Math 346, HW9 Solution

5.5.3

In the linear program:

Maximize 1lxi + 4zo + 23+ 1524

subject to 3z + 2 + 223 + 4y < 28
8171 + 21‘2 — X3+ 7134 S 50
x1,T2,23,%4 > 0.

By simplex method, the final tableau looks like (from Page 184):

T ) I3 Ty Xy Te
4| -2 0 5 1 2 —1| 6
z2 |11 1 =18 0 -7 4 4

3 0 2 0 2 1 | 106

Note that by taking the fourth column and second column in the original LP,

the matrix

4 1

B= [7 2] :

We can compute its inverse, which gives:

2 -1

-1 _
B — [7 ; } .
Suppose we change 28 to 28+ \, note that this only changes I;, the new B~1b

is equal to
2 1] |28+ A _ |[6+2A
-7 4 50 | |4—TA|"
If B-1p > 0, then this remains the optimal solution, and the basis remains to

be {x4,22}. Solving the inequality gives —3 < A < 4/7. This optimal solution
gives a maximum that is equal to

1121 + 4xg + 23 + 1524 = 4(4 — TA) + 15(6 + 2)) = 2\ + 106.

5.6.1



In the step 2 of the dual simplex algorithm, suppose there exists r such that
b, < 0, and a,; > 0 for all j, then if we consider the r-th constraint, it looks
like:

Ar1X1 + Ap2®2 + +++ + QrpTy = br~

However, if all a,; > 0, then the left hand side of this equality is nonnegative for
a feasible solution (since all z;’s need to be nonnnegative in a feasible solution),
while the right hand side is equal to b, which is strictly negative, contradiction.
Therefore this system of linear constraints has no feasible solution.

6.2.5

Figure 6.3:
subject to  5xy + 4xe — 20 < M (1 —y1)
3x1 4 8z — 24 < Mo(1 — y2)
Yy1+y2>1
x1,x2 > 051,92 € {0,1}

Now let’s determine the value of M;, M. Note that for any solution (z1, z2) in
the feasible region, one always have 0 < z; < 8, and 0 < x5 < 5. Therefore

51 + 42 —20 <5 X 844 x5 —20 = 40.

One can choose M; to be any real number greater or equal to 40.
For M,, note that

3z; +8x2 —24 <3 x84+ 8 x5 —24 =40.

So M can be chosen as any real number at least 40.

Figure 6.4:
subject to 1 + 22— 1 < My(1 — 1)
3r1+x9—3 > Mg(l — y2)
3$1 + 4.’1)2 — 12 < Mg(l — yg)
y1+y2>1
r1, 72 > 051,92 € {0, 1}

Note that any feasible solution (x1,xs) satisfy 0 < z; < 4, and 0 < 2o < 3.
Therefore
$1+$2—1§4+3—1:6
3r1+22—-3>3x04+0-3=-3
31 +4r, —12<3x44+4x3-12=12
Therefore one can choose M; to be any real at least 6, M5 to be any real at most

—3, M3 to be any real at least 12. Note that the constraint y; +y2 > 1 can also
be changed to y; +y2 = 1, since the two shaded triangles only intersect trivially.



Figure 6.5:
subject to  2x1 4+ bze — 10 < My (1 —y1)
x1 —3 < Ma(1—y9)
xy — @9 > M3(1 —y2)
y1+y22>1
x1, w2 > 0;91,92 € {0,1}

Note that any feasible solution (x1,xs) satisfy 0 < z; < 5, and 0 < x9 < 3.
Therefore
201 +51, —10<2x54+5x3—-10=15

r1—3<5-3=2
$1—$220—3:—3.

So we can choose M; to be any real at least 15, My be any real at least 2, and
M3 be any real at most —3.

6.2.16

We let y; = 1 if the i-th constraint is satisfied, and let y; = 0 if the i-th constraint
is not satisfied. Now we can write down the integer programming (we will pick
the constant M;’s later):

Maximize 9z1 + 8xo + 7x3
subject to x1 + x2 + x3 < 500
3131 - SIQ +4{E3 — 1000 S Ml(l — yl)
1 — 2CE3 — 200 2 7M2(1 - yQ)
T+ X9 — 300 < M3(1 — yg)
T+ X9 — 300 > —M4(1 — yg)
Y1+ Y2 +ys =2
Y1, Y2,¥3 < 1
T1,T2,T3,Y1, Y2, Y3 = 051,92, y3 integral.

