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Introduction

Analyze different approaches for classifying brain networks

− kernelized SVM1

− message passing GNNs2

− graph kernel GNNs3

Suggest several methods to motivate further research in brain
network analysis

1Hofmann, Schölkopf, and Smola, “Kernel methods in machine learning”,
2008

2Cui et al., BrainGB: A Benchmark for Brain Network Analysis with Graph
Neural Networks, 2022

3Feng et al., “KerGNNs: Interpretable Graph Neural Networks with Graph
Kernels”, 2022 2
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Classification Task

The standard graph classification task considers the problem
of classifying graphs into two or more categories

In this project, we perform binary classification on
neuroimaging data to distinguish between negative and
positive diagnoses

3
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Datasets

We are working with 2 datasets, one classifying HIV and the
other classifying bipolar disorder

Each dataset consists of:

− diffusion tensor imaging (DTI) scans
− functional magnetic resonance imaging (fMRI) scans
− classification labels: positive diagnosis, negative diagnosis

4



Preliminaries Shallow Models Deep Models Current Benchmarks Conclusion References

Datasets

The DTI and fMRI brain scans of each patient i are
represented as weighted adjacency matrices Wi ∈ RM×M

− The fMRI scans are considered to be more robust than DTI
scans, so our experiments prioritize working with them

− The fMRI datasets have been cleaned for us and consist of 70
(HIV) and 97 (bipolar disorder) patients

Nodes in the brain network represent regions of interest
(ROIs), and edge links between nodes indicate the strength of
the connection between ROIs

5
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Threshold Rounding

We implement a rounding scheme to remove edge weights and
sparsify the adjacency matrices

We have: Aij=

{
1 if Aij≥ α

0 otherwise
, where Aij is the ij-th entry of

the adjacency matrix A and α ∈ [0, 1] is our rounding
threshold

6
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Threshold Rounding

(a) Threshold: 0 (b) Threshold: 0.01

(c) Threshold: 0.1 (d) Threshold: 0.25

Figure 1: Effect of threshold rounding on network density.
7
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Graph Kernels

Popular in graph-based learning because they can be
computed implicitly (inner product)

We compute graph kernel matrices using the GraKel Python
package and plug them into SVM to perform classification

Consider WL, WLOA, shortest path, and graphlet sampling
kernels in experiments

8
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Graph Kernels

Weisfeiler-Lehman subtree kernel is built on the
Weisfeiler-Lehman graph isomorphism test4 and is essentially
a relabeling procedure

− Computationally inexpensive, taking O(hm) time, where h is
the number of iterations and m is the number of edges.

WL optimal assignment kernel uses valid assignment theory
to improve the performance of the WL subtree kernel5

− Computed in linear time, taking O(|X |+ |Y |) time, where X
and Y are elements of [X ]n. [X ]n denotes the set of all
n-element subsets of the set X .

4Weisfeiler and Lehman, “The reduction of a graph to canonical form and
the algebra which appears therein”, 1968

5Kriege, Giscard, and Wilson, “On Valid Optimal Assignment Kernels and
Applications to Graph Classification”, 2016 9
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Graph Kernels

Shortest path kernel decomposes graphs into shortest paths
and compares pairs of them6

− Computationally expensive when number of n nodes is large,
taking O(n4) time

Graphlet sampling kernel decomposes graphs into graphlets
of k nodes and compares the number of matching graphlets
between two graphs7

− Computationally intractable for large k , taking O(nk) time
− Experiments show k=5 generally performs the best

6Borgwardt and Kriegel, “Shortest-path kernels on graphs”, 2005
7Przulj, “Biological network comparison using graphlet degree distribution”,

2007 10
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Support Vector Machines

Figure 2: Overview of kernel SVM.

