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Abstract—It is well-established that graph neural networks
(GNNs) can effectively model networked data in a variety
of fields. However, whether GNNs can outperform traditional
shallow graph classification models such as graph kernels for
brain network analysis remains unclear. To this end, we analyze
different approaches for modeling brain networks, including
graph kernel based SVM, basic GNNs and kernelized GNNs.
These models are designed to aid in the analysis of diseases
and mental disorders such as bipolar disorder, human immun-
odeficiency virus (HIV), post-traumatic stress disorder (PTSD),
and depression. In particular, we conduct experiments with three
methods: kernelized support vector machines (SVM), message
passing graph neural networks (MPGNNs), and kernel graph
neural networks (KerGNN). We conclude that 1) deep models
(GNNs) generally outperform shallow models (SVM) and 2)
models considering specific graph motifs do not seem to sig-
nificantly improve performance. We also identify other graph
kernels and GNN frameworks that show promise in motivating
further research in brain network analysis.

Index Terms—brain networks, GNNs, graph learning, graph
kernels, neuroimaging data, SVM

I. INTRODUCTION

The human brain is a complex organ that organizes and
dictates all of the functions within the body. Neuroscience
research has expanded in recent decades, resulting in rapid
progress in studying the structures and functions of the human
brain. Recent studies in neuroscience and brain imaging have
reached the consensus that the interactions among brain re-
gions are driving factors for neural development and disorders,
but determining what types of mathematical models should be
used to analyze such interactions remains an active area of
research.

One of the biggest limitations to progress in neuroscience
research is the invasive nature of many existing methods for
studying the brain. Comparative studies have found a signif-
icant relationship between invasive research methods such as
histological research and noninvasive methods such as struc-
tural neuroimaging [1]. These results motivate refinement and
innovation in noninvasive research methods for neuroscience.
The field of network neuroscience has only recently been
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established [1], and research in this area seeks to leverage the
power of modern computational methods and brain network
modeling in conjunction with neurobiological data collection
methods in order to produce novel results within the greater
field of neuroscience.

In this project, we explore different approaches for model-
ing brain networks. We analyze several methods: traditional
shallow graph models, modern deep graph neural networks
(GNNs), and GNNs incorporating graph kernels. The goal of
these models, and of our research as a whole, is to aid in
the analysis of diseases and mental disorders such as bipolar
disorder, HIV, PTSD, depression, and substance misuse and
to harness modern computational methods to improve classi-
fication accuracy of pre-existing models that predict whether
a brain is diseased or healthy.
Summary of Contributions: We adapt shallow and deep
graph mining techniques and conduct a variety of experiments
to benchmark their performance on brain network datasets. We
also suggest several methods that show promise when applied
to brain networks. Importantly, we hope that some of the ideas
in these methods motivate further studies.

II. PRELIMINARIES

A. Problem Formulation

The standard graph classification task considers the problem
of classifying graphs into two or more categories. In this
project, we perform binary classification on neuroimaging
data to classify patients as either diseased or healthy. Our
datasets consist of brain networks represented as weighted,
undirected adjacency matrices constructed from fMRI scans.
For more details on network construction, see Section 3 of [2].
Depending on the classification model, we further preprocess
the datasets with methods such as threshold rounding.

B. Brain Networks

The brain network datasets D = {Gi, yi}Ni=1 consist of N
subjects, where Gi = {Vi, Ei} represents the brain network
of subject i and yi ∈ Y is its corresponding neural disease
label. In D, the brain network Gi of every subject i involves
the same set of M nodes (ROIs), i.e., ∀i,Vi = {vp}Mp=1. Thus,
the difference across subjects only lies in the edges Ei (con-
nections among brain regions), which are often represented by
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Fig. 1. Overview of graph kernelized learning.

(a) Threshold: 0 (b) Threshold: 0.01

(c) Threshold: 0.1 (d) Threshold: 0.25

Fig. 2. Effect of threshold rounding on network density.

a weighted adjacency matrix Wi ∈ RM×M per subject i. The
edge weights in W are real-valued and can be both positive
and negative.