Next we will decide the value for M;’s. For example, we know that for all x;,
they lie in the interval [0, 500] from the first inequality. Therefore,

3z1 — 32 + 423 — 1000 < 3 x 500 — 3 x 0+ 4 x 500 — 1000 = 2500,

which means that if we pick M7 = 2501, then the first inequality is automatically
satisfied in the case y; = 0 (we want no extra constraint in this case). Similarly
since x1 — 2x3 — 200 > 0 — 2 x 500 — 200 = —1700, we can pick My = 1800, and
determine the value for M3 and M, as well.

6.4.1(a)



We would like to solve the following integer program using the Branch-and-
Bound algorithm:

(IP1) Maximize z=5x1+ 2x2

subject to 6x1 + 229 <13
—6x1 + Txg < 14
1,22 > 0 and integral.

Using simplex method, we know that the corresponding LP has an optimal
solution (7/6,3) that gives z = 71/6. Now we consider two new integer programs
by taking x; < 1, and x; > 2, respectively. For the first IP:

Maximize 2z = dx1 + 2zo
subject to 6x1 + 222 < 13
(IP2a) —6x1 + Txo < 14
X S 1
r1, T3 > 0 and integral.

The corresponding LP has an optimal solution (1,20/7) that gives z = 75/7.
The second IP:

Maximize 2z =5z + 2z9
subject to 6x1 + 2z < 13
(IP2b) —6x1 + T < 14
I > 2
1,22 > 0 and integral.

corresponds to a LP which has an optimal solution (2,1/2) that gives z = 11.
Now we continue to branch from these two IPs, IP2a has two branches using
o < 2 and xo > 3 respectively:

Maximize 2z =5z + 2z9
subject to 6x1 4+ 2z5 < 13
—6x1 + Txg < 14
X1 S 1
o S 2
1,22 > 0 and integral.

(IP3a)

Tts corresponding LP has an optimal solution (1,2) that gives z = 9, for this
branch the algorithm stops here since we already arrive at an integral optimal
solution.

The second branch of IP2a is:

Maximize 2z = 5z + 2z9
subject to 6x1 + 2z < 13
—6x1 + Trg < 14
I < 1
xro Z 3
1,22 > 0 and integral.

(IP3b)



Its corresponding LP is infeasible.

Now for IP2b, we also have two branches according to x3 < 0 (meaning that

x9 = 0), or xg > 1:

Maximize
subject to

(IP3c)

z =bx + 229

6’1)1 + 21’2 § 13

—6.’21 + 7%2 § 14

X Z 2

To = 0

1,22 > 0 and integral.

The corresponding LP has an optimal solution (13/6,0) that gives 65/6. The

second branch:

Maximize
subject to

(I1P3d)

corresponds to a LP that is infeasible.

z = 5x1 + 219

6x1 + 229 < 13

*63’)1 + 71’2 S 14

I Z 2

xTo > 1

1,22 > 0 and integral.

Now we start the branching process from IP3c, by setting x; < 2 (since
already x1 > 2, we have x1 = 2) and z; > 3:

Maximize
subject to

(IP4a)

The LP has a unique optimal solution (2,0) that gives z
updates the current best value 9). For

Maximize
subject to

(IP4b)

z = 5x1 + 219

6x1 + 229 < 13

*6‘%1 + 7:752 < 14

xr1 = 2

To = 0

1,22 > 0 and integral.

10 (which also

z =511 + 219

6x1 + 222 < 13

—6x1 + Trg < 14

X1 Z 3

ro = 0

r1, T > 0 and integral.

Its corresponding LP is infeasible. Therefore we finish the branch-and-bound
algorithm and conclude that the optimal solution is (z1,22) = (2,0), which
gives optimum value z = 10 (same with what graphical method gives in problem
6.1.1(b)).



