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Abstract: Numerical solutions to partial differential equations (PDEs) remain one of the main
focus in the field of scientific computing. Deep learning and neural network based methods for solv-
ing PDEs have gained much attention and popularity in recent years. The universal approximation
property of neural networks allows for a cheaper approximation of functions in high dimensions
compared to many traditional numerical methods. Reformulating PDE problems as optimization
tasks also enables straightforward implementation and can sometimes circumvent stability con-
cerns common for classic numerical methods that rely on explicit or semi-explicit time discretiza-
tion. However low accuracy and convergence difficulty stand as challenges to deep learning based
schemes, fine-tuning neural networks can also be time-consuming at times.

In our work, we present some of our findings using machine learning methods for solving cer-
tain PDEs. We divide our work into two sections, in the first half we focus on the popular Physics
Informed Neural Networks (PINNs) framework, specifically in problems with dimensions less than
or equal to three. We present an alternative optimization based algorithm using a B-spline polyno-
mial function approximator and accurate numerical integration with a grid based sampling scheme.
With implementation using popular machine learning libraries, our approach serves as a direct
substitute for PINNs, and through performance comparison between the two methods over a wide
selection of examples, we find that for low dimensional problems, our proposed method can im-
prove both accuracy and reliability when compared to PINNs. In the second half, we focus on a
general class of stochastic optimal control (SOC) problems. By leveraging the underlying theory
we propose a neural network solver that solves the SOC problem and the corresponding Hamil-
ton–Jacobi–Bellman (HJB) equation simultaneously. Our method utilizes the stochastic Pontryagin
maximum principle and is thus unique in the sampling strategy, this combined with modifying the
loss function enables us to tackle high-dimensional problems efficiently.
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