C. Datasets

We are working with two datasets, one classifying human
immunodeficiency virus (HIV) and one classifying bipolar
disorder (BP). Each dataset consists of functional magnetic
resonance imaging (fMRI) scans and classification labels in
the form of integers, where 1 indicates a healthy patient and
-1 indicates an unhealthy patient. Both datasets have been
processed for us. More details can be found in Section 3 of
[3], which goes more in depth about preprocessing fMRI data
and constructing the brain networks using a set of regions of
interest (ROIs) that define the network nodes.

D. Threshold Rounding

The brain networks are extremely dense and noisy. We ad-
dress these issues in several of our experiments by implement-
ing threshold rounding. That is, if the ij-th entry of adjacency
matrix W is greater than or equal to the threshold, the entry
is rounded to 1. Otherwise, the entry is rounded to 0. This
additional step in data preprocessing allows us to sparsify our

brain networks while preserving as much relevant structural
information as possible. Fig. 2 shows how the density of a
random observation decreases as our threshold increases. Note
that even for ”small” thresholds such as 0.1, the brain network
becomes extremely sparse and mostly consists of self-loops.

III. SHALLOW MODELS

Our first classification method is a ”shallow” model: kernel-
ized support vector machines (SVM) [4]. This is a popular
approach to graph classification that uses graph kernels to
compute a kernel matrix K of size n×n, where Kij represents
the similarity between Gi and Gj [5], and then plugging the
computed kernel matrix into a kernelized learning algorithm.
Graph kernels are appealing to implement because they can be
computed as an inner product between pairs of observations.
These methods are considered shallow models because they
do not consist of many layers of computations, unlike their
deep model counterparts. Fig. 1 visualizes this method.

A. Graph Kernels

We consider four graph kernels in our experiments:
Weisfeiler-Lehman subtree (WL), Weisfeiler-Lehman optimal
assignment (WLOA), shortest path (SP), and graphlet sam-
pling (GS) kernels. For more details on graph kernels, please
refer to [6] and Section 2 of [5].

1) Weisfeiler-Lehman Subtree Kernel: The WL kernel is a
popular state-of-the-art algorithm employed in graph classifi-
cation tasks. This kernel is built on the Weisfeiler-Lehman
graph isomorphism test [7] and is essentially a relabeling
procedure, where a node’s labels are iteratively updated us-
ing the information of the node’s neighbors. This kernel is
computationally inexpensive, taking O(hm) time, where h is
the number of iterations and m is the number of edges.

2) Weisfeiler-Lehman Optimal Assignment Kernel: The
next kernel we consider is the WLOA kernel, which leverages
valid assignment kernels to improve the performance of the
WL subtree kernel [8]. Similar to the WL kernel, the WLOA
kernel is an iterative relabeling procedure that also considers
node neighborhoods. This kernel is appealing in that it can
be computed in linear time, taking O(|X|+ |Y |) time, where
X and Y are elements of [X ]n. [X ]n denotes the set of all
n-element subsets of the set X .



Fig. 3. BrainGB framework. Adapted from Fig. 1 of [2]. hi is the node representation of node xi, mij is the message from node xj to xi, and aij is the
attention weight from node xj to xi.

Fig. 4. KerGNN framework. Adapted from Fig. 3 in [9].

3) Shortest Path Kernel: The SP kernel is intuitive: it de-
composes graphs into shortest paths, considers pairs of shortest
paths, and compares their length and labels of path endpoints
[10]. This kernel is computationally expensive, taking O(n4)
time, where n is the number of nodes.

4) Graphlet Sampling Kernel: The GS kernel is also intu-
itive: it decomposes graphs into graphlets, which are subgraphs
of k nodes, and compares the number of matching graphlets
between two graphs [11]. This kernel is computationally
intractable due to enumeration of all size-k subgraphs with
large k, taking O(nk) time.

IV. DEEP MODELS

Our second classification method is a “deep” model: graph
neural networks. GNN architectures are an extremely vibrant
area of research due to the diversity and abundance of graph
data. For our experiments, we focus on BrainGB [2] and kernel
graph neural networks [9].

A. Message Passing Graph Neural Networks

There exist many benchmarks for the classification of brain
networks. For example, the BrainNNExplainer framework [12]
is an interpretable model that performs well on the brain

network classification task. The first GNN we perform classi-
fication with is BrainGB [2], another GNN framework that is
geared toward brain network analysis.

