Math 346, HW8 Solution

5.1.2

(a,b) We need to verify that for $\lambda \geq 0$ up to certain upper limit, the linear program:

$$
\begin{array}{ll}
\text { Minimize } & 16 x_{1}+14 x_{2} \\
\text { subject to } & 10 x_{1}+4 x_{2} \geq 124+2 \lambda \\
& 3 x_{1}+5 x_{2} \geq 60-\lambda \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

has the same optimal solution with the LP when $\lambda=0$.
From the textbook, we know that $\left(x_{1}, x_{2}\right)=(10,6)$ is the optimal solution with optimum value 244 , therefore the final simplex tableau looks like this $\left(x_{3}, x_{4}\right.$ are the slack variables, so B is formed by taking the two coluns $(10,3)$ and $(4,5)$, for which we can compute B^{-1}):
$\left[\begin{array}{c|cccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & \\ \hline x_{1} & 1 & 0 & 5 / 38 & -2 / 19 & 10 \\ x_{2} & 0 & 1 & -3 / 38 & 5 / 19 & 6 \\ \hline & 0 & 0 & c_{3} & c_{4} & -244\end{array}\right]$

When we change $b=(124,60)$ to $(124+2 \lambda, 60-\lambda)$, the $B^{-1} b$ is equal to

$$
\left[\begin{array}{c}
10 \\
6
\end{array}\right]+\left[\begin{array}{cc}
5 / 38 & -2 / 19 \\
-3 / 38 & 5 / 19
\end{array}\right]\left[\begin{array}{c}
2 \lambda \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
10+7 / 19 \cdot \lambda \\
6-8 / 19 \cdot \lambda
\end{array}\right]
$$

As long as it is nonnegative, the daily minimum cost is equal to $16(10+7 / 19$. $\lambda)+14(6-8 / 19 \cdot \lambda)=244$ and remains unchanged, solving $6-8 / 19 \cdot \lambda \geq 0$ gives $\lambda \leq 57 / 4$.

5.1.3

We consider the linear program (suppose the daily requirement for nutritional element A increases by λ_{1}, that of B increases by λ_{2})

$$
\begin{array}{ll}
\text { Minimize } & 16 x_{1}+14 x_{2} \\
\text { subject to } & 10 x_{1}+4 x_{2} \geq 124+\lambda_{1} \\
& 3 x_{1}+5 x_{2} \geq 60+\lambda_{2} \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Similarly as before, $B^{-1} b$ is equal to $\left(10+5 / 38 \cdot \lambda_{1}-2 / 19 \cdot \lambda_{2}, 6-3 / 38 \cdot \lambda_{1}+\right.$ $5 / 19 \cdot \lambda_{2}$). The objective function is equal to
$16\left(10+5 / 38 \cdot \lambda_{1}-2 / 19 \cdot \lambda_{2}\right)+14\left(6-3 / 38 \cdot \lambda_{1}+5 / 19 \cdot \lambda_{2}\right)=244+\lambda_{1}+2 \lambda_{2}$.
If $\lambda_{2}>0$ (we increase the requirement for element B), then the cost increases by $2 \lambda_{1}$. So for each 10 -unit increase, the cost increases by 20 cents which is more than the increase of the value (15 cents), so this won't do any good. But if $\lambda_{1}>0$, then the cost increases by only 10 cents while the value of the stock increases by 15 cents.

To determine the upper limit for increasing λ_{1}, we set $\lambda_{2}=0$ and let $B^{-1} b \geq$ 0 , we have $10+5 / 38 \cdot \lambda_{1} \geq 0$, and $6-3 / 38 \cdot \lambda_{1} \geq 0$, solving them gives $\lambda_{1} \leq 76$. So this works for up to 76 units of increment for the element A. Another way is to solve the following LP (the objective function is cost minus increase in value)

$$
\begin{array}{ll}
\text { Minimize } & 16 x_{1}+14 x_{2}-1.5 \lambda_{1} \\
\text { subject to } & 10 x_{1}+4 x_{2} \geq 124+\lambda_{1} \\
& 3 x_{1}+5 x_{2} \geq 60 \\
& x_{1}, x_{2}, \lambda_{1} \geq 0
\end{array}
$$

The solution is $\left(x_{1}, x_{2}, \lambda_{1}\right)=(20,0,76)$, which means that the producer can increase the requirement for element A by at most 76 , and during this procedure the value of stock minus the cost increases.

5.2.2

(a) For the LP with the artificial variables (3.6.5), the basic variables in the final tableau are x_{1} and x_{3}, and

$$
\begin{aligned}
B & =\left[\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right] \\
B^{-1} & =\left[\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
-\frac{1}{5} & \frac{1}{5}
\end{array}\right],
\end{aligned}
$$

(b) In the final tableau for LP without artificial variable, the basic variables are x_{1} and x_{2}, thus

$$
B=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]
$$

and

$$
B^{-1}=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]
$$

(c) It suggests two things, first if one changes the basis to $\left\{x_{1}, x_{2}\right\}$ in the LP with artificial variables, the last two columns (of artificial variables) would become the B^{-1} in (b). Moreover, it suggests that the B^{-1} could be different for LP's with or without artificial variables. When doing the sensitivity analysis one should calculate B^{-1} on the LP without aritifical variables.

5.3.6

The final tableau for the dual LP is:
$\left[\begin{array}{c|ccccc|c} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & \\ \hline y_{2} & 0 & 1 & -3 / 2 & 1 / 4 & -3 / 8 & 1 \\ y_{1} & 1 & 0 & 9 / 2 & -1 / 4 & 7 / 8 & 1 \\ \hline & 0 & 0 & 72 & 6 & 21 & 144\end{array}\right]$

From the tableau, we know that the optimal solution is $\left(y_{1}, y_{2}, y_{3}\right)=(1,1,0)$, with y_{1}, y_{2} being the basic variable. Now we would like to fix the nutritional requirement for B and C, and check for which range of nutritional requirement for A, the optimal solution of the dual remains the same. In other words, we change the vector b in the dual:

$$
\begin{array}{ll}
\text { Maximize } & b^{T} y \\
\text { subject to } & A^{T} y \leq c \\
& y \geq 0,
\end{array}
$$

and we hope to keep the optimal solution. Note that after we change 60 to λ, the last row of the tableau becomes
$-[\lambda, 84,72,0,0]+[84, \lambda]\left[\begin{array}{ccccc}0 & 1 & -3 / 2 & 1 / 4 & -3 / 8 \\ 1 & 0 & 9 / 2 & -1 / 4 & 7 / 8\end{array}\right]=[0,0,9 \lambda / 2-198,21-\lambda / 4,7 \lambda / 8-63 / 2]$
This vector is nonnegative when $44 \leq \lambda \leq 84$.
Now suppose we fix requirements for A and C and change requirement for B from 84 to λ, then we have the last row being:

$$
-[60, \lambda, 72,0,0]+[\lambda, 60]\left[\begin{array}{ccccc}
0 & 1 & -3 / 2 & 1 / 4 & -3 / 8 \\
1 & 0 & 9 / 2 & -1 / 4 & 7 / 8
\end{array}\right] \geq 0
$$

We can solve $60 \leq \lambda \leq 132$.
Again, if we fix A and B and change the requirement for C from 72 to λ, we have the last row being:

$$
-[60,84, \lambda, 0,0]+[84,60]\left[\begin{array}{ccccc}
0 & 1 & -3 / 2 & 1 / 4 & -3 / 8 \\
1 & 0 & 9 / 2 & -1 / 4 & 7 / 8
\end{array}\right] \geq 0
$$

Solving this we get $\lambda \leq 144$.

