
Math 346, HW9 Solution

5.5.3

In the linear program:

Maximize 11x1 + 4x2 + x3 + 15x4
subject to 3x1 + x2 + 2x3 + 4x4 ≤ 28

8x1 + 2x2 − x3 + 7x4 ≤ 50
x1, x2, x3, x4 ≥ 0.

By simplex method, the final tableau looks like (from Page 184):
x1 x2 x3 x4 x5 x6

x4 −2 0 5 1 2 −1 6
x2 11 1 −18 0 −7 4 4

3 0 2 0 2 1 106


Note that by taking the fourth column and second column in the original LP,
the matrix

B =

[
4 1
7 2

]
.

We can compute its inverse, which gives:

B−1 =

[
2 −1
−7 4

]
.

Suppose we change 28 to 28+λ, note that this only changes ~b, the new B−1~b
is equal to [

2 −1
−7 4

]
·
[
28 + λ

50

]
=

[
6 + 2λ
4− 7λ

]
.

If B−1~b ≥ ~0, then this remains the optimal solution, and the basis remains to
be {x4, x2}. Solving the inequality gives −3 ≤ λ ≤ 4/7. This optimal solution
gives a maximum that is equal to

11x1 + 4x3 + x3 + 15x4 = 4(4− 7λ) + 15(6 + 2λ) = 2λ+ 106.

5.6.1

1



In the step 2 of the dual simplex algorithm, suppose there exists r such that
br < 0, and arj ≥ 0 for all j, then if we consider the r-th constraint, it looks
like:

ar1x1 + ar2x2 + · · ·+ arnxn = br.

However, if all arj ≥ 0, then the left hand side of this equality is nonnegative for
a feasible solution (since all xi’s need to be nonnnegative in a feasible solution),
while the right hand side is equal to br which is strictly negative, contradiction.
Therefore this system of linear constraints has no feasible solution.

6.2.5

Figure 6.3:
subject to 5x1 + 4x2 − 20 ≤M1(1− y1)

3x1 + 8x2 − 24 ≤M2(1− y2)
y1 + y2 ≥ 1
x1, x2 ≥ 0; y1, y2 ∈ {0, 1}

Now let’s determine the value of M1,M2. Note that for any solution (x1, x2) in
the feasible region, one always have 0 ≤ x1 ≤ 8, and 0 ≤ x2 ≤ 5. Therefore

5x1 + 4x2 − 20 ≤ 5× 8 + 4× 5− 20 = 40.

One can choose M1 to be any real number greater or equal to 40.
For M2, note that

3x1 + 8x2 − 24 ≤ 3× 8 + 8× 5− 24 = 40.

So M2 can be chosen as any real number at least 40.

Figure 6.4:
subject to x1 + x2 − 1 ≤M1(1− y1)

3x1 + x2 − 3 ≥M2(1− y2)
3x1 + 4x2 − 12 ≤M3(1− y2)
y1 + y2 ≥ 1
x1, x2 ≥ 0; y1, y2 ∈ {0, 1}

Note that any feasible solution (x1, x2) satisfy 0 ≤ x1 ≤ 4, and 0 ≤ x2 ≤ 3.
Therefore

x1 + x2 − 1 ≤ 4 + 3− 1 = 6

3x1 + x2 − 3 ≥ 3× 0 + 0− 3 = −3

3x1 + 4x2 − 12 ≤ 3× 4 + 4× 3− 12 = 12

Therefore one can choose M1 to be any real at least 6, M2 to be any real at most
−3, M3 to be any real at least 12. Note that the constraint y1 + y2 ≥ 1 can also
be changed to y1 +y2 = 1, since the two shaded triangles only intersect trivially.



Figure 6.5:
subject to 2x1 + 5x2 − 10 ≤M1(1− y1)

x1 − 3 ≤M2(1− y2)
x1 − x2 ≥M3(1− y2)
y1 + y2 ≥ 1
x1, x2 ≥ 0; y1, y2 ∈ {0, 1}

Note that any feasible solution (x1, x2) satisfy 0 ≤ x1 ≤ 5, and 0 ≤ x2 ≤ 3.
Therefore

2x1 + 5x2 − 10 ≤ 2× 5 + 5× 3− 10 = 15

x1 − 3 ≤ 5− 3 = 2

x1 − x2 ≥ 0− 3 = −3.