BrainGB is a message passing GNN (MPGNN) that we
implement using the open-source BrainGB Python package,
which is built on the Pytorch and Pytorch Geometric libraries.
In this section, we briefly explain the two main MPGNNs
employed in BrainGB: graph convolutional networks (GCNs)
and graph attention networks (GATs). Section 4 of [2] gives
further details and motivation on the MPGNN design choices.
Fig. 3 visualizes the MPGNN architecture.

1) Graph Convolutional Networks: Message passing
schemes in GCNs are generally composed of two steps: mes-
sage passing and update. The message passing step consists of
nodes receiving messages from their neighbors via a message
function. These messages are then aggregated. The update step
consists of updating each node’s embeddings based on the
aggregated messages via a differentiable update function.

2) Graph Attention Networks: The attention mechanism in
GATs is used to improve the message passing scheme and
can provide interpretability over edge importance [2]. In this
framework, node representations are updated with additional
attention weights.



TABLE I
HYPERPARAMETER SEARCH RANGE

Number of epochs 100; 150; 200; 250; 300; 350; 400; 450; 500
Learning rate 10−2; 10−3; 10−4; 10−5; 10−6

Dropout rate 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9
Nodes in graph filter 2; 4; 6; 8; 10; 12; 14; 16; 18; 20

Subgraph size 5; 10; 15; 20
k-hop neighborhood 1; 2; 3

Max step of RW 1; 2; 3; 4; 5

B. Kernel Graph Neural Networks

For the second GNN framework, we seek to combine the
approaches of shallow and deep graph modeling. To this end,
we study GNN architectures that integrate graph kernels and
benchmark their performance on our datasets. These GNNs
take advantage of both the higher-order structural information
given by graph kernels and the local information given by
MPGNNs. The method that is of particular interest to is the
kernel graph neural network (KerGNN) [9].

The KerGNN framework is essentially an MPGNN where
graph kernels are integrated into the message passing process.
KerGNNs employ trainable hidden graphs as graph filters,
which are analogous to the convolution filter in convolutional
neural networks (CNNs). These filters are combined with
subgraphs and use graph kernels to update node embeddings.
Fig. 4 is a simplified overview of the KerGNN framework.

V. EXPERIMENTS

A. Experiment Settings

1) SVM: We compute the graph kernels using the Python
package GraKel [13]. To account for the small number of
observations in our datasets, we averaged classification accu-
racy over 25 different train-test splits. For threshold rounding,
we picked an optimal threshold (one that maximized mean
classification accuracy) by comparing the performance of
thresholds ranging from 0 to 1 and incrementing by 0.01. For
the WL and WLOA kernels, we used the default number of
iterations, which is 5.

To get a handle on the overall performance of the WL and
WLOA graph kernels, we also ran tests by varying the number
of iterations. Specifically, we used the optimal threshold
derived in the previous experiment and incremented from 1
to 20 by 1. For the GS kernel, we ran experiments with size-
5 subgraphs as a compromise between sufficient information
given by graphlet size and computational resources.

2) BrainGB: We conduct our experiments based on the
settings outlined in Section V of [2]. In particular, we experi-
mented with different combinations of node features, message
passing schemes, and pooling strategies. To streamline our
workflow, we focus on two message passing schemes in GCNs
and GATs that performed well in [2]: concat and edge concat.
Accuracy, F1 Score, and Area Under the ROC Curve (AUC)
are the metrics evaluating performance. We use the AUC to
highlight the best performing model because it is not sensitive

