Abstract: Let $f : Y \rightarrow X$ be a branched $\mathbb{Z}/p\mathbb{Z}$-cover of smooth, projective, geometrically connected curves over a perfect field of characteristic $p \neq 0$. We investigate the relationship between the a-numbers of Y and X and the ramification of the map f. This is analogous to the relationship between the genus (respectively p-rank) of Y and X given the Riemann-Hurwitz (respectively Deuring–Shafarevich) formula. Except in special situations, the a-number of Y is not determined by the a-number of X and the ramification of the cover, so we instead give bounds on the a-number of Y. We provide examples showing our bounds are sharp. The bounds come from a detailed analysis of the kernel of the Cartier operator. This is joint work with Bryden Cais.

Tuesday, April 9, 2019, 4:00 pm
Mathematics and Science Center: W201