Math 346, HW9 Solution

5.5.3

In the linear program:

$$
\begin{array}{ll}
\text { Maximize } & 11 x_{1}+4 x_{2}+x_{3}+15 x_{4} \\
\text { subject to } & 3 x_{1}+x_{2}+2 x_{3}+4 x_{4} \leq 28 \\
& 8 x_{1}+2 x_{2}-x_{3}+7 x_{4} \leq 50 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

By simplex method, the final tableau looks like (from Page 184):
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{4} & -2 & 0 & 5 & 1 & 2 & -1 & 6 \\ x_{2} & 11 & 1 & -18 & 0 & -7 & 4 & 4 \\ \hline & 3 & 0 & 2 & 0 & 2 & 1 & 106\end{array}\right]$

Note that by taking the fourth column and second column in the original LP, the matrix

$$
B=\left[\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right]
$$

We can compute its inverse, which gives:

$$
B^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-7 & 4
\end{array}\right]
$$

Suppose we change 28 to $28+\lambda$, note that this only changes \vec{b}, the new $B^{-1} \vec{b}$ is equal to

$$
\left[\begin{array}{cc}
2 & -1 \\
-7 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
28+\lambda \\
50
\end{array}\right]=\left[\begin{array}{l}
6+2 \lambda \\
4-7 \lambda
\end{array}\right]
$$

If $B^{-1} \vec{b} \geq \overrightarrow{0}$, then this remains the optimal solution, and the basis remains to be $\left\{x_{4}, x_{2}\right\}$. Solving the inequality gives $-3 \leq \lambda \leq 4 / 7$. This optimal solution gives a maximum that is equal to

$$
11 x_{1}+4 x_{3}+x_{3}+15 x_{4}=4(4-7 \lambda)+15(6+2 \lambda)=2 \lambda+106
$$

5.6.1

In the step 2 of the dual simplex algorithm, suppose there exists r such that $b_{r}<0$, and $a_{r j} \geq 0$ for all j, then if we consider the r-th constraint, it looks like:

$$
a_{r 1} x_{1}+a_{r 2} x_{2}+\cdots+a_{r n} x_{n}=b_{r} .
$$

However, if all $a_{r j} \geq 0$, then the left hand side of this equality is nonnegative for a feasible solution (since all x_{i} 's need to be nonnnegative in a feasible solution), while the right hand side is equal to b_{r} which is strictly negative, contradiction. Therefore this system of linear constraints has no feasible solution.

6.2.5

Figure 6.3:

$$
\begin{array}{ll}
\text { subject to } & 5 x_{1}+4 x_{2}-20 \leq M_{1}\left(1-y_{1}\right) \\
& 3 x_{1}+8 x_{2}-24 \leq M_{2}\left(1-y_{2}\right) \\
& y_{1}+y_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 ; y_{1}, y_{2} \in\{0,1\}
\end{array}
$$

Now let's determine the value of M_{1}, M_{2}. Note that for any solution $\left(x_{1}, x_{2}\right)$ in the feasible region, one always have $0 \leq x_{1} \leq 8$, and $0 \leq x_{2} \leq 5$. Therefore

$$
5 x_{1}+4 x_{2}-20 \leq 5 \times 8+4 \times 5-20=40
$$

One can choose M_{1} to be any real number greater or equal to 40 .
For M_{2}, note that

$$
3 x_{1}+8 x_{2}-24 \leq 3 \times 8+8 \times 5-24=40
$$

So M_{2} can be chosen as any real number at least 40 .
Figure 6.4:

$$
\begin{array}{ll}
\text { subject to } & x_{1}+x_{2}-1 \leq M_{1}\left(1-y_{1}\right) \\
& 3 x_{1}+x_{2}-3 \geq M_{2}\left(1-y_{2}\right) \\
& 3 x_{1}+4 x_{2}-12 \leq M_{3}\left(1-y_{2}\right) \\
& y_{1}+y_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 ; y_{1}, y_{2} \in\{0,1\}
\end{array}
$$

Note that any feasible solution $\left(x_{1}, x_{2}\right)$ satisfy $0 \leq x_{1} \leq 4$, and $0 \leq x_{2} \leq 3$. Therefore

$$
\begin{gathered}
x_{1}+x_{2}-1 \leq 4+3-1=6 \\
3 x_{1}+x_{2}-3 \geq 3 \times 0+0-3=-3 \\
3 x_{1}+4 x_{2}-12 \leq 3 \times 4+4 \times 3-12=12
\end{gathered}
$$

Therefore one can choose M_{1} to be any real at least $6, M_{2}$ to be any real at most $-3, M_{3}$ to be any real at least 12 . Note that the constraint $y_{1}+y_{2} \geq 1$ can also be changed to $y_{1}+y_{2}=1$, since the two shaded triangles only intersect trivially.

