Algebra Seminar

Bounds on the Torsion Subgroups of Second Cohomology

Hyuk Jun Kweon University of Georgia

Abstract: Let $X \hookrightarrow \mathbb{P}^r$ be a smooth projective variety defined by homogeneous polynomials of degree $\leq d$ over an algebraically closed field k. Let $\operatorname{\mathbf{Pic}} X$ be the Picard scheme of X, and $\operatorname{\mathbf{Pic}}^0 X$ be the identity component of $\operatorname{\mathbf{Pic}} X$. The Néron–Severi group scheme of X is defined by $\operatorname{\mathbf{NS}} X = (\operatorname{\mathbf{Pic}} X)/(\operatorname{\mathbf{Pic}}^0 X)_{\operatorname{red}}$, and the Néron–Severi group of X is defined by $\operatorname{NS} X = (\operatorname{\mathbf{NS}} X)(k)$. We give an explicit upper bound on the order of the finite group $(\operatorname{\mathbf{NS}} X)_{\operatorname{tor}}$ and the finite group scheme $(\operatorname{\mathbf{NS}} X)_{\operatorname{tor}}$ in terms of d and r. As a corollary, we give an upper bound on the order of the torsion subgroup of second cohomology groups of X and the finite group $\pi^1_{\operatorname{et}}(X,x_0)^{\operatorname{ab}}_{\operatorname{tor}}$. We also show that $(\operatorname{NS} X)_{\operatorname{tor}}$ is generated by $(\operatorname{deg} X - 1)(\operatorname{deg} X - 2)$ elements in various situations.

Tuesday, November 28, 2023, 4:00 pm Mathematics and Science Center: MSC W301

> MATHEMATICS EMORY UNIVERSITY