## Math 346, HW4 Solution

### 3.3.3

Since the problem is already stated in the canonical form with basic variable $x_{2}$ and $x_{3}$, we can start with the initial BFS $(0,3,2,0,0)$. Note that in the objective function the variables $x_{1}$ and $x_{4}$ have negative coefficient. We can pick one of them entering the basis, suppose we pick $x_{4}$ (using Dantzig's pivot rule). The minimum ratio test on the column for $x_{4}$ gives $\min \left\{\frac{2}{6}, \frac{3}{3}\right\}=\frac{2}{6}$. So in the next step, $x_{4}$ enters the basis and replace $x_{3}$, meaning that we need to get the canonical form for the basis $\left\{x_{4}, x_{2}\right\}$, that is

$$
\begin{array}{ll}
\operatorname{minimize} & -\frac{2}{3} x_{1}+\frac{1}{3} x_{3}+2 x_{5}-\frac{2}{3} \\
\text { subject to } & \frac{1}{6} x_{1}+\frac{1}{6} x_{3}+x_{4}+\frac{1}{2} x_{5}=\frac{1}{3} \\
& -\frac{7}{2} x_{1}+x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{5}=2 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0 .
\end{array}
$$

Now notice that $x_{1}$ has negative coefficient in the new objective function. It enters the basis, and replace $x_{4}$ because it corresponds to the only positive $a_{i j}$ which is $\frac{1}{6}$. Now we could obtain the canonical form for basic variables $x_{1}, x_{2}$ :

$$
\begin{array}{ll}
\operatorname{minimize} & x_{3}+4 x_{4}+4 x_{5}-2 \\
\text { subject to } & x_{1}+x_{3}+6 x_{4}+3 x_{5}=2 \\
& x_{2}+3 x_{3}+21 x_{4}+10 x_{5}=9 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

Now all the coeffcients of non-basic variables in the objective function are nonnegative. So we stop at an optimal solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,9,0,0,0)$, with optimum value -2 .

## 3.4 .5

Suppose $r$ is the index minimizing $\frac{b_{i}}{a_{i s}}$ over all $i$ such that $a_{i s}>0$. After we pivot on $a_{r s}$, in the new tableau (or new canonical form), the constant terms $b_{i}^{*}$ becomes $b_{i}-\frac{a_{i s} b_{r}}{a_{r s}}$ for the basic variables except $r$, and $b_{r}^{*}=\frac{b_{r}}{a_{r s}}$, Recall that in a degenerate basic feasible solution, then the constant term $b_{i}$ has to be zero for some basic variable $x_{i}$. Since the new basis is $\left\{x_{1}, \cdots, x_{r-1}, x_{r+1}, \cdots, x_{m}, x_{s}\right\}$. So this pivot operation produces a degenerate BFS iff one of the $b_{i}^{*}$ computed above is equal to 0 .

### 3.5.2(b)

We first introduce the slack variables to convert it into the standard form (also we change the objective function so that it is now a minimization problem).

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}-2 x_{2}+x_{3} \\
\text { subject to } & x_{2}+4 x_{3}+x_{4}=36 \\
& 5 x_{1}-4 x_{2}+2 x_{3}+x_{5}=60 \\
& 3 x_{1}-2 x_{2}+x_{3}+x_{6}=24 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

Note that $x_{4}, x_{5}, x_{6}$ naturally forms a basis that gives a BFS. Now we create the simplex tableau:
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{4} & 0 & 1 & 4 & 1 & 0 & 0 & 36 \\ x_{5} & 5 & -4 & 2 & 0 & 1 & 0 & 60 \\ x_{6} & 3 & -2 & 1 & 0 & 0 & 1 & 24 \\ \hline & -1 & -2 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

In the next step, $x_{2}$ enters the basis and by the minimum ratio test $x_{4}$ leaves the basis (so we pivot on the entry 1)
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{2} & 0 & 1 & 4 & 1 & 0 & 0 & 36 \\ x_{5} & 5 & 0 & 18 & 4 & 1 & 0 & 204 \\ x_{6} & 3 & 0 & 9 & 2 & 0 & 1 & 96 \\ \hline & -1 & 0 & 9 & 2 & 0 & 0 & 72\end{array}\right]$

Now $x_{1}$ enters the basis and replace $x_{6}$, since $\frac{96}{3}<\frac{204}{5}$.
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{2} & 0 & 1 & 4 & 1 & 0 & 0 & 36 \\ x_{5} & 0 & 0 & 3 & \frac{2}{3} & 1 & -\frac{5}{3} & 44 \\ x_{1} & 1 & 0 & 3 & \frac{2}{3} & 0 & \frac{1}{3} & 32 \\ \hline & 0 & 0 & 12 & \frac{8}{3} & 0 & \frac{1}{3} & 104\end{array}\right]$

Now all the non-basic variables have nonnegative coefficients in the objective function, so we have obtained an optimal solution $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=$ $(32,36,0,0,44)$, with optimum objective value -104 . So for the original maximization problem, the maximum is 104.

### 3.5.6(b)

Again we first convert the linear program into the standard form and create
the simplex tableau:
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{5} & 2 & -1 & 1 & 1 & 1 & 0 & 60 \\ x_{6} & 3 & 4 & 2 & -2 & 0 & 1 & 150 \\ \hline & 1 & -3 & -6 & 0 & 0 & 0 & 0\end{array}\right]$
$x_{3}$ enters the basis and the minimum ratio test shows $x_{5}$ leaves the basis since $\frac{60}{1}<\frac{150}{2}$.
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{3} & 2 & -1 & 1 & 1 & 1 & 0 & 60 \\ x_{6} & -1 & 6 & 0 & -4 & -2 & 1 & 30 \\ \hline & 13 & -9 & 0 & 6 & 6 & 0 & 360\end{array}\right]$
$x_{2}$ enters the basis and $x_{6}$ leaves the basis.
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{3} & \frac{11}{6} & 0 & 1 & \frac{1}{3} & \frac{2}{3} & \frac{1}{6} & 65 \\ x_{2} & -\frac{1}{6} & 1 & 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{6} & 5 \\ \hline & \frac{23}{2} & 0 & 0 & 0 & 3 & \frac{3}{2} & 405\end{array}\right]$

Now we obtain one optimal BFS: $(0,5,65,0,0,0)$, with optimum objective value -405 . Note that in the current objective function $z=\frac{23}{2} x_{1}+3 x_{5}+\frac{3}{2} x_{6}$. The non-basic variables $x_{1}, x_{5}, x_{6}$ all have strictly positive coefficients. So if another different optimum BFS exists, $x_{4}$ would be in the basis. Now we do minimum ratio test for $x_{4}$. Then it is not hard to see that $x_{3}$ has to leave the basis. Pivoting on $\frac{1}{3}$, we have:
$\left[\begin{array}{c|cccccc|c} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \\ \hline x_{4} & \frac{11}{2} & 0 & 3 & 1 & 2 & \frac{1}{2} & 195 \\ x_{2} & \frac{7}{2} & 1 & 2 & 0 & 1 & \frac{1}{2} & 135 \\ \hline & \frac{23}{2} & 0 & 0 & 0 & 3 & \frac{3}{2} & 405\end{array}\right]$

This basis gives us another optimal BFS: $(0,135,0,195,0,0)$.

