Math 346, HW2 Solution

2.4 .4

Assume that $x_{i j}$ is the number of units sent from Warehouse i to Outlet j. Then the constraints for each warehouse and outlet are:

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+x_{14} \leq 100 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 150 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 300 \\
& x_{11}+x_{21}+x_{31} \geq 120 \\
& x_{12}+x_{22}+x_{32} \geq 120 \\
& x_{13}+x_{23}+x_{33} \geq 120 \\
& x_{14}+x_{24}+x_{34} \geq 120
\end{aligned}
$$

Moreover, outlet 2 cannot receive more units from warehouse 1 than from warehouse 2 , and outlet 4 must receive at least half of its suuply from warehouse 3 . This gives us two additional constraints:

$$
\begin{aligned}
& x_{12} \leq x_{22} \\
& x_{34} \geq\left(x_{14}+x_{24}+x_{34}\right) / 2
\end{aligned}
$$

To compute the objective function, note that the storage charge is $\$ 6$ per unit at Warehouse 1 and 2, and $\$ 12$ per unit in Warehouse 3. Therefore the storage cost is $6\left(100-x_{11}-x_{12}-x_{13}-x_{14}\right)+6\left(150-x_{21}-x_{22}-x_{23}-x_{24}\right)+12(300-$ $\left.x_{31}-x_{32}-x_{33}-x_{34}\right)$. And the shipping cost is $12 x_{11}+15 x_{12}+10 x_{13}+25 x_{14}+$ $10 x_{21}+19 x_{22}+11 x_{23}+30 x_{24}+21 x_{31}+30 x_{32}+18 x_{33}+40 x_{34}$. The sum of shipping cost and storage cost would be our objective function. And the constraints are listed above, together with the nonnegative constraint that all $x_{i j} \geq 0$.

2.4 .6

Suppose we ship $x_{i j}$ units from Source i to Destination j for $(i, j) \neq(2,1)$. x_{21} is the number of units below 20 sent from Source 2 to Destination 1, and y is the number of units above 20 sent from Source 2 to Destination 1.

$$
\begin{array}{ll}
\operatorname{minimize} & 8 x_{11}+17 x_{12}+19 x_{13}+21 x_{22}+22 x_{23}+10 x_{21}+13 y \\
\text { subject to } & x_{11}+x_{12}+x_{13} \leq 80 \\
& x_{21}+y+x_{22}+x_{23} \leq 80 \\
& x_{11}+x_{21}+y \geq 50 \\
& x_{12}+x_{22} \geq 50 \\
& x_{13}+x_{23} \geq 50 \\
& x_{i j} \geq 0, x_{21} \leq 20, y \geq 0
\end{array}
$$

2.5.3

We assume that in the i-th month, the dealer buys B_{i} units from the manufacturer, sells to the student S_{i} units, and store T_{i} units.

$$
\begin{array}{ll}
\text { Maximize } & \left(90 S_{1}+110 S_{2}+105 S_{3}\right)-\left(60 B_{1}+65 B_{2}+68 B_{3}\right)-7\left(T_{1}+T_{2}+T_{3}\right) \\
\text { subject to } & 25+B_{1}=S_{1}+T_{1} \\
& T_{1}+B_{2}=S_{2}+T_{2} \\
& T_{2}+B_{3}=S_{3}+T_{3} \\
& 0 \leq B_{i} \leq 65,0 \leq S_{i} \leq 100,0 \leq T_{i} \leq 45
\end{array}
$$

2.6 .9

Suppose in the i-th month, the shop produces D_{i} units of differentials, and store S_{i} units. Each month the shop uses B_{i} hours below 400 hrs , and O_{i} hours above 400 hrs .

