Math 346, HW5 Solution

3.6.1 (b)

We can introduce two artificial variables x_{4} and x_{5} to the constraint, and minimize their sum:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{4}+x_{5} \\
\text { subject to } & x_{1}+x_{2}+x_{4}=1 \\
& 2 x_{1}+x_{2}-x_{3}+x_{5}=3 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

Note that the objective function is equal to $x_{4}+x_{5}=\left(1-x_{1}-x_{2}\right)+\left(3-2 x_{1}-\right.$ $\left.x_{2}+x_{3}\right)=4-3 x_{1}-2 x_{2}+x_{3}$. Here are the results using simplex algorithm (in the tableau form):
$\left[\begin{array}{c|ccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline x_{4} & 1 & 1 & 0 & 1 & 0 & 1 \\ x_{5} & 2 & 1 & -1 & 0 & 1 & 3 \\ \hline & -3 & -2 & 1 & 0 & 0 & -4\end{array}\right]$
$\left[\begin{array}{c|ccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline x_{1} & 1 & 1 & 0 & 1 & 0 & 1 \\ x_{5} & 0 & -1 & -1 & -2 & 1 & 1 \\ \hline & 0 & 1 & 1 & 3 & 0 & -1\end{array}\right]$

The simplex algorithm stops with a non-degenerate BFS such that $x_{5}>0$. Therefore there is no nonnegative solution satisfying the original constraints.

3.6.1(a)

To solve nonnegative solutions for the given constraints, we may also use the Big-M methods by choosing an arbitrary objective function, for example one can choose objective function to be x_{1} (0 is also fine). Now by introducing the artificial variables x_{4}, x_{5}, we would like to solve the following LP:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+M\left(x_{4}+x_{5}\right) \\
\text { subject to } & x_{1}-x_{2}+x_{4}=1 \\
& 2 x_{1}+x_{2}-x_{3}+x_{5}=3 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

In order to apply the simplex algorithm, first we rewrite the objective function as a function only in the non-basic variables x_{1}, x_{2}, x_{3} :

$$
\begin{aligned}
x_{1}+M\left(x_{4}+x_{5}\right) & =x_{1}+M\left(1-x_{1}+x_{2}\right)+M\left(3-2 x_{1}-x_{2}+x_{3}\right) \\
& =4 M+(1-3 M) x_{1}+M x_{3}
\end{aligned}
$$

$\left[\begin{array}{c|ccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline x_{4} & 1 & -1 & 0 & 1 & 0 & 1 \\ x_{5} & 2 & 1 & -1 & 0 & 1 & 3 \\ \hline & 1-3 M & 0 & M & 0 & 0 & -4 M\end{array}\right]$

The $1-3 M$ term in the last row (objective function) is negative, so we can do minimum ratio test for the first column, and pivot the entry 1 :
$\left[\begin{array}{c|ccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline x_{1} & 1 & -1 & 0 & 1 & 0 & 1 \\ x_{5} & 0 & 3 & -1 & -2 & 1 & 1 \\ \hline & 0 & 1-3 M & M & 3 M-1 & 0 & -M-1\end{array}\right]$

The $1-3 M$ term is still negative, we apply simplex method one more round:
$\left[\begin{array}{c|ccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \\ \hline x_{1} & 1 & 0 & -1 / 3 & 1 / 3 & 1 / 3 & 4 / 3 \\ x_{2} & 0 & 1 & -1 / 3 & -2 / 3 & 1 / 3 & 1 / 3 \\ \hline & 0 & 0 & 1 / 3 & M-1 / 3 & M-1 / 3 & -4 / 3\end{array}\right]$

Now all the artificial variables are out of the basis, this gives us a feasible solution to the original LP, with $\left(x_{1}, x_{2}, x_{3}\right)=(4 / 3,1 / 3,0)$.

3.6.2(c)

We use the two-phase method. In the first phase, we minimize the sum of artificial variables:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{5}+x_{6} \\
\text { subject to } & 4 x_{1}+x_{2}+x_{3}+4 x_{4}+x_{5}=8 \\
& x_{1}-3 x_{2}+x_{3}+2 x_{4}+x_{6}=16 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