TABLE II
PERFORMANCE REPORTa

Data Method Accuracy F1 AUC

HIV

WL-0.21 0.67±0.17 — —
WLOA-0.21 0.65±0.17 — —

SP-0.01 0.66±0.20 — —
GS-0.03 0.66±0.18 — —

GCN-concat 0.64±0.15 0.59±0.20 0.77±0.20

GAT-concat 0.73±0.16 0.71±0.17 0.81±0.19

GCN-edge concat 0.71±0.11 0.69±0.12 0.77±0.17

GAT-edge concat 0.69±0.18 0.67±0.19 0.73±0.24

KerGNN 0.64±0.19 — —

BP

WL-0.4 0.63±0.19 — —
WLOA-0.42 0.66±0.12 — —

SP-0.02 0.64±0.12 — —
GS-0.04 0.62±0.15 — —

GCN-concat 0.53±0.13 0.51±0.14 0.54±0.16

GAT-concat 0.53±0.13 0.50±0.13 0.57±0.19

GCN-edge concat 0.63±0.12 0.61±0.13 0.61±0.17

GAT-edge concat 0.52±0.17 0.51±0.16 0.59±0.19

KerGNN 0.68±0.16 — —
aThe highest score for each dataset is highlighted. For clarity, we also
highlight the method that produced that score. In the case of ties, we
choose the score with the lower standard deviation.

to changes in the class distribution. We once again average
performance over different train-test splits.

3) KerGNN: We conduct our experiments using the Pytorch
implementation of KerGNN. We use a 0.05 rounding threshold
and averaging performance over 20 train-val-test splits. The
training set consists of 80% of the data, the validation set
consists of 10%, and the testing set consists of the remaining
10%. The choice of a 0.05 rounding threshold is motivated by
sparsifying the networks while preserving as many important
connections as possible. However, we believe that experiment-
ing with other thresholds and gaining insights into any impact
threshold rounding has on brain network analysis to be a
valuable endeavor.

Our experiments consider a single KerGNN layer with
the random walk (RW) kernel. The choice of kernel follows
from the extensive studies detailed in [9]. Due to time and
computing resource constraints, we are unable to consider
other worthwhile experiments, such as architectures with more
than one KerGNN layer, different rounding thresholds, and
other graph kernels.

We use grid search to select the set of hyperparameters that
performs the best on our datasets. We consider hyperparam-
eters related to neural network training, such as the number
of epochs, learning rate, and dropout rate. We also consider
those unique to KerGNN, such as the number of nodes in
the graph filter, size of the subgraph, k-hop neighborhood,
and maximum step for the RW. Due to computing resource
constraints, we leave all other KerGNN hyperparameters to
be default settings. Table I outlines our hyperparameter search
range. For more details on the KerGNN framework, see [9].

B. Results and Analysis

Table II summarizes the classification performance of our
methods on the HIV and BP datasets.



Fig. 5. Number of iterations (n iters) experiments.

1) SVM: We see that for an optimal rounding threshold,
both datasets had similar mean classification accuracy. The
performance of our experiments had high standard deviation,
which is reflective of the small size and inconsistent perfor-
mance of our testing sets (poor splits of our datasets generally
lead to low classification accuracy). For experiments varying
the number of iterations (WL and WLOA kernels), Fig. 5
shows the mean classification accuracy seemingly converging
as the number of iterations increased.

From the generally poor performance, we are uncertain
whether there is higher-order information in brain networks
useful for classification with graph kernels. For example, the
WL and WLOA kernels iteratively update node labels based on
the node’s local information (e.g., subtrees in the WL kernel),
but it seems that a node’s neighborhood is unimportant in
distinguishing between healthy and diseased patients’ brain
networks. For the SP and GS kernels that exploit network
structure, their similar performance with the WL and WLOA
kernels suggest that subgraph structures are not particularly
helpful in our classification task.

2) BrainGB: Despite the small sizes of our datasets, it is
clear that MPGNNs are effective on the HIV data; however,
their poor performance on the BP data indicates their struggle
with generalizing to other datasets. Like with the SVM exper-
iments, we observe high standard deviations due to poor split
assignments. Furthermore, while MPGNNs capture local node
information well, they are prone to overfitting, especially on
small datasets. They also lack some interpretability in their
predictions. For a more thorough analysis on the performance
of the BrainGB framework, please refer to [2].

3) KerGNN: KerGNN achieves the best performance on
the BP dataset, but still suffers from high variance. Inter-
estingly, the classification accuracy of the HIV dataset, after
hyperparameter optimization, is worse. These results, while
comparable to kernelized SVM, are in stark contrast with
our BrainGB experiments that show consistently better per-
formance on the HIV dataset than the BP dataset. Like in all
of our previous experiments, the performance of KerGNN still
exhibits high variance on both datasets due to some splits of
our data performing extremely poorly.