$$
\begin{array}{ll}
\text { minimize } & 3\left(12 D_{1}+17 D_{2}+25 D_{3}+26 D_{4}\right)+18\left(B_{1}+B_{2}+B_{3}+B_{4}\right) \\
& +26\left(O_{1}+O_{2}+O_{3}+O_{4}\right)+10\left(S_{1}+S_{2}+S_{3}+S_{4}\right) \\
\text { subject to } & D_{1}=225+S_{1} \\
& S_{1}+D_{2}=225+S_{2} \\
& S_{2}+D_{3}=225+S_{3} \\
& S_{3}+D_{4}=225+S_{4} \\
& 2 D_{i} \leq B_{i}+O_{i} \\
& D_{i} \geq 0, S_{i} \geq 0,0 \leq B_{i} \leq 400,0 \leq O_{i} \leq 150
\end{array}
$$

3.1.3

(e) First we introduce two new variables x_{3} and x_{4} to convert the inequalities into equalities:

$$
\begin{array}{ll}
\text { Minimize } & 6 x_{1}+x_{2} \\
\text { subject to } & -5 x_{1}+8 x_{2}+x_{3}=80 \\
& x_{1}+2 x_{1}-x_{4}=4 \\
& x_{1} \leq 10, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

To replace x_{1} by a nonnegative variable. There are two ways: the first is to let $x_{1}=10-x_{1}^{\prime}$, then $x_{1}^{\prime}=10-x_{1} \geq 0$. Replace all the x_{1} by $10-x_{1}^{\prime}$ in the LP, we get:

$$
\begin{array}{ll}
\text { Minimize } & 6\left(10-x_{1}^{\prime}\right)+x_{2} \\
\text { subject to } & -5\left(10-x_{1}^{\prime}\right)+8 x_{2}+x_{3}=80 \\
& \left(10-x_{1}^{\prime}\right)+2 x_{1}-x_{4}=4 \\
& x_{1}^{\prime}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

We could rearrange the terms so that the constant terms are on the right:

$$
\begin{array}{ll}
\text { Minimize } & 60-6 x_{1}^{\prime}+x_{2} \\
\text { subject to } & 5 x_{1}^{\prime}+8 x_{2}+x_{3}=130 \\
& -x_{1}^{\prime}+2 x_{1}-x_{4}=-6 \\
& x_{1}^{\prime}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

The other way is to first replace x_{1} by $x_{1}^{\prime}-x_{1}^{\prime \prime}$, with $x_{1}^{\prime}, x_{1}^{\prime \prime} \geq 0$. Then we introduce a new nonnegative variable x_{5}, such that $x_{1}^{\prime}-x_{1}^{\prime \prime}+x_{5}=10$. This also works but uses more variables than the previous one.
(f) We first change the objective function to minimizing $-x_{1}-2 x_{2}-4 x_{3}$. For the absolute value, remember than $|x| \leq y$ is equivalent to that both $x \leq y$ and $x \geq-y$ hold. So we can rewrite the LP as follows:

$$
\begin{array}{ll}
\text { Minimize } & -x_{1}-2 x_{2}-4 x_{3} \\
\text { subject to } & 4 x_{1}+3 x_{2}-7 x_{3} \leq x_{1}+x_{2}+x_{3} \\
& 4 x_{1}+3 x_{2}-7 x_{3} \geq-x_{1}-x_{2}-x_{3} \\
& x_{1}, x_{2}, x_{3}, \geq 0
\end{array}
$$

Simplifying the constraints we get

$$
\begin{array}{ll}
\text { Minimize } & -x_{1}-2 x_{2}-4 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}-8 x_{3} \leq 0 \\
& 5 x_{1}+4 x_{2}-6 x_{3} \geq 0 \\
& x_{1}, x_{2}, x_{3}, \geq 0
\end{array}
$$

Adding new variables x_{4}, x_{5}, we get the standard form:

$$
\begin{array}{ll}
\text { Minimize } & -x_{1}-2 x_{2}-4 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}-8 x_{3}+x_{4}=0 \\
& 5 x_{1}+4 x_{2}-6 x_{3}-x_{5}=0 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

3.9.6

(a) False. For example just take two disjoint unit disk, both of them are convex but their union is not convex, e.g. by taking the two centers x, y and then $(x+y) / 2$ is their convex combination but does not belong to the union.
(b) False. For example we take the unit disk again. The complement is the whole plane minus the unit disk. Take a line segment intersecting the unit disk, with both ends outside. We can see this contradicts the convexity again.