We can choose x_{5} and x_{6} as the initial basis. The objective function is thus equal to $x_{5}+x_{6}=\left(8-4 x_{1}-x_{2}-x_{3}-4 x_{4}\right)+\left(16-x_{1}+3 x_{2}-x_{3}-2 x_{4}\right)=$ $24-5 x_{1}+2 x_{2}-2 x_{3}-6 x_{4}$.
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{5} & 4 & 1 & 1 & 4 & 1 & 0 & 8 \\ x_{6} & 1 & -3 & 1 & 2 & 0 & 1 & 16 \\ \hline & -5 & 2 & -2 & -6 & 0 & 0 & -24\end{array}\right]$
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{4} & 1 & 1 / 4 & 1 / 4 & 1 & 1 / 4 & 0 & 2 \\ x_{6} & -1 & -7 / 2 & 1 / 2 & 0 & -1 / 2 & 1 & 12 \\ \hline & 1 & 7 / 2 & -1 / 2 & 0 & 3 / 2 & 0 & -12\end{array}\right]$
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{3} & 4 & 1 & 1 & 4 & 1 & 0 & 8 \\ x_{6} & -3 & -4 & 0 & -2 & -1 & 1 & 8 \\ \hline & 3 & 4 & 0 & 2 & 2 & 0 & -8\end{array}\right]$

Note that this is a non-degenerate optimal solution with the artificial variable $x_{6}>0$, therefore the original LP is infeasible (so we do not have to continue the second phase).

3.7 .2

(a) Note that the sum of the first two constraints give $x_{11}+x_{12}+x_{13}+x_{21}+$ $x_{22}+x_{23}=900$, while the sum of the last three constraints give the same expression. This gives a relationship between the five equations, which shows that one of the equations is redundant.
(b) We would like to solve the following linear program (phase I):

$$
\begin{array}{ll}
\operatorname{minimize} & a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \\
\text { subject to } & x_{11}+x_{12}+x_{13}+a_{1}=350 \\
& x_{21}+x_{22}+x_{23}+a_{2}=550 \\
& x_{11}+x_{21}+a_{3}=275 \\
& x_{12}+x_{22}+a_{4}=325 \\
& x_{13}+x_{23}+a_{5}=300 \\
& x_{i j}, a_{i} \geq 0
\end{array}
$$

We start with a_{i} 's as the basic variable and write the objective function in the non-basic variable, therefore we could start with the following tableau:
$\left[\begin{array}{c|ccccccccccc|c} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\ \hline a_{1} & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 350 \\ a_{2} & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 550 \\ a_{3} & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 275 \\ a_{4} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 325 \\ a_{5} & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 300 \\ \hline & -2 & -2 & -2 & -2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & -1800\end{array}\right]$
$\left[\begin{array}{c|ccccccccccc|c} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\ \hline a_{1} & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 75 \\ a_{2} & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 550 \\ x_{11} & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 275 \\ a_{4} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 325 \\ a_{5} & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 300 \\ \hline & 0 & -2 & -2 & 0 & -2 & -2 & 0 & 0 & 2 & 0 & 0 & -1250\end{array}\right]$
$\left[\begin{array}{c|ccccccccccc|c} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\ \hline x_{12} & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 75 \\ a_{2} & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 550 \\ x_{11} & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 275 \\ a_{4} & 0 & 0 & -1 & 1 & 1 & 0 & -1 & 0 & 1 & 1 & 0 & 250 \\ a_{5} & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 300 \\ \hline & 0 & 0 & 0 & -2 & -2 & -2 & 2 & 0 & 0 & 0 & 0 & -1100\end{array}\right]$
$\left[\begin{array}{c|cccccccccccc|c} \\ & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\ \hline x_{12} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 325 \\ a_{2} & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & 0 & 300 \\ x_{11} & 1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & -1 & 0 & 25 \\ x_{21} & 0 & 0 & -1 & 1 & 1 & 0 & -1 & 0 & 1 & 1 & 0 & 250 \\ a_{5} & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 300 \\ \hline & 0 & 0 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 2 & 2 & -600\end{array}\right]$
$\left[\begin{array}{c|ccccccccccc|c} \\ x_{12} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\ a_{2} & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 325 \\ x_{13} & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & -1 & 0 & 0 & 275 \\ x_{21} & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 275 \\ a_{5} & -1 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 1 & 275 \\ \hline & 2 & 0 & 0 & 0 & -2 & -2 & 2 & 0 & 2 & 0 & 0 & -550\end{array}\right]$
$\left[\begin{array}{ccccccccccc|c} \\ \hline x_{12} & x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ x_{22} & -1 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 & 1 & 0 \\ x_{13} & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & -1 & 0 & 0 \\ 20 & 0 & 1 & 1 & 1 & -1 & -1 & 0 & 300 \\ x_{21} & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ a_{5} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 & 1 \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\ \hline\end{array}\right]$

The first phase of the simplex method stops here. Note that the artificial variable a_{5} is still in the basis, and we cannot take it out from the basis by replacing it by a non-artificial variable. Therefore we can conclude that the constraints are redundant (in particular, the fifth constraint can be written as a linear combination of the other constraints).