Figure 6.5:

$$
\begin{array}{cl}
\text { subject to } & 2 x_{1}+5 x_{2}-10 \leq M_{1}\left(1-y_{1}\right) \\
& x_{1}-3 \leq M_{2}\left(1-y_{2}\right) \\
& x_{1}-x_{2} \geq M_{3}\left(1-y_{2}\right) \\
& y_{1}+y_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 ; y_{1}, y_{2} \in\{0,1\}
\end{array}
$$

Note that any feasible solution $\left(x_{1}, x_{2}\right)$ satisfy $0 \leq x_{1} \leq 5$, and $0 \leq x_{2} \leq 3$. Therefore

$$
\begin{gathered}
2 x_{1}+5 x_{2}-10 \leq 2 \times 5+5 \times 3-10=15 \\
x_{1}-3 \leq 5-3=2 \\
x_{1}-x_{2} \geq 0-3=-3
\end{gathered}
$$

So we can choose M_{1} to be any real at least $15, M_{2}$ be any real at least 2 , and M_{3} be any real at most -3 .

6.2.16

We let $y_{i}=1$ if the i-th constraint is satisfied, and let $y_{i}=0$ if the i-th constraint is not satisfied. Now we can write down the integer programming (we will pick the constant M_{i} 's later):

$$
\begin{array}{cl}
\text { Maximize } & 9 x_{1}+8 x_{2}+7 x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \leq 500 \\
& 3 x_{1}-3 x_{2}+4 x_{3}-1000 \leq M_{1}\left(1-y_{1}\right) \\
& x_{1}-2 x_{3}-200 \geq-M_{2}\left(1-y_{2}\right) \\
& x_{1}+x_{2}-300 \leq M_{3}\left(1-y_{3}\right) \\
& x_{1}+x_{2}-300 \geq-M_{4}\left(1-y_{3}\right) \\
& y_{1}+y_{2}+y_{3} \geq 2 \\
& y_{1}, y_{2}, y_{3} \leq 1 \\
& x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \geq 0 ; y_{1}, y_{2}, y_{3} \text { integral. }
\end{array}
$$

Next we will decide the value for M_{i} 's. For example, we know that for all x_{i}, they lie in the interval $[0,500]$ from the first inequality. Therefore,

$$
3 x_{1}-3 x_{2}+4 x_{3}-1000 \leq 3 \times 500-3 \times 0+4 \times 500-1000=2500
$$

which means that if we pick $M_{1}=2501$, then the first inequality is automatically satisfied in the case $y_{1}=0$ (we want no extra constraint in this case). Similarly since $x_{1}-2 x_{3}-200 \geq 0-2 \times 500-200=-1700$, we can pick $M_{2}=1800$, and determine the value for M_{3} and M_{4} as well.
6.4.1(a)

We would like to solve the following integer program using the Branch-andBound algorithm:

$$
\begin{array}{ll}
(I P 1) \text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

Using simplex method, we know that the corresponding LP has an optimal solution $(7 / 6,3)$ that gives $z=71 / 6$. Now we consider two new integer programs by taking $x_{1} \leq 1$, and $x_{1} \geq 2$, respectively. For the first IP:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \leq 1 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

The corresponding LP has an optimal solution $(1,20 / 7)$ that gives $z=75 / 7$. The second IP:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \geq 2 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

corresponds to a LP which has an optimal solution $(2,1 / 2)$ that gives $z=11$.
Now we continue to branch from these two IPs, IP2a has two branches using $x_{2} \leq 2$ and $x_{2} \geq 3$ respectively:

$$
\begin{array}{cl}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \leq 1 \\
& x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

Its corresponding LP has an optimal solution $(1,2)$ that gives $z=9$, for this branch the algorithm stops here since we already arrive at an integral optimal solution.

The second branch of IP2a is:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \leq 1 \\
& x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

Its corresponding LP is infeasible.
Now for IP2b, we also have two branches according to $x_{2} \leq 0$ (meaning that $x_{2}=0$, or $x_{2} \geq 1$:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \geq 2 \\
& x_{2}=0 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

The corresponding LP has an optimal solution $(13 / 6,0)$ that gives $65 / 6$. The second branch:

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \geq 2 \\
& x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

corresponds to a LP that is infeasible.
Now we start the branching process from IP3c, by setting $x_{1} \leq 2$ (since already $x_{1} \geq 2$, we have $x_{1}=2$) and $x_{1} \geq 3$:

$$
\begin{array}{cl}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1}=2 \\
& x_{2}=0 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

The LP has a unique optimal solution $(2,0)$ that gives $z=10$ (which also updates the current best value 9). For

$$
\begin{array}{ll}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { subject to } & 6 x_{1}+2 x_{2} \leq 13 \\
& -6 x_{1}+7 x_{2} \leq 14 \\
& x_{1} \geq 3 \\
& x_{2}=0 \\
& x_{1}, x_{2} \geq 0 \text { and integral. }
\end{array}
$$

Its corresponding LP is infeasible. Therefore we finish the branch-and-bound algorithm and conclude that the optimal solution is $\left(x_{1}, x_{2}\right)=(2,0)$, which gives optimum value $z=10$ (same with what graphical method gives in problem 6.1.1(b)).

