GNNs.
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