VI. CONCLUSION

A. Discussion and Limitations

Our datasets are prohibitively small, which makes it difficult
for robust model training. Consequently, poor split assign-
ments occur frequently while running experiments, which is
indicated in our results by extremely high standard devia-
tions. We attempt to partially address this issue by averaging
performance over many different splits; however, limits on
time and computing resources make it difficult to run more
comprehensive experiments. One additional experiment, for
example, we want to consider is testing different rounding
thresholds in the KerGNN experiments. Notably, across most
experiments, the BP data shows consistently worse average
performance than the HIV data.

There may be some explanations from neuroscience to
address these problems. [12] observes that HIV significantly
affects the connectivity within both the visual network (VN)
and default mode network (DMN), while bipolar disorder
mainly affects the bilateral limbic network (BLN). Because
HIV patients’ data show less connectivity across two sub-
networks and BP patients’ data show less connectivity in
only one sub-network, it is harder to classify BP patients.
[14] found that using multimodal neuroimagery increased their
SVM model’s performance in classifying bipolar disorder, so
only utilizing a single modality (fMRI), rather than both fMRI
data and MRI data, may also limit our model’s classification
accuracy on the BP dataset. [3] provides more details on the
translation from brain imaging data to different sub-networks.

B. Future Work

Due to time constraints and implementation challenges, we
were unable to conduct experiments with other graph mining
techniques, which we briefly describe in this section. GNNs
designed specifically for brain network analysis, such as [2],
[12], and [15], generally involve some kind of message passing



mechanism. Our interest in several of the following methods
lies in their consideration of either graph kernels or graph
structures (i.e., motifs), which makes them more expressive.
We hope that these methods are effective and motivate further
work in brain network analysis.

1) Graph Kernel Neural Networks: The first method of
interest is graph kernel neural networks (GKNNs) [16], a
GNN framework similar to KerGNN. This GNN architecture
features the graph kernel convolution (GKC) layer, which is
inspired by the convolution operator in CNNs. The flexibility
of the GKC layer in accepting any number and type of graph
kernels makes it particularly interesting in the context of our
studies of graph kernels. For further details on the GKNN
architecture, see [16]. The Pytorch implementation of GKNN
is available online (the code may be downloaded as a ZIP file
in the “Supplementary Material” section).

2) Graph Stochastic Attention: Next, we consider graph
stochastic attention (GSAT) [17], an architecture that has
the advantage of interpretability in its selection of relevant
subgraphs, which, under certain assumptions outlined in [17],
are optimal solutions of the graph information bottleneck
objective. Please refer to [17] for more details. Applying this
method to the MPGNN framework of BrainGB and comparing
its performance on brain networks to that of GATs will
hopefully yield insightful results. The Pytorch implementation
of GSAT is available online.

3) k-dimensional Graph Neural Networks: We are also
interested in k-dimensional GNNs (k-GNNs) [18], which are
generalizations of GNNs based on the k-WL kernel that take
into account higher-order graph structures. Importantly, [18]
shows that k-GNNs effectively distinguish graph properties
such as non-isomorphic subgraphs. This method is of theo-
retical interest because it explores the expressivity of GNNs.
We hope that applying this method gives insights into which
subgraph structures (if any) are relevant to brain network
analysis. Please refer to [18] for more details. The Pytorch
Geometric implementation of k-GNN is available online.

4) Message Passing Graph Kernels: The fourth method we
consider is the message passing graph kernel (MPGK) [19].
The MPGK framework consists of iteratively and implicitly
updating node representations, which then help construct the
kernel that compares pairs of graphs. It may be interesting to
compare the performance of MPGKs with the kernels in this
study on brain networks. More details, such as relating the
MPGK to the WL kernel, may be found in [19]. Code for
MPGK is available online to compute kernel matrices.

5) Motif Convolutional Networks: Lastly, we are interested
in motif convolutional networks (MCNs) [20], a model that
generalizes GCNs by using motif adjacency matrices and
finding relevant higher-order neighborhoods in graph data.
A powerful feature of MCNs is that an additional attention
mechanism is introduced to allow each node to select the most
relevant motif. Importantly, we hope this method will give
insights to the significance of graph motifs in brain network
analysis. Please refer to [20] for more details on the MCN
architecture.
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