11
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Graph Neural Networks

GNNs combine node features and graph structures to perform
prediction tasks

General framework:

− computing the representation of each node
− applying a pooling strategy to obtain the graph representation
− multilayer perceptron (MLP) can be applied to make

predictions

12
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BrainGB

We implement MPGNNs using the BrainGB Python package
and focus on two types of MPGNNs:

− Graph attention network (GAT) is a type of convolutional
neural network that operates on graphs

− Graph convolutional network (GCN) is a special case of
GATs with attention fully determined by graph structure alone,
without node features

Conduct experiments using settings based on extensive studies
from Cui et al (2022)

13
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BrainGB

Figure 3: BrainGB framework. Adapted from Fig. 1 in Cui et al (2022).
The node representation of node xi is hi , the message from node xj to xi
is mij , and the attention weight from node xj to xi is aij .

14
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BrainGB

(a) Standard message passing (b) MP with attention

Figure 4: The message passing schemes in the BrainGB framework.

15
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BrainGB

Figure 5: BrainGB framework. Adapted from Fig. 1 in Cui et al (2022).
The output gn is the pooled information that will be passed through a
MLP to make the prediction.

16
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Kernel GNNs

Figure 6: KerGNN framework. Adapted from Fig. 3 in Feng et al (2022).

17
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Kernel GNNs

Number of epochs 100; 150; 200; 250; 300; 350; 400; 450; 500
Learning rate 10−2; 10−3; 10−4; 10−5; 10−6

Dropout rate 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9
Nodes in graph filter 2; 4; 6; 8; 10; 12; 14; 16; 18; 20

Subgraph size 5; 10; 15; 20
k-hop neighborhood 1; 2; 3
Max step of RW 1; 2; 3; 4; 5

Table 1: Hyperparameter Search Range

18
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Data Method Accuracy F1 AUC

HIV

WL-0.21 0.67±0.17 — —
WLOA-0.21 0.65±0.17 — —
SP-0.01 0.66±0.20 — —
GS-0.03 0.66±0.18 — —

GCN-concat 0.64±0.15 0.59±0.20 0.77±0.20

GAT-concat 0.73±0.16 0.71±0.17 0.81±0.19

GCN-edge concat 0.71±0.11 0.69±0.12 0.77±0.17

GAT-edge concat 0.69±0.18 0.67±0.19 0.73±0.24

KerGNN 0.64±0.19 — —

BP

WL-0.4 0.63±0.19 — —
WLOA-0.42 0.66±0.12 — —
SP-0.02 0.64±0.12 — —
GS-0.04 0.62±0.15 — —

GCN-concat 0.53±0.13 0.51±0.14 0.54±0.16

GAT-concat 0.53±0.13 0.50±0.13 0.57±0.19

GCN-edge concat 0.63±0.12 0.61±0.13 0.61±0.17

GAT-edge concat 0.52±0.17 0.51±0.16 0.59±0.19

KerGNN 0.68±0.16 — —

19
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Discussion

Limited data (70 and 97 patients in each dataset)

GNNs are usually shallow; deep GNNs are still an active area
of research

For brain networks, what kinds of graph structures are
effective beyond the pairwise connections are still unknown

20
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Discussion

Cui et al (2021)8 notes HIV affects 2 sub-networks, while
bipolar disorder only affects 1 sub-network

− This may make accurate classification difficult

Li et al (2020)9 found utilizing multimodal neuroimaging
(fMRI and MRI) improves SVM classification performance

8Cui et al., “BrainNNExplainer: an interpretable graph neural network
framework for brain network based disease analysis”, 2021

9Li et al., “Identification of bipolar disorder using a combination of
multimodality magnetic resonance imaging and machine learning techniques”,
2020 21
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Future Work

There are many graph kernels and GNNs that we hope are
useful in the area of brain network analysis

Some of these include: graph kernel neural networks10

(GKNN), graph stochastic attention11 (GSAT), k-dimensional
GNNs12 (k-GNN), message passing graph kernels13 (MPGK),
and motif convolutional networks14 (MCN)

10Cosmo et al., Graph Kernel Neural Networks, 2021
11Miao, Liu, and Li, Interpretable and Generalizable Graph Learning via

Stochastic Attention Mechanism, 2022
12Morris et al., Weisfeiler and Leman Go Neural: Higher-order Graph Neural

Networks, 2018
13Nikolentzos and Vazirgiannis, Message Passing Graph Kernels, 2018
14Lee et al., Higher-order Graph Convolutional Networks, 2018 22
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