So we can choose M1 to be any real at least 15, M2 be any real at least 2, and
M3 be any real at most −3.

6.2.16

We let yi = 1 if the i-th constraint is satisfied, and let yi = 0 if the i-th constraint
is not satisfied. Now we can write down the integer programming (we will pick
the constant Mi’s later):

Maximize 9x1 + 8x2 + 7x3
subject to x1 + x2 + x3 ≤ 500

3x1 − 3x2 + 4x3 − 1000 ≤M1(1− y1)
x1 − 2x3 − 200 ≥ −M2(1− y2)
x1 + x2 − 300 ≤M3(1− y3)
x1 + x2 − 300 ≥ −M4(1− y3)
y1 + y2 + y3 ≥ 2
y1, y2, y3 ≤ 1
x1, x2, x3, y1, y2, y3 ≥ 0; y1, y2, y3 integral.

Next we will decide the value for Mi’s. For example, we know that for all xi,
they lie in the interval [0, 500] from the first inequality. Therefore,

3x1 − 3x2 + 4x3 − 1000 ≤ 3× 500− 3× 0 + 4× 500− 1000 = 2500,

which means that if we pick M1 = 2501, then the first inequality is automatically
satisfied in the case y1 = 0 (we want no extra constraint in this case). Similarly
since x1− 2x3− 200 ≥ 0− 2× 500− 200 = −1700, we can pick M2 = 1800, and
determine the value for M3 and M4 as well.

6.4.1(a)



We would like to solve the following integer program using the Branch-and-
Bound algorithm:

(IP1) Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1, x2 ≥ 0 and integral.

Using simplex method, we know that the corresponding LP has an optimal
solution (7/6, 3) that gives z = 71/6. Now we consider two new integer programs
by taking x1 ≤ 1, and x1 ≥ 2, respectively. For the first IP:

(IP2a)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≤ 1
x1, x2 ≥ 0 and integral.

The corresponding LP has an optimal solution (1, 20/7) that gives z = 75/7.
The second IP:

(IP2b)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≥ 2
x1, x2 ≥ 0 and integral.

corresponds to a LP which has an optimal solution (2, 1/2) that gives z = 11.
Now we continue to branch from these two IPs, IP2a has two branches using

x2 ≤ 2 and x2 ≥ 3 respectively:

(IP3a)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≤ 1
x2 ≤ 2
x1, x2 ≥ 0 and integral.

Its corresponding LP has an optimal solution (1, 2) that gives z = 9, for this
branch the algorithm stops here since we already arrive at an integral optimal
solution.

The second branch of IP2a is:

(IP3b)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≤ 1
x2 ≥ 3
x1, x2 ≥ 0 and integral.



Its corresponding LP is infeasible.
Now for IP2b, we also have two branches according to x2 ≤ 0 (meaning that

x2 = 0), or x2 ≥ 1:

(IP3c)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≥ 2
x2 = 0
x1, x2 ≥ 0 and integral.

The corresponding LP has an optimal solution (13/6, 0) that gives 65/6. The
second branch:

(IP3d)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≥ 2
x2 ≥ 1
x1, x2 ≥ 0 and integral.

corresponds to a LP that is infeasible.
Now we start the branching process from IP3c, by setting x1 ≤ 2 (since

already x1 ≥ 2, we have x1 = 2) and x1 ≥ 3:

(IP4a)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 = 2
x2 = 0
x1, x2 ≥ 0 and integral.

The LP has a unique optimal solution (2, 0) that gives z = 10 (which also
updates the current best value 9). For

(IP4b)

Maximize z = 5x1 + 2x2
subject to 6x1 + 2x2 ≤ 13

−6x1 + 7x2 ≤ 14
x1 ≥ 3
x2 = 0
x1, x2 ≥ 0 and integral.

Its corresponding LP is infeasible. Therefore we finish the branch-and-bound
algorithm and conclude that the optimal solution is (x1, x2) = (2, 0), which
gives optimum value z = 10 (same with what graphical method gives in problem
6.1.1(